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ABSTRACT

This paper proposed an ant colony optimization with human-
computer cooperative strategy for solving the two-echelon
vehicle routing problem(2E-VRP). Firstly, we use a computer
game to implement the human cognition sampling, which
is specially devised for 2E-VRP problem. Secondly, the
human satellite-to-customer assignment strategy is applied
to analyze the game results for customers’ assignment to
the satellite. Moreover, a global pheromone updating rule
and a solution construction method are exploited to further
improve the global search efficiency. The proposed algorithm
benefits by giving free rein to enhance the global exploitation
ability of ACO by human-computer cooperative strategy.
The computational results from public test set indicate the
effectiveness and usefulness of our proposed method for the
two-echelon vehicle routing problem.

KEYWORDS

human-computer cooperation strategy, ant colony optimiza-
tion, two-echelon vehicle routing problem

ACM Reference format:

Xueming Yan, Zhifeng Hao, Han Huang, and Hongyue Wu. 2017.

Ant Colony Optimization with Human-computer Cooperative S-
trategy for Two-echelon Vehicle Routing Problem. In Proceedings
of GECCO ’17 Companion, Berlin, Germany, July 15-19, 2017,

4 pages.
DOI: http://dx.doi.org/10.1145/3067695.3082496

∗The corresponding author.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

GECCO ’17 Companion, Berlin, Germany

© 2017 ACM. 978-1-4503-4939-0/17/07. . . $15.00
DOI: http://dx.doi.org/10.1145/3067695.3082496

1 INTRODUCTION

The idea of human-machine cooperation is firstly proposed
by Lenat and Feigenbaum [10] in 1991, and the objective
of human-computer cooperation is to achieve some mutual
advantages when humans and computers cause each other
[1]. In fact, the study of human-computer cooperation has
become an important research stream, which refers to the
study of intelligence between human minds and machines and
will be effective by selecting the best approximation strategy
in a given situation [11].

The two-echelon vehicle routing problem aims to deliv-
er the freight from the depot to the customers with the
capacity constraints via consolidating the freight by the satel-
lites [4]. The customer’s assignment to the satellite plays
a critical importance while solving 2E-VRP, as presented
by the results in [7]. In particular, the customer-to-satellite
assignment makes solving the 2E-VRP become more com-
plicated when the possible search spaces become large with
the increase in the number of satellites or customers [2]. Ant
colony optimization can be used to find approximate solution-
s to the combinatorial optimization problems [14]. However,
ant colony optimization can not make full use of the glob-
al information on solving the two-echelon vehicle routing
problem (2E-VRP), because the uncertainty of the satellite-
to-customer assignment to the 2E-VRP affects the validity of
the pheromone sharing of ACO between different satellites.
The idea of the human-computer cooperation strategy is uti-
lized to solve searching for the possible global information
based on human strategy development capabilities. The game
results are analyzed for the satellite-to-customer assignment
to 2E-VRP, which can be considered as the global search
strategy of different players.

In this paper, we proposed an ant colony optimization with
human-computer cooperative strategy(ACO-HCC), which is
devised with several attractive features based on the idea of
human-computer cooperation for enhancing the optimization
performance.
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2 ACO WITH HUMAN-COMPUTER
COOPERATIVE STRATEGY

In this section, we illustrate the details of the proposed
algorithm for the 2E-VRP. First of all, the human satellite-
to-customer assignment strategy can deal the game results

with decomposed graph G
′
ga for customers’ assignment to

satellites. Moreover, to guide the path construction process
of each satellite, the pheromone global updating rule of ACO
is used to update the pheromone and heuristic information of
the artificial ant colony. Finally, the solution reconstruction
method is exploited to improve the global search efficiency
of the proposed algorithm. In the proposed algorithm, there
are d ant groups Gk, d = 1, 2, ..., s. each of the ant groups is
in charge of finding a feasible solution for the corresponding
satellite. The routing problem of each satellite in the second
level can be regarded as the vehicle routing problem, which
can be solved by [16].

2.1 ACO for 2E-VRP

This section describes the procedure of the ACO for 2E-VRP
as an example [13]. The separation strategy (satellite-to-
customer assignment) divides the 2E-VRP problem into s+ 1
vehicle routing problems(VRP). Next, the ant colony opti-
mization (ACO)is used to solve the s + 1 VRP problems.
Given the satellite-to-customer assignment to the 2E-VRP,
the objective of the ACO is to find a minimal travel distance
from each satellites. The ACO mainly consists of the itera-
tion of four steps [6]:
1) Initialization : use the distance-based greedy algorith-
m to construct a better feasible solution s0, set the initial
pheromone according to Equation (9)

τ0 =
f(s0)

n
(1)

where n is number of the customers.
2) Path Construction: Ant k (k = 1,2,...,l) in customer i
decides to visit the next customer j (customer i and cus-
tomer j are served by the same satellite k), according to the
transition probability given in

pk(i, j) ==


[τ(i,j)]α[η(i,j)]β∑

u∈ψl
[τ(i,j)]α[η(i,j)]β

j ∈ ψl

0 otherwise
(2)

where τ(i, j) denotes the pheromone on edge(i, j), η(i, j) =
1
dij

represents the heuristic information, where dij is the

distance from customer i to customer j. Let ψl denote
an edge set which records all edges an ant have visited.
Let α and β represent the weight factors that measure the
corresponding importance between the pheromone and the
heuristic information.
3) Implement local search to the ant’s solution [5].
4) Update the pheromone pheromone information by using
Equation (11)

τk(i, j) = (1− ρ)τk(i, j) + ρ4τk(i, j) (3)

(a)player 1

(b)player 2

(c)player 3

(d)decomposition result

Figure 1: An illustrative example of the human
satellite-to-customer assignment method(there are
three players’ feasible solutions in (a), (b) and (c),
and decomposition of the game result with added
auxiliary customers for satellite-to-customer assign-
ment in (d)).

where the parameter ρ ∈ (0, 1) denotes the evaporation coef-
ficient. The term is represented as 4τk(i, j) = 1

f(Solutiongb)
,

which is associated with the best solution.

2.2 Human Satellite-to-Customer
Assignment Strategy

The human satellite-to-customer assignment strategy attrib-
uted the customer to different satellites based on the personal
preferences of different players. Game playing, which is spe-
cially devised according to the instances of the 2E-VRP
problem, can be regarded as human cognition sampling. The
game result can be simply seen as player’s global searching
process of routing related problem, and each players’ game
result is recognized as a feasible solution.

Fig.1 illustrates an example of the human satellite-to-
customer assignment strategy. Fig.1(a), Fig.1(b) and Fig.1(c)
show the feasible solutions which is generated by game play-
ing. The details of satellite-to-customer assignment to three
players’ game results are illustrated with Table 1. As we can
be seen from Table 1, six customers (v3, v4, v7, v8, v9 and
v15) are only assigned to the satellite S1, nine customers (v1,
v6, v10, v11, v12 , v16, v18, v19 and v20) are only assigned to
the satellite S2, but five customers (v2, v5, v13, v14 and v17)
are assigned to the satellites S1 and S2. The decomposition
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Table 1: The details of satellite-to-customer assignment to three players’ game results

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 v16 v17 v18 v19 v20

player 1 S2 S1 S1 S1 S2 S2 S1 S1 S1 S2 S2 S2 S2 S2 S1 S2 S2 S2 S2 S2

player 2 S2 S2 S1 S1 S2 S2 S1 S1 S1 S2 S2 S2 S1 S1 S1 S2 S1 S2 S2 S2

player 3 S2 S1 S1 S1 S1 S2 S1 S1 S1 S2 S2 S2 S1 S1 S1 S2 S1 S2 S2 S2

of the game result with added auxiliary customers is shown
in Fig.1(d), where the five customers (v2, v5, v13, v14 and v17)
are repeatable assigned to the corresponding satellites based
on the game results statistics of the satellite-to-customer
assignment.

2.3 Pheromone Global Updating Rules

In this paper, pheromone is applied to provide essential
guidance of the artificial ant colony to gradually search for
the optimal solution to the vehicle routing problem of each
satellite in 2E-VRP problem. In order to guide the search
effectively, ACO-HCC employs a new pheromone updating
mechanism using multiple pheromone tables. We associate
each artificial ant colony with a pheromone table. Each table
record the pheromone of the artificial ants over the routes of
the satellite independently for each generation.

Let τ0 be initial pheromone, and τ0 is set to the value
f(Solutiongb(Gga))

n
for all pheromone tables. At different gen-

erations, the ants are in charge of finding the optimal routes
for the satellites, and the auxiliary customers are responsible
for sharing the pheromone in different tables. The pheromone
is designed to be associated with the total cost of the current
best solution and the cost of respective satellites. Moreover,
4τk(i, j) for the satellite Sk is calculated by the expression
4τk(i, j) = n

f(Solutiongb(Gga))
+ nk

f(Solution(Gkz ))
, where Gkz is

the route cost of the satellites Sk and nk is the number of the
customers served by the satellite Sk. The pheromone values
are gradually updated in pheromone tables as the procedure
of the ant colony searching.

In summary, the pheromone global updating rules mainly
relied on the rewarding schemes for each satellite to guide
the construction of feasible solution.

2.4 Solution Reconstruction Method

It is well known that the prematurity often occurs to A-
CO and may result in reducing global search capability [12].
Hence, we develop the solution reconstruction method to
further to enhance the global exploitation ability for the
2E-VRP problem. The solution reconstruction method con-
sists of two parts. Firstly, we integrate with the solutions
Solution(Gkz), k = 1, 2, ..., s, for the satellites in the first level,
generate the routes on the first level by the savings algorithm
[3] and obtain a complete solution Solution(Gz). Besides,
we select the auxiliary customers, and employ roulette wheel
method to delete repeatable customer which ensures that
each customer is only served once. The roulette wheel method
is based on the distance between the customer and the corre-
sponding satellite. The auxiliary customers do well to share

the local search information on different satellites, which can
also improve the global exploitation ability based on human
satellite-to-customer assignment strategy.

3 COMPUTATIONAL RESULTS

3.1 Instances and Parameter Description

To evaluate the performance of our algorithm, we have consid-
ered the instance Set S from the literature [8]. Set S contain
small instances with up to 50 customers and include two or
three satellites. To ensure the fairness of the comparison, all
solution procedures were implemented in the same language
(Matlab) and computer system (Xeon E5620 2.40Ghz). All
the experiments were carried out for 30 independent execu-
tions, the number of the initial game solutions is 100 , and
the number of ants for each satellite is 6. Other parameters
are set as follows: ρ = 0.2, α = 1 and β = 2 [16].

3.2 Performance Evaluation

This section will present the experiments and results. We
compare our algorithm with an adaptive large neighborhood
search heuristic (ALNS) algorithm [9] and human-computer
cooperative brain storm optimization(HCC-BSO) algorith-
m [15] to show the effectiveness of the proposed algorithm.
The game results for HCC-BSO algorithm and the proposed
algorithm is the same, and the experiments are summarized
in Table 2. Columns 2-5 present the results from ACO-HCC
algorithm including the best solution, the average solution,
the average evaluation times and average running time (sec-
ond). The numbers in bold are the results as the best-known
solutions among three algorithms. Columns 6-9 show the re-
sults from HCC-BSO algorithm, and Columns 10-13 present
the results from ALNS algorithm. The evaluation times in
ACO-HCC and HCC-BSO are one thousand times, and the
evaluation times in ALNS is five thousand times.

Considering the results from Table 2, we can observe that
ALNS is not good as the performance of ACO-HCC in most
instances even with much evaluation times as well as the HCC-
BSO algorithms. The human global searching ability does
favor to enhance the performance of our proposed algorithm
with less evaluation times. Besides, ACO-HCC can get the
best solution in 14 instances, but HCC-BSO and ALNS can
obtain best solution in 8 instances and 7 instances respectively.
This may be attributing to that the proposed algorithm
integrated the the human-computer cooperative strategy into
ACO algorithm for making good use of global information of
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Table 2: Results on the set S in term of the solution costs

Instances ACO-HCC HCC-BSO ALNS
best ave.cost times t(s) best ave.cost times t(s) best ave.cost times t(s)

E-n22-k4-s13-14 526.15 526.15 1000 12 526.15 526.15 1000 30 526.15 526.15 5000 43
E-n22-k4-s13-16 521.09 521.09 1000 12 521.09 521.09 1000 22 521.09 521.09 5000 44
E-n22-k4-s13-17 496.38 496.38 1000 8 496.39 496.39 1000 24 496.38 496.38 5000 49
E-n22-k4-s14-19 499.1 499.1 1000 15 500.12 500.28 1000 23 499.81 499.81 5000 43
E-n22-k4-s17-19 512.8 512.8 1000 5 512.8 512.8 1000 20 512.81 512.81 5000 26
E-n22-k4-s19-21 520.42 520.42 1000 11 520.5 520.50 1000 11 520.42 520.42 5000 34
E-n33-k4-s16-22 672.93 672.94 1000 14 672.19 672.2 1000 25 672.17 672.17 5000 76
E-n33-k4-s16-24 666.02 666.04 1000 24 666.09 666.91 1000 34 669.12 669.12 5000 77
E-n33-k4-s19-26 680.37 680.37 1000 17 680.37 680.37 1000 46 680.37 680.37 5000 84
E-n33-k4-s22-26 680.24 680.24 1000 26 680.24 680.24 1000 38 680.37 680.37 5000 77
E-n33-k4-s24-28 670.43 670.43 1000 21 670.5 670.5 1000 48 672.45 670.49 5000 88
E-n33-k4-s25-28 650.32 650.32 1000 22 650.58 650.58 1000 35 650.58 650.58 5000 63
E-n51-k5-s12-18 692.37 692.37 1000 13 693.59 694.32 1000 38 692.59 692.59 5000 147
E-n51-k5-s12-41 683.05 683.14 1000 21 682.03 682.04 1000 28 684.05 684.65 5000 133
E-n51-k5-s12-43 710.42 710.42 1000 19 710.41 710.41 1000 39 710.41 710.41 5000 217
E-n51-k5-s39-41 728.54 728.54 1000 18 728.52 728.52 1000 69 728.54 728.54 5000 155
E-n51-k5-s40-41 722.25 722.25 1000 38 723.75 723.75 1000 38 726.15 726.15 5000 154
E-n51-k5-s40-43 751.32 751.32 1000 44 752.15 752.15 1000 79 752.15 752.17 5000 158

the best solution(best), the average solution(ave.cost), the average evaluation times(times) and average running time (t(s))

the 2E-VRP problem. In fact, the uncertainty of the satellite-
to-customer assignment to the 2E-VRP makes the global
information on routing related problem more importantly.

With the use of human-computer cooperative strategy
to improve the global exploitation ability of our algorithm,
thereby improving the efficiency of problem-solving. Regard-
ing the computation efficiency, we find that ACO-HCC can
find better solutions in an acceptable time for 2E-VRP.

4 CONCLUSIONS

This paper proposed an ACO-HCC algorithm based on
human-computer cooperative strategy to tackle the 2E-VRP
problem. ACO-HCC constructs feasible solutions with the
help of human-computer cooperation strategy, which benefits
by giving free rein to the mutual advantages of the human
and the computer.
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