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ABSTRACT
Variable selection is a procedure used to choose a subset of features
in order to extract information from them. It has been widely used
in multivariate calibration together with statistical techniques to
build a model from which it is possible to be interpreted by users.
Genetic algorithms (GAs) have been successfully utilized as a vari-
able selection method in multivariate calibration models. However,
GAs solve a problem by trying di�erent decompositions, and the
variable selection problem usually can not be properly decomposed
when there is considerable correlation among variables. Conse-
quently, GAs tend to lead to a poor variable selection performance
if the variables interdepence is strong. �is work comes from a
doctoral thesis, which is still in development and aims to (not only)
demonstrate that selecting variables in multivariate calibration is a
non-completely decomposable problem. Based on the preliminary
results, we are able to claim the viability of our initial hypothesis.
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1 INTRODUCTION
Multivariate calibration is a sub-area of study from chemometrics
related to analytical chemistry. It determines a mathematical model
which relates the data to a given property of interest (e .д., protein,
pharmaceutical ingredient, qualitative parameters) from known
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samples (e .д., wheat, medicine, vegetable oils) in order to predict
this property by selecting informative variables [5].

Variable selection is the procedure used to choose a subset of
suitable features contained in a given data set. Selecting variables
becomes important when the data set contains many redundant
and irrelevant features. Such features usually do not provide distin-
guished knowledge and should be removed without incurring loss
of information [3].

Given a set of explanatory variables in a matrix X and a set of
response variables in a vector y, the learning task can be synthe-
sized to �nd y = f (X). Among the main statistical techniques used
for performing the calibration process and obtaining mathematical
models is the multiple linear regression (MLR) [5]. MLR is a statisti-
cal technique used to build models which describe the relationships
among several informative variables [2]. Multivariate calibration
utilizes MLR, which is a common tool between chemometrics and
machine learning to construct the models.

In order to deal with larger and more complex datasets, the
development of e�cient variable selection methods becomes an
increasingly important asset. �us, several studies have proposed
evolutionary algorithms (EAs) for the variable selection procedure
in multivariate calibration. For instance, Xu et al. [13] presented a
genetic algorithm (GA) for variable selection in visible and near-
infrared spectra. Authors showed that the proposed GA can be
used for industrial applications. Niazi and Leardi [6] published
a review which covers the application of GAs in chemometrics.
�e goal was to show the main research �elds of GAs applications
together with providing a list of references on the subject. On the
other hand, Paula et al. [8] demonstrated that one-point crossover
used by standard GAs tends to cause the building blocks disruption,
which usually leads to undesirable performance.

It is known that decomposable problems can be created by con-
catenating basis functions of a certain order [1]. For a problem to
be decomposable, there must be no interaction between any two
variables and each variable should be separately treated [11]. How-
ever, o�en in multivariate calibration there are considerable linear
dependencies among decision variables from spectral data [2, 5].
According to Watson [12], a set of correlated variables is not de-
composable.

�is paper is based on a doctoral thesis being developed. Our hy-
pothesis claims that spectral data in multivariate calibration may be
considered as a non-completely decomposable problem due to the
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constant presence of data correlation. As a consequence, GAs tend
to lead to an unsuitable variable selection performance since such
problems may not be properly decomposed [8, 11]. Our examples
and preliminary results point out the hypothesis feasibility.

Section 2 discusses about the main concepts regarding variable
selection in multivariate calibration. Section 3 presents our pro-
posed hypothesis. �e materials and methods used to obtain the
outcomes are described in Section 4. Results are discussed in Sec-
tion 5. Finally, Section 6 provides the �nal conclusions and the next
steps in the work.

2 BACKGROUND
A mathematical model can be obtained to measure the concentra-
tion level of a certain property of interest from the sample. Usually,
reference values (previously yielded in laboratory) can be used to
assess the model predictive ability. Such a mathematical model
establishes the relationship between the properties measured by
the spectrophotometer and the concentration of an analysed sam-
ple [5]. It can be used to provide the value of a quantity y based
on values measured from a set of explanatory variables Xcal =
{x1,x2, . . . ,xk }, and can be de�ned by Equation (1):

y = β0 + β1x1 + ... + βkxk + ε, (1)
where β0, β1, …, βk are the regression coe�cients to be determined,
and ε is a measure of random error.

In order to obtain the coe�cients in Equation (1), one may use
the multiple linear regression (MLR). MLR is a statistical technique
used to build models that describe the relationships among several
explanatory variables [2]. Equation (2) shows how those regression
coe�cients can be calculated:

β = (XTcalXcal )
−1XTcaly, (2)

where Xcal is the n × k matrix of variables and observations from
the calibration set, y is the vector of reference variables, and β is
the vector of regression coe�cients.

Soon a�er calculating those coe�cients, it becomes necessary
to determine the predictive ability of MLR models. �is may be
achieved by comparing predictions with reference values for a test
set and using statistical measures. �e root mean square error
of prediction (RMSEP) is a measure of the di�erences between
values predicted by a model and the values actually observed. In
the context of multivariate calibration, it is depicted as shown in
Equation (3):

RMSEP =

√∑N
i=1 (yi − ŷi )

2

n
, (3)

where y is the reference values of the property of interest (which
is a�empted to be determined in the analysed sample), n is the
number of observations (number of rows of matrix Xcal ), and ŷ is
the estimated value.

Based on the RMSEP value, it becomes possible to determine
if the model has an adequate predictive ability or not. In general,
the goal consists of obtaining a model with a considerably reduced
error value. However, in order to achieve this goal, it o�en becomes
necessary to deal with multicollinearity problem.

One of the main issues related to the calibration process is the
recurrent presence of linear correlations among variables. �e
existence of linear correlation between two or more variables is
a mathematical problem de�ned as multicollinearity [2]. Multi-
collinearity can be caused by the relationship among explanatory
variables, and it is an undersirable a�ribute of the particular cali-
bration set that has been collected. It can reduce the reliability of
coe�cients from estimated models [2]. In literature, it is possible to
�nd many techniques to deal with multicollinearity [2]. Reducing
the number of variables is a signi�cant procedure which has been
widely used.

Selecting a reduced set of informative (explanatory) variables
becomes important to improve the e�ciency of techniques used
to construct MLR models. Hence, smaller RMSEP values can be
achieved. In this sense, the use of variable selection methods has
become important an approach to deal with multicollinearity [8].

3 PROPOSED HYPOTHESIS
Additively decomposable functions are one of the representations
of a decomposable problem. Franz [11] states that decomposability
is one of the reasons for the advantage of GAs performing over
a random search. Assuming the variable selection procedure in
multivariate calibration as a decomposable problem, an additively
decomposable function can be de�ned as

f (Xn×k ) =
N∑
i=1

fvi1×m
(Sin×m ),∀ vi1×m ∈ VN×m , (4)

where Xn×k is the matrix from Equation (2), Sin×m , 1 ≤ m ≤ k ,
are N di�erent subsets of variables (columns) from Xn×k , vi1×m
is an individual from the population VN×m of a GA, and N is the
number of individuals in VN×m . More speci�cally, every vi1×m is
an 1 ×m binary vector in which each element equals to 1 means the
respective variable is to be selected. Otherwise, an element equals
to 0 does not select any variable.

In this sense, the variable subsets could be divided into several
smaller subsets and recombined by genetic operators to form new
be�er individuals. However, a subset of informative variables may
provide be�er outcomes than these variables divided into several
subsets. �us, such subset should not be split into di�erent parts.

When it is not possible to break a problem into smaller subprob-
lems or its pieces a�ect one another (i .e ., dependent subproblems),
the problem can not be properly decomposed [10, 11]. In this case,
dependent subproblems may contain information from other sub-
problems. Consequently, a partition between them may interfere
with the �nal result by adding a bias in the algorithm [7, 8].

Decision variables from spectroscopic data in multivariate cali-
bration commonly present strong correlations among them [2]. As
a consequence, our hypothesis arises:

• Hypothesis: Variable selection in multivariate calibration
should not be treated as a decomposable problem due to
the considerable data correlation (multicollinearity) usually
present in the dataset.
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3.1 Illustrative demonstration
In order to demonstrate the suitability of our hypothesis, we are
providing two examples. �e goal consists of demonstrating that
Equation (4) is not satis�ed in the context of variable selection in
multivariate calibration.

Example 1. Let Sn×4 = {x1, x2, x3, x4} be a subset with four
random columns of matrix Xn×k :

Sn×4 =



−0.0023 0.0013 −0.0022 −0.0013
−0.0025 0.0014 −0.0023 −0.0014
. . . .

. . . .

. . . .

−0.0020 0.0010 −0.0020 −0.0012



.

Moreover, let V12×4 = { v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11,
v12 } be a population with twelve individuals:

V12×4 =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1
0 1 1 1
1 1 1 1



,

where each individual selects di�erent combinations of variables.
Table 1 shows the separately-obtained RMSEP values by di�erent
combinations of variables in Sn×4:

Table 1: RMSEP values for di�erent combinations of vari-
ables in matrix Sn×4.

Variable subset RMSEP
v1 = x1 10.7114
v2 = x2 3.9159
v3 = x3 6.1204
v4 = x4 6.5862

v5 = x1 ∪ x2 3.9415
v6 = x1 ∪ x3 6.1242
v7 = x1 ∪ x4 6.5756
v8 = x2 ∪ x3 3.8765
v9 = x2 ∪ x4 3.9110
v10 = x3 ∪ x4 5.8188

v11 = x2 ∪ x3 ∪ x4 3.4252
v12 = x1 ∪ x2 ∪ x3 ∪ x4 3.4937

Example 2. Calculating the Pearson’s linear correlation coef-
�cient for matrix Sn×4, one can obtain a symmetric matrix R4×4
such as:

R4×4 =



1 −0.3976 0.2498 0.2118
−0.3976 1 −0.0099 −0.0218
0.2198 −0.0099 1 0.9843
0.2118 −0.0218 0.9843 1



.

Pearson’s linear correlation coe�cient is usually represented by
ρ and takes values in the range [-1, 1]. �en, ρ = 1 means a perfect
positive correlation between two variables, ρ = -1 means a perfect
negative correlation, and ρ = 0 means that both variables are not
correlated [4].

�ese two examples indicate Equation (4) can not be satis�ed
for the variable selection problem in multivariate calibration. For
instance, matrix R4×4 points out that variables can in�uence each
other due to the presence of multicollinearity among them. In ma-
trix R4×4, variables x2 and x3 provide ρ = -0.0099 (close to zero),
which means they are near linearly independent. Nevertheless,
variables x3 and x4 have ρ = 0.9843 (close to 1) and both are corre-
lated. Hence, x3 and x4 are correlated to each other such that one
variable may carry information from the other, which interferes
with the condition that there can not be dependent subproblems.

We can notice the RMSEP values sum of each separate variable
in Table 1 (x1 + x2 + x3 + x4 = 27.3339) is considerably greater than
the obtained RMSEP value with the four variables together (x1 ∪
x2 ∪ x3 ∪ x4 = 3.4937). �en, it is possible to claim that f (Sn×4) ,
fv1

1×4
(S1
n×4) + fv2

1×4
(S2
n×4) + fv3

1×4
(S3
n×4) + fv4

1×4
(S4
n×4).

Finally, the subset composed of variables x2, x3 and x4 in Table
1 provides the lowest RMSEP (x2 ∪ x3 ∪ x4 = 3.4252). �is implies
that as variables x3 and x4 are correlated, they should be together
in the same subset. In addition, since variable x2 is the one which
has the lowest correlation degree with both variables x3 and x4,
these three variables are able to reduce the prediction error. As a
consequence, they should remain together in the same subset.

�erefore, examples 1 and 2 provide signi�cant evidences that
selecting variables in multivariate calibration indeed should be
considered (or treated) as a non-completely decomposable problem,
which supports our hypothesis.

4 EXPERIMENTAL
Real dataset employed in this work consists of whole-wheat grain
samples obtained from vegetal material from occidental Canadian
producers. Standard data were determined at the Grain Research
Laboratory as in works of Paula et al. [7–9]. �e data set for the
multivariate calibration study consists of 775 Near Infrared (NIR)
spectra of whole-kernel wheat samples, which were used as shoot-
out data in the 2008 International Di�use Re�ectance Conference.

Protein concentration in the analysed samples was chosen as the
property of interest. Spectra were acquired by a spectrophotometer
in range of 400-2500 nanometers (nm) with a resolution of 2 nm.
Kennard and Stone algorithm was applied to the resulting spectra
to divide the samples into three sets: calibration, validation and
prediction with 389, 193 and 193 samples, respectively.

5 RESULTS AND DISCUSSION
Figure 1 plots the NIR absorbance spectra of wheat samples obtained
by Canadian producers using a spectrophotometer 1. �e spectra in
the chart come from the calibration set (Xcal ) which contains 389
samples, and each sample has 690 variables. It is possible to check
the absorbance variations from di�erent properties contained in the
wheat samples. In general, these variations can cause wave mutual

1Spectrophotometer is a device used to measure the amount of light re�ected or
absorbed by a sample object.
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disturbance (interference) implying in considerable rapprochement
(dependency) among variables from the spectra [2, 3, 5]. Note that
the variable index is related to the wavelength. �is chart indicates
that in most of wavelength regions there may be a relatively large
number of correlated variables.

Variable index
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Figure 1: NIR absorbance spectra of wheat samples.

Figure 2 2 shows a hot color map representing the correlations
among all variables from Figure 1:

�e corrcoe f Matlab© built-in function yields a symmetric ma-
trix R690×690 calculated from the input matrix X389×690 from Equa-
tion (2) whose rows are observations (samples) and columns are
variables. �is function is calculated by Pearson’s linear correlation
coe�cient. �e imaдesc Matlab© built-in function displays the
absolute value of elements from matrix R690×690 as a symmetric
image. In such image, the more elements close to 1 a variable vector
has, the more correlated to other variables it is. Similarly, the closer
to zero, the smaller the correlation degree.

Variable index
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Figure 2: Linear correlation analysis among all variables.

One can notice in Figure 2 that in fact there are considerable
correlations among most of variables. For example, variable 320
and variable 480 yield Pearson’s linear correlation coe�cient ρ =
0.0172 indicating they are near linearly independent (orthogonal)
and could be possibly selected to contribute for the increasing of
2�is chart was generated by using the corrcoef and imaдesc Matlab© built-in
functions.

model predictive ability. On the other hand, variables 250 and 350
yield ρ = 0.9843 which indicates they are almost totally correlated
and both contribute to increase the multicollinearity in the model.
Hence, these variables should not be selected.

Finally, it is noteworthy that Figures 1 and 2 provide additional
evidences about the non-decomposability assumption for the vari-
able selection problem in multivariate calibration. �erefore, they
strengthen our hypothesis.

6 WORK TO BE CONTINUED
Based on concepts of decomposability, a problem can be decom-
posed when it is split into independent subsets of variables. How-
ever, when one tries to split a subset of dependent variables, such
problem may not be properly decomposed. Due to the constant
presence of multicollinearity in spectroscopic data from multivari-
ate calibration, our hypothesis claims that selecting variables in
this context is a non-completely decomposable problem. �us, our
examples and outcomes provide signi�cant evidences about the
veracity of our hypothesis.

For the continuation of this work, we aim to develop a formal
demonstration about our hypothesis. Additionally, we intend to
improve our results previously published in [8] by proposing an
enhanced local-based search GA in order to avoid the use of recom-
bination operators. We have claimed that recombination operators
used in standard GAs can cause building blocks disruption [8].
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