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ABSTRACT
Hybridisation of algorithms in evolutionary computation (EC) has
been used by researchers to overcome drawbacks of population-
based algorithms. �e introduced algorithm called mutated Arti�-
cial Bee Colony algorithm, is a novel variant of standard Arti�cial
Bee Colony algorithm (ABC) which successfully moves out of lo-
cal optima. First, new parameters are found and tuned in ABC
algorithm. Second, the mutation operator is employed which is
responsible for bringing diversity into solution. �ird, to avoid
tuning ‘limit’ parameter and prevent abandoning good solutions, it
is replaced by average �tness comparison of worst employed bee.
�us, proposed algorithm gives the global solution thus improv-
ing the exploration capability of ABC. �e proposed algorithm is
tested on four classes of problems. �e results are compared with
six other population-based algorithms, namely Genetic Algorithm
(GA), Particle Swarm Optimsation (PSO), Di�erential Evolution
(DE), standard Arti�cial Bee Colony algorithm (ABC) and its two
variants- quick Arti�cial Bee Colony algorithm (qABC) and adaptive
Arti�cial Bee Colony algorithm (aABC). Overall results show that
mutated ABC is at par with aABC and be�er than above-mentioned
algorithms. �e novel algorithm is best suited to 3 of the 4 classes
of functions under consideration. Functions belonging to UN class
have shown near optimal solution.
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1 INTRODUCTION
Optimisation is everybody’s part of life; for instance, optimising a
number of tasks by giving priority to one over another such that nei-
ther of these degrades overall value of the problem. �e industry is
also dependent on it to a large extent. Engineering, so�ware testing
[12] [14] are few of them. Researchers in the �eld of evolutionary
algorithms and swarm intelligence are working actively to �nd solu-
tions to optimise problems and to overcome the challenges faced by
optimisation algorithms when �nding a solution(s) for numerical
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problems. Particular randomised algorithm has proved to be useful
for a wide range of problems in di�erent application areas [11] [6]
[18]. �us it would not be wrong to say that a particular algorithm
is best suited for the non-exclusive class of problems. Algorithms
such as Genetic Algorithms (GA) [4] [15], Particle Swarm optimisa-
tion (PSO) [13], Ant colony optimisation (ACO) [2] are among the
e�cient algorithms consistently used by researchers, as a starting
point for the design of new algorithm, either to improve algorithm’s
performance by introducing their variants or hybridising with other
algorithms sharing similar properties [19]; and modifying them to
implement in a speci�c application of an area. Another research in
this �eld is based on tuning and controlling parameters [3]. Param-
eters for an algorithm de�ne its performance. Tuning parameter
techniques are used to set parameter values before running the
algorithm whereas parameters are set during the run of an algo-
rithm in parameter control. Parameter control can further be done
in three ways: Deterministic control [5], feedback control where
feedback is taken from past generation to come up with a be�er
parameter value for a problem and self-adaptive control [17] [1]
where a parameter adapts itself according to the performance of
the whole population.
�e Arti�cial Bee Colony algorithm (ABC) [7] has shown be�er or
similar results compared to the above-mentioned algorithms [8]. It
was proposed by Dervis Karaboga in 2005 to imitate the foraging
behaviour of bees. It uses intelligent behaviour i.e. decentralisa-
tion and self-organization of a swarm of bees and has successfully
solved a range of mathematical problems [16]. �e ABC algorithm
is good at exploitation but poor at exploration. To improve its
performance many modi�cations have been done in the way bee
searches its neighbourhood [9]. qABC (quick ABC) modi�es on-
looker bee phase where each onlooker bee chooses a neighbour
whose Euclidian distance from its position is less than the mean
euclidean distance. Euclidean distance is used as a similarity mea-
sure. One common problem faced by the traditional algorithms
is premature convergence. �is paper introduces a novel variant
of Arti�cial Bee Colony algorithm employing Genetic Algorithm
operator-mutation. In this paper, mutation is used for interpolation
and extrapolation for solving real-valued problems.
Further sections are organised as follows: Section 2 describes the
Arti�cial Bee Colony algorithm in detail. Section 3 discusses the
proposed novel algorithm. Section 4 gives experimental results.
Finally, Section 5 provides conclusions and potential lines of future
research.

2 ARTIFICIAL BEE COLONY ALGORITHM
Bees’ honey foraging behaviour is interesting and intelligent enough
to help optimise the range of problems, which mainly imitates the
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behaviour of employed bee, onlooker bee and scout bee. Employed
bees explore food and return back with honey. �ey then dance
on dance area to share the location and amount of honey present
on that location with other bees in the hive. Types of dance are
waggle dance and round dance, telling how far or near the food is!
Onlooker bees observe the dance and reach the neighbourhood of
selected employed bee for exploiting a new food source and collect
honey from the destination. �ey repeat this process switching
between each other’s role.
Arti�cial Bee colony algorithm has an advantage compared to other
nature inspired algorithm as it uses less control parameters com-
pared to others. �us there are fewer parametes to tune. Parameter
set for Arti�cial Bee Colony algorithm is shown below:
(SN ,D,MCN , limit )
SN - Number of employed Bees or Number of onlooker bees,
D- Dimension in search space,
MCN - Maximum Cycle Number,
limit- �reshold cycle number to abandon the not-changing-position
of a bee.
Following are the steps of Arti�cial Bee Colony algorithm:
Initialization of bees:
All bees in colony are randomly assigned a position between lower
and upper bounds for each dimension of a function using following
formulae:

xi j = lj + rand (0, 1) · (uj − lj ) (1)

xi j - ith employed bee with jth dimension
lj - Lower limit for jth dimension of a function
uj - Upper limit for jth dimension of a function
rand(0,1)- Random number between 0 and 1

REPEAT

Employed bee phase:
Each employed bee is assigned a random position in the search
space using formulae:
For any randomly chosen j-dimension of ith bee,

vi j = xi j + rand[−1, 1] · (xi j − xk j ),k ∈ [1, SN ], i , k (2)

vi j - New candidate solution for ith employed bee with jth dimen-
sion
rand[−1, 1]- Random number between -1 and 1
xk j - Randomly selected kth employed bee with jth dimension
Greedy selection-For each ith bee, xi j , past best �tness and �tness
of new position, vi j , are compared to a�ain best position in current
cycle by selecting the one with best out of these two positions.

Onlooker bee phase:
Onlooker bees are assigned a random position in the neighbour-
hood of probabilistically selected employed bee using formulae (2).
Greedy selection is applied same as above.

Pi = *
,

f itness (i )∑SN
i=1 f itness (i )

+
-
, i ∈ [1, SN ] (3)

Pi - Probability of ith employed bee
f itness (i )- Fitness of ith employed bee

Figure 1: Mutated Arti�cial Bee Colony algorithm

Scout bee phase:
�ere can be either one or zero scout bee in each cycle. Employed
bee whose position has not changed for prede�ned number of cy-
cles, abandons its position and is assigned a random position in the
search space using formula (1).

UNTIL (stopping criteria is met)

3 PROPOSED ALGORITHM
�e performance of an algorithm depends on its parameters; thus
tuning parameters of an algorithm is an important task as it gives
an insight of how an algorithm works. Optimum parameter values
for a problem can be di�erent for another problem considering
a particular algorithm. Arti�cial Bee Colony algorithm has few
hidden parameters which play important role in working of ABC
algorithm. �is paper explores some of them. Parameter set for
mutated ABC is shown below:
(SN ,D,MCN ,EB : OB, SB, SelectEB , SelectOB ,RNG )

• SN - Number of employed Bees or Number of onlooker
bees

• D- Dimension in search space
• MCN - Maximum Cycle Number
• EB : OB- Ratio of Employed Bee to Onlooker Bee
• SB- Number of Scout Bee
• SelectEB - Selction method of kth bee in Employed Bee

phase
• SelectOB - Selction method of kth bee in Onlooker Bee

phase
• RNG- Random Number Generator in vi j

Figure 1 shows Mutated Arti�cial Bee Colony algorithm where xi
and xk are employed bees in the previous cycle. In the Initializa-
tion phase, all bees in the colony are assigned a random position
between their dimensional limits. To further describe proposed
algorithm a comparison of ABC and GA is made in this section
and their best features are hybrid. Also, parameter are tuned to
best suit four classes of problems, namely Unimodal Separable (US),
Multimodal Separable (MS), Unimodal Non-separable (UN), and
Multimodal Non-separable (MN).
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Arti�cial Bee Colony algorithm di�ers from Genetic Algorithm in
following ways: ABC algorithm is a two-tier process (Employed
bee phase and Onlooker Bee phase) whereas GA is the one-tier
process. In ABC, employed bee phase selects two bees from the last
cycle called parents, operates them to produce two children and
a�er comparing children’s �tness with bee’s past �tness, adds best
to current cycle whereas onlooker bees phase selects two employed
bees from current generation called parents, operates them to pro-
duce two children and a�er comparing their �tness with its past
�tness, it selects best to add in current cycle. GA selects candidates
from the current generation as parents, operates them producing
children and adds best in next population.
All optimisation algorithm needs a right balance between Inten-
si�cation and Diversi�cation. Employed bees are responsible for
diversi�cation and onlooker for intensi�cation. ABC is good at
exploiting a solution but poor in exploration. To approach this
problem equation (2) is divided into following two parts:

vi j = xi j + rand[−1, 0] · (xi j − xk j ),k ∈ [1, SN ], i , k (4)

vi j = xi j + rand[0, 1] · (xi j − xk j ),k ∈ [1, SN ], i , k (5)

In the employed bee phase, bee a�ains a position which is away
from kth bee using �rst equation. �e second equation takes bee
towards kth bee. Here kth bee is selected using binary tournament
selection. At the end of employed bee phase, each employed bees
chooses the best position among xi and two children produced by
parents xi and xk .
Onlooker bee phase exploits the neighbourhood of selected em-
ployed bees. Each onlooker bee probabilistically selects an em-
ployed bee from the current population as the �rst parent and a
kth employed bee is selected randomly as the second parent. Using
equation (4) and (5) two children are produced and �nally a�aining
a position that is best among three positions- its past position and
two children. Unlike employed bee phase, this process is applied to
a randomly selected dimension of chosen employed bee.
Proposed algorithm is called mutated ABC because it works like
a mutation operator where each dimension (or each gene in GA)
is selected with some probability and changed to another bit if
selected for change. �is is responsible for exploration in the Ge-
netic algorithm. Mutation probability is set to 0.01. �us in both
phases, xi either goes towards or away from the kth bee and the
best position is chosen according to �tness.
In traditional ABC, employed bee whose position has not been
changed for a prede�ned number of cycles (limit) becomes scout
bee. If the value of limit is too small, there is a chance that good bee
position is loosed. If limit value is large, it results in unnecessary
delays in convergence. �ere needs to be ‘right’ limit value which is
hard to predict as it can be problem dependent. Due to confusion in
‘limit’ value, the concept of ‘limit’ is not used in proposed algorithm
and instead is replaced by average �tness which is calculated in
each cycle for colony size and if worst employed bee’s �tness is
greater than average �tness (in case of minimization problems) its
position is perturbed as in employed bee phase unlike standard
ABC algorithm where a new random position is assigned with-
out considering ‘goodness’ of current position as this can assign a
position farther away from optima.

4 EXPERIMENTAL RESULTS
Experiments are conducted on a set of benchmark functions given
in Table 1 of paper [10]. Each function belongs to one of the classes
of problem: US, MS, UN and MN. Each problem was carried out
for 30 runs and the number of function evaluations is 500,000 i.e.
colony size is 50 and number of cycles are 10,000. �e values less
than 10−15 is taken as 0. Each function problem is set for �xed
dimension (D) and interval for all experiments. �e parameter
EB : OB is set same as the original ABC algorithm that is 1:1. �e
number of scout bee is equal to 1 in all cycles for all experiments.
�ese speci�cations are matched with Karaboga’s (2016) paper [10].
All simulation results are obtained by an algorithm implemented
in Python 3.5.
Table 1 gives results using proposed algorithm. Mean, Standard
Deviation (SD), the best solution and the worst solution obtained
by mutated ABC are shown along with last column showing best re-
sults using aABC [10]. �is table shows results when the algorithm
is run 30 times. Mutation probability is set to 0.01 for all functions
except for Dixon-Price (Unimodal Nonseparable) function whose
mutation probability is 1.0 which means that each dimension of
an employed bee undergoes change as it needs more exploration
of search space. Two children are produced, one away from em-
ployed bee and other towards employed bee. �ese new positions
are compared with bee’s previous cycle position and the best is
chosen as the new position of that employed bee. �us, compared
to aABC algorithm best solution is obtained for US, MS and MN
class functions. Near optimal solutions are obtained for UN class
of functions.
�e mean value for each function generated by proposed algorithm
are compared with six other algorithms- GA, PSO, DE, ABC, qABC
and aABC algorithm as shown in Table 2. �ese values for above
mentioned six algorithms are taken directly from paper [10] for
comparison. �e results by best algorithm for a function is marked
by boldface. Unimodal Separable- Sphere function, when tested on
these algorithms, has given best result i.e. 0 for all algorithms in-
cluding mutated ABC except GA. Unimodal non-separable function
includes Rosenbrock and Dixon-Price. aABC has outperformed all
algorithms for these two functions but for Dixon-Price, ABC has
also shown the best result which is 0. Comparing results for Multi-
modal Sparable functions- Rastrigin, Schwefel and Branin, it can
be noticed from Table 2 that for all these functions mutated ABC
has shown best results compared to other algorithms. Considering
last class which is Multimodal Non-Separable includes Griewank,
Scha�er, Ackley and SixHumpCameBack, it is noticed that ABC
and all its variants have shown best mean results for Griewank
function. For Scha�er function, PSO, DE, aABC and mutated ABC
have shown best results. For Ackley function, DE, ABC along with
all variants of ABC have shown best results. Lastly, for SixHump-
CameBack, GA has outperformed all other algorithms. �us, it can
be generalised that proposed algorithm is successful in moving out
of local optima to reach global solution.

5 CONCLUSION AND FUTUREWORK
In this paper a novel variant of Arti�cial Bee Colony algorithm
has been proposed which explores new parameters of ABC and
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Table 1: Test on benchmark functions using mutated ABC

Test function Global Minima Mean SD Worst Best-mutated ABC Best-aABC
Sphere Fmin = 0 0 0 0 0 0

Rosenbrock Fmin = 0 0.085543 0.127395 0.681654 0.001961 2.1913E-005
Rastrigin Fmin = 0 0 0 0 0 0
Griewank Fmin = 0 0 0 0 0 0
Scha�er Fmin = 0 0 0 0 0 0

Dixon-Price Fmin = 0 0.000116504 0.000367662 0.001937097 1.44909E-08 2.2822E-015
Ackley Fmin = 0 0 0 2.84E-14 0 2.2204E-014
Schwefel Fmin = −12569.5 -12569.487 5.55E-12 -12569.487 -12569.487 -12569.487

SixHumpCameBack Fmin = −1.03163 -1.0316284 0 -1.0316284 -1.0316284 -1.0316284
Branin Fmin = 0.398 0.409121 0.020377 0.482377 0.3978949 0.398874

Table 2: Mean result on benchmark functions using ABC and mutated ABC

Test function GA PSO DE ABC qABC aABC Mutated ABC
Sphere 1.11E+03 0 0 0 0 0 0

Rosenbrock 1.96E+05 15.088617 18.203938 0.1766957 0.1329198 0.0246333 0.085543
Rastrigin 52.92259 43.977137 11.716728 0 0 0 0
Griewank 10.63346 0.0173912 0.0014792 0 0 0 0
Scha�er 0.004239 0 0 1.04E-10 8.66E-06 0 0

Dixon-Price 1.22E+03 0.6666667 0.6666667 0 1.15E-12 0 1.91E-02
Ackley 14.67178 0.1646224 0 0 0 0 0
Schwefel -11593.40 -6909.1359 -10.266 -12569.49 -12569.49 -12569.49 -12569.49

SixHumpCameBack -1.03163 -1.0316285 -1.031628 -1.0316284 -1.0316284 -1.0316284 -1.0316284
Branin 0.397887 0.3978874 0.3978874 0.3978874 0.3978874 0.3978874 0.409121

tunes few of them to enhance exploration ability of ABC. �e muta-
tion operator borrowed from Genetic Algorithm has proved useful
by interpolating and extrapolating the position of bees in �nding
new be�er solutions in their neighbourhood. Replacing ‘limit’ pa-
rameter with the average �tness of bees has been successful in
perturbing position of employed bee and �nding global minima.
Mutated ABC is used on four classes of problems and shown best
results for Unimodal Separable, Multimodal Separable, Multimodal
Non-separable function and near optimal solution for Unimodal
Separable Non-separable fnction. Proposed algorithm is at par with
aABC algorithm and has shown be�er results than GA, PSO, DE,
ABC and qABC for numerical optimisation.
Mutated ABC is required to be tested on a real-world problem. Iden-
tifying and implementing the proposed variant of ABC on other
classes of problems to analyse what properties of mutated ABC are
best suited for a particular class of problem.

REFERENCES
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