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ABSTRACT
Most Multi-objective Evolutionary Algorithms (MOEAs) operate
without explicitly promoting the diversity of the variable space. Nev-
ertheless, in the single-objective domain it has been shown that
properly managing this kind of diversity might lead to higher-quality
solutions. In this paper the diversity of the variable space is analyzed
for several state-of-the-art MOEAs with well-known benchmarks,
showing that in the long term, the diversity is lost in a subset of
variables. This loss implies an important degradation of the per-
formance. In order to show that increasing the diversity can solve
these issues, MOEA/D with Enhanced Variable-Space Diversity
(MOEA/D-EVSD) is proposed. This variant induces a gradual loss
of diversity by altering the mating selection process. In addition,
a final phase to properly intensify is included. The experimental
validation was carried out with the Walking Fish Group (WFG)
benchmark and several state-of-the-art MOEAs showing the benefits
of the proposal. Particularly, WFG1 and WFG8, which are not prop-
erly solved by most state-of-the-art approaches, are readily solved
by our proposal.
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1 INTRODUCTION
Multi-objective optimization is an area of multiple criteria decision
making that involves the simultaneous optimization of several, usu-
ally conflicting, objective functions [5]. A continuous minimization
multi-objective problem can be defined as follows:

minimize F (x ) = ( f1 (x ), f2 (x ), ..., fm (x ))

subject to x ∈ Ω
(1)

where x = (x1, ...,xn ) ∈ Rn is a decision variable vector, n is
the dimensionality of the variable space, Ω is the feasible space,
F : Ω → Rm consist ofm real-valued objective functions and Rm is
called the objective space. In a minimization Multi-objective Opti-
mization Problem (MOP) withm objective functions, and given two
solutions x ,y ∈ Ω, x dominatesy, denoted by x ≺ y, if fi (x ) ≤ fi (y)
for all objectives i ∈ {1, ...,m}, and F (x ) , F (y). This means that the
solution x is not worse than y in any of the objectives and x is strictly
better than y in at least one objective. The Pareto dominance defini-
tion states that the best solutions of a multi-objective optimization
problem are those whose objective vectors are not dominated by any
other feasible vector. A solution x∗ ∈ Ω is known as Pareto optimal
solution if no other solution x ∈ Ω dominates x∗. The Pareto set is
the set of all the Pareto optimal solutions and the Pareto front are the
images of the Pareto set. The goal of multi-objective optimization
approaches is to obtain a proper approximation of the Pareto front.
Particularly, a set of solutions that are diverse and close to the Pareto
front are desired.

Multi-objective Evolutionary Algorithms (MOEAs) are one of
the most typical approaches to address MOPs. In spite of the popu-
larity of Evolutionary Algorithms (EAs) both in single-objective and
multi-objective domains, there are several issues that can affect their
performance. In the case of single-objective problems, premature
convergence has been recognized as one of the most typical failures
modes of EAs [20]. Premature convergence arises when most of
the population members are placed in a small region of the search
space and the components selected do not allow escaping from this
region. This issue is related with the loss of diversity in the variable
space, so several methods have been proposed to deal with the proper
management of this kind of diversity [8, 12]. Some recent successful
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methods are based on taking into account the stopping criterion set
by the user with the aim of provoking a gradual loss of diversity [18].
In this work the stopping criterion was set to a maximum number of
generations1. Thus, initial phases of the optimization induce a larger
degree of exploration, whereas final phases are dedicated to intensi-
fication. In the case of MOEAs, given that diversity is promoted in
the objective space, some degree of diversity is usually maintained
inherently in the variable space, so a complete convergence in the
variable space does not appear. However, if this amount of diver-
sity is not large enough, a similar situation to premature converge
might arise because the genetic operators might not produce better
trade-offs when applied to the current members of the population.

The aim of this paper is to show that by inducing a gradual loss of
diversity in the variable space, the state-of-the-art of MOEAs can be
improved further. Our proposal (MOEA/D-EVSD) is an extension
of MOEA/D (MOEA based on Decomposition) [21] that includes
an enhanced variable-space diversity control. The main novelty of
MOEA/D-EVSD is that it promotes the preservation of the diversity
of the decision space whereas the majority of the state-of-the-art
MOEAs focus only in the preservation of the diversity in the objec-
tive space. The stopping criterion set by the user bias the decisions
taken internally by MOEA/D-EVSD with the aim of attaining a grad-
ual progress between exploration and intensification. Additionally, a
final phase to further promote intensification is included. The exper-
imental validation is performed with the well-known Walking Fish
Group (WFG) tests [10]. Results show the promising performance
of MOEA/D-EVSD, which is specially clear in some of the most
complex problems. The experimental validation has considered the
hypervolume and the attainment surfaces and proper statistical tests
have been applied to confirm the benefits attained by MOEA/D-
EVSD. In the cases where MOEA/D-EVSD provokes a degradation
of the performance, the reasons have been studied.

The rest of this paper is organized as follows. Section II provides a
brief review of the state of the art of MOEAs. Section III discusses a
way in which MOEAs can fail. Section IV describes a mechanism to
increase the diversity in the variable space through a special mating
selection scheme. The experimental validation of the proposal is
shown in Section V. Finally, conclusions and some lines of future
work are given in Section VI.

2 LITERATURE REVIEW
In the last decades, the field of MOEAs has gained popularity. As
a result, there is a large number of MOEAs available. In order to
better classify the different schemes, several taxonomies have been
proposed [19]. Particularly, MOEAs can be based on Pareto domi-
nance, indicators and/or decomposition [4]. In this paper, our valida-
tion has been carried out by including the Non-Dominated Sorting
Genetic Algorithm (NSGA-II) [6], the MOEA Based on Decom-
position (MOEA/D) [21], and the S-metric Selection Evolutionary
Multi-objective Optimization Algorithm (SMS-EMOA) [2]. They
are representative methods of the domination-based, decomposition-
based and indicator-based paradigms, respectively. Additionally,
since our proposal implements differential evolution (DE) operators,
the Generalized Differential Evolution (GDE3) [14] has also been
taken into account. It is important to note that none of the selected

1In other implementations a period of time is considered.

methods introduce special mechanisms to promote diversity in the
variable space. In fact, contrary to the case of single-objective do-
main [18], we could not find any paper proposing a MOEA that
relates the degree of exploration to the stopping criterion set by the
user with the aim of adapting the search capabilities to the different
optimization stages. Thus, current state-of-the-art methods do not
provide a way to simultaneously promote diversity in the objective
and variable space.

2.1 Domination-Based
This kind of MOEAs are based on the application of the Pareto
dominance relation. Since the dominance relation does not inher-
ently promote the preservation of diversity in the objective space,
auxiliary techniques such as niching, crowding and/or clustering are
usually integrated with the aim of obtaining a proper spread and
diversity of the objective space. One popular algorithm of this group
is the NSGA-II. This algorithm [6] implements a special parent
selection operator and incorporates the use of elitism in the replace-
ment phase. The selection operator is based on two mechanisms:
fast-non-dominated-sort and crowding. The first one provides a bias
based on the Pareto dominance relation, whereas the second one
promotes the preservation of diversity in the objective space. This
method has been extended in a large number of ways [13]. NSGA-II
is now a mature algorithm that has been incorporated in many popu-
lar frameworks. Thus, it is almost mandatory to compare the results
of new algorithms against this method, so NSGA-II has been one of
the methods selected of this group.

Differential Evolution (DE) is a simple population-based meta-
heuristic, closely related to EAs. One of its main features is the
relation between the mutation operator and the content of the popula-
tion. DE has reported promising results in single-objective optimiza-
tion [17], and several multi-objective variants of this metaheuristic
have been devised [1]. One popular multi-objective variant is the
third evolution step of Generalized Differential Evolution (GDE3).
GDE3 is a generalized variant of DE that can deal with single-
objective, multi-objective and constrained problems. The creation
of new individuals is based on the DE/rand/1/bin strategy, and the
replacement takes into account the dominance concept and crowding.
Since our proposal incorporates the operators of DE, GDE3 is also
used in our experimental validation.

2.2 Indicator Based
In order to compare the performance of MOEAs, several quality
indicators that map Pareto set approximations to real numbers have
been devised. Since these indicators measure the quality of the
approximations attained by MOEAs, a paradigm based on the ap-
plication of these indicators was proposed. In these cases, instead
of the Pareto dominance, the indicators are used in the MOEAs to
guide the optimization process. Particularly, the parent selection
and replacement phase are usually modified by incorporating the
use of an indicator. Among the different indicators, hypervolume is
a widely accepted Pareto-compliance quality indicator. One of the
advantages of indicator-based schemes is that the indicators usually
take into account both the quality of the candidate solutions and their
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diversity. Among the different indicator-based MOEAs, the SMS-
EMOA [2] has been used extensively, probably due to its simplicity
and superiority over many other approaches [9].

2.3 Decomposition Based
Decomposition-based MOEAs [3] are based on transforming the
MOP into a set of single-objective optimization problems that are
tackled simultaneously. This transformation can be performed in
several ways, e.g. with a linear weighted sum or with a weighted
Tchebycheff function. Given a set of weights to establish different
single-objective functions, the MOEA searches for a single high-
quality solution for each of them. The weight vectors should be
selected with the aim of obtaining a well-spread set of solutions.
However, this is a difficulty of these kinds of approaches because the
selection of proper weights might depend on the form of the Pareto
front [5].

MOEA/D [21] is a designed decomposition-based MOEA. Its
main principles include problem decomposition, weighted aggrega-
tion of objectives and mating restrictions through the use of neigh-
borhoods. Different ways of aggregating the objectives have been
tested with MOEA/D. Among them, the use of the Tchebycheff
approach is quite popular.

One special feature of the MOEA/D is the definition of neighbor-
hoods. Each subproblem is associated with a set of close subprob-
lems in terms of the distances of their weights. These subproblems
are said to belong to its neighborhood. Then, in each mating op-
eration a subproblem is selected and two individuals belonging to
the corresponding neighborhood are used as input of the genetic
operators. Note that the best individual for each weighted function is
always preserved, so MOEA/D is an elitist algorithm. The principle
that governed this design is that, usually, close subproblems are
properly solved by close solutions; thus, MOEA/D promotes the
mating of close solutions, resulting in further intensification. Given
that some forms of the Pareto front might provoke difficulties when
applying uniformly distributed weights, some methods to automat-
ically adapt the weights with the aim of improving the diversity
in the objective space have been devised [16]. Additionally, some
authors have noted that close subproblems do not necessarily induce
close solutions in the search space. Thus, in MOEA/D-AMS [3], the
neighborhood is defined in terms of the space of the variables. In
any case, the principle is the same because this restriction favors the
mating of similar individuals.

3 A FAILURE MODE OF MOEAS
In the last decades, a large amount of MOEAs have been devised.
Two aims are usually considered: the solutions should be close to
the Pareto front, and the diversity of the approximation — measured
in the objective space — should be maximized [23]. In spite of the
large amount of methods, some well-known benchmarks such as the
WFG tests are not solved to optimality.

In the case of single-objective optimization, it has been found
experimentally that integrating rules to promote the diversity in the
variable space can bring benefits in terms of the objective function.
The main reason behind this finding is that EAs have a tendency to
quickly lose diversity, so premature convergence might appear, mean-
ing that many resources might be wasted. Recently, a new principle

of design has been successfully used to obtain new best-known so-
lutions in several well-known single-objective problems [18]. Note
that in MOEAs, complete convergence does not appear because some
degree of diversity is explicitly maintained in the multi-objective
space. However, our hypothesis is that depending on the problem,
the total amount of diversity maintained in the variable space might
be too low. In such cases, a situation similar to premature conver-
gence might appear with MOPs, i.e. the diversity might not be large
enough to improve further the results.

Several benchmarks to study the performance of MOEAs have
been proposed [11]. Among them, the WFG benchmark [10] is one
of the most widely accepted ones. As a result, it has been selected
to perform our studies. The WFG problems divide the decision
variables in two kinds of parameters: the distance parameters and
the position parameters. A parameter xi is a distance parameter when
for all parameter vectors a, modifying xi in a results in a parameter
vector that dominates a, is equivalent to a, or is dominated by a.
However, if xi is a position parameter, modifying xi in a always
results in a vector that is incomparable or equivalent to a [10].

In this section we show that state-of-the-art MOEAs do not al-
ways maintain a high enough diversity. Particularly, a problem is
used to show that premature convergence appears in the set of dis-
tance parameters. As a result, the crossover loses its exploratory
strength. In order to illustrate the previously mentioned drawback,
the WFG1 test has been selected. We selected WFG1 because it
has a simple definition, but most current MOEAs face difficulties
with it. In fact, WFG1 is an uni-modal and separable problem. The
distance parameters values associated to Pareto optimal solutions for
WFG1 [10] has exactly the same values in the distance parameters.
This value is shown in (2).

Xi=k+1:n = 2i × 0.35 (2)

The jMetalcpp [15] framework was used to perform our execu-
tions. Taking into account the stochastic behavior of MOEAs, 35
independent executions were run. In all of them, the stopping cri-
terion was set to 50,000 generations and the size of the population
was fixed to 250. In order to analyze the diversity, the average Eu-
clidean distance among individuals (ADI) is calculated, i.e. the mean
value of all pairwise distances among individuals in the population
is reported. Fig. 1 shows the evolution of the diversity for GDE3,
SMS-EMOA, MOEA/D and NSGA-II (the case of MOEA/D-EVSD
is commented later). The parameterization is quite standard and is
detailed in Section 5. The top part of the figure shows the evolu-
tion of the ADI by taking into account the whole set of parameters,
whereas in the bottom part, only the distance parameters are taken
into account. Note that a logarithmic scale is used; in the case of
the distance parameters, the regions where no information is plotted
correspond to generations where the distance is zero. As we can
appreciate, all the methods maintain some degree of diversity when
all the parameters are considered. Otherwise, the diversity in the ob-
jective space would be lost. However, when the distance parameters
are the only ones considered, all the methods reach a zero distance
relatively fast. In fact, after about 5,000 generations all of them have
reached a generation where the distance is equal to zero. This means
that in relatively few generations, all the methods have converged
in the distance parameters. We can see that in some generations,
some degree of diversity is recovered; this is because of the action
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Figure 1: Evolution of the diversity for instance WFG1

of the mutation. Thus, one of the reasons of the poor performance
of some state-of-the-art MOEAs in this case is the apperance of
premature convergence in the distance parameters. In fact, after this
loss of diversity, the MOEAs are basically modifying the position
parameters, so the majority of the time is invested in improving
further the diversity in the objective space instead of the quality.

4 PROPOSAL
Our proposal (MOEA/D-EVSD) extends the traditional variant of
MOEA/D. Particularly, MOEA/D-EVSD is a decomposition-based
MOEA that applies the Tchebycheff approach to generate the single-
objective subproblems. MOEA/D-EVSD is divided in two phases:
the first phase starts with a large degree of exploration, and gradually
alters this degree towards intensification, whereas the second phase
is dedicated to intensification. The main distinguishing feature of
the first phase is the inclusion of a special mating selection approach
(see Algorithm 1). Similarly to MOEA/D, each subproblem has a
neighborhood whose size is denoted by Tr . The aim of altering the
mating selection is to have a better control of the diversity induced
in the variable space. The mating selection operates as follows.
Similarly to MOEA/D, for each subproblem Pi , a new individual is
created. It is known that in most crossover operators, such as the
SBX, the exploratory power increases when distant individuals are
taken into account. Thus, a heuristic approach to try to induce a
larger diversity lies in promoting the mating of dissimilar individuals.
Thus, the mating selection process of MOEA/D is modified in our
proposal. Specifically, instead of selecting two individuals of the

Algorithm 1 MOEA/D-EVSD (First phase)
1: Initialize the weight vectors λ1, λ2, ..., λN and neighborhoods B (i ) using the traditional

MOEA/D approach.
2: Generate an initial population x1, ..., xN randomly.
3: Initialize z = (z1, ..., zm )T to a high value.
4: while (not stopping criterion) do
5: for i=1,...,N do
6: Mating Pool: Randomly fill a pool P with α individuals, selecting each individual with

replacement from neighborhood B (i ) with probability δ or from the entire population
with probability (1 − δ ).

7: Reproduction: Select the most distant individuals from P and apply genetic operators to
them to generate a new offspring (y).

8: Update the reference z: For each j = 1,..,m, if zj > fj (y ), then set zj = fj (y )
9: Update of Neighboring solutions: For each index j ∈ B (i ), if д (y |λ j , z ) <

д (xj |λ j , z ), then set x j = y
10: end for
11: Update the value of δ
12: end while

neighborhood of Pi for proceeding with the mating process, the
next steps are performed. First, a pool P with size α of candidate
parents is filled. Each candidate parent is randomly selected from
the neighborhood of problem Pi with probability δ , whereas it is
randomly selected from the whole population with probability 1 − δ .
Then, the two selected individuals whose distance is the largest
one are selected for the mating process. Note that the previous
process requires the setting of the δ parameter to fill the mating
pool. Since we aim to alter dynamically the degree of exploration,
this parameter is set as follows: δ = ti

Total Generations , where ti
denotes the current generation. This way, at the beginning of the first
phase, every individual is selected from the whole population but
the proportion of globally selected individuals is linearly decreased
during the execution. Thus, a gradual change between exploration
and exploitation can be induced.

In the second phase of our proposal, the traditional mating selec-
tion of MOEA/D[21] is used with the aim of further intensifying.
Additionally, since the DE operators are quite useful to intensify, the
Rand/1/bin scheme is used to create new trials. Thus, our second
phase is just a traditional MOEA/D with DE operators. Given the
different exploratory power of the DE operators, a different Tr value
might be appropriate for this second phase. The Tr of the first and
second phase are identified as Tr ,1 and Tr ,2, respectively.

5 EXPERIMENTAL VALIDATION
This section is devoted to validate our proposal and to show that
controlling the diversity in the variable space is a way to improve
further some of the results obtained by state-of-the-art MOEAs. The
nine WFG tests proposed in [10] have been used for our purpose.
Our experimental validation includes the MOEA/D-EVDS, as well
as four well-known state-of-the-art algorithms. Given that all of
them are stochastic algorithms, each execution was repeated 35
times with different seeds. The common configuration in all of
them was the following: the stopping criterion was set to 50,000
generations, the population size was fixed to 250, and the WFG
were configured with two objectives and 24 parameters, where 20
of them are distance parameters and 4 are position parameters. In
general (except for GDE3), the crossover and mutation operators are
SBX and polynomial respectively, with a crossover probabilty of 0.9
and mutation probability of 1/24, also the crossover and mutation
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Figure 2: 50% Attainment Surfaces achieved for the WFG instances.

distribution indexes were assigned to 20 and 50 respectively. The
extra parameterization2 of each algorithm is as follows:

• GDE3: CR = 0.5 and F = 0.5.
• SMS-EMOA: offset = 250.
• MOEA/D: size of neighborhood = 20, max updates by sub-problem (nr) =

2 and δ = 0.9.
• MOEA/D-EVSD: first phase uses 80% of total generations, second phase

use 20% of total generations, in second phase F = 0.5, α = 20 individuals,
Tr ,1 = 2, Tr ,2 = 25.

Our experimental analysis has been performed in base of attain-
ment surfaces and hypervolume. In order to statistically compare
the hypervolume results, a similar guideline than the one proposed
in [7] was used.

In four of the problems (WFG 3, 4, 5 and 7), all the methods
reported quite similar results. In fact the differences among the
mean of the hypervolume attained by the methods was lower than
0.1. Thus, our study focuses on the remaining problems. The 50%
attainment surfaces for WFG1, WFG2 and WFG8 problems are
shown in Fig. 2. In addition, the Pareto front is plotted. The anal-
ysis of this figure shows that the modifications introduced in the
MOEA/D provokes significant changes in the obtained results. How-
ever, there are cases where MOEA/D-EVSD performs significantly
better, whereas in other problems there is a degradation in the per-
formance. The WFG1 and WFG8 are the two problems where the
benefits of MOEA/D-EVSD are clearer. In such cases, no one of
the state-of-the-art MOEAs were able to attain high-quality results.
However, the MOEA/D-EVSD could obtain a really good approxi-
mation of the Pareto front.

In order to better understand the internal behavior of MOEA/D,
the diversity obtained in the variable space was analyzed for WFG1.
Fig. 1 shows, in the top part, the evolution of the average distance
when considering all the variables, whereas in the bottom part only
the distance parameters are taken into account. When taking into
account all the parameters, all the methods preserve some degree of
diversity. However, it is clear that in MOEA/D-EVSD the loss of
diversity is more gradual. Differences are clearer when attending to
the distance parameters. In this case, the only method that is able to
preserve diversity in the long-term is MOEA/D-EVSD, meaning that

2The proposed tuned parameters for the MOEA/D-EVSD are: α = 0.1xN ,Tr ,1 =
0.01xN and Tr ,2 = 0.1xN , where N is the population size.

it is the only one that does not converge prematurely in this subset
of variables. The increase of diversity explains the improvements in
WFG1 and WFG8.

MOEA/D-EVSD performs worse than some of the other state-
of-the-art MOEAs in WFG2, WFG6 and WFG9. By inspecting the
content of the population in such cases, we could find out that, very
soon in the optimization process, in MOEA/D-EVSD some of the
position variables were set to quite large or small values in every
individual. The reason is that, due to the way in which selection is
done, there is a bias to select more frequently individuals that present
very large or very small values in their variables. This bias arises
because the most distant individuals of the mating pool are selected
to proceed with the mating process. Thus, when there are individuals
placed near the corners of the variable space that present relatively
high-quality values, they are selected very frequently, so a premature
convergence to these regions might appear. While our proposal has
been useful to show that increasing the diversity of the variable space
is a way to improve further the results in problems that are not solved
by current state-of-the-art MOEAs, a bias towards some zones have
been introduced. Therefore, other ways of increasing the diversity
that do not include such biases should be analyzed.

Finally, in order to fully validate our previous conclusions, anal-
yses of the hypervolume (see Table 1 and Table 2) were also per-
formed. Table 2 shows the minimum, maximum, mean and standard
deviation of the hypervolume attained by the different tested opti-
mizers. The reference point was established to (3.0,5.0) [22]. In
addition, pair-wise statistical tests were performed (Table 1). For
each instance, the column ”↑” reports the number of comparisons
where the statistical tests confirmed the superiority of the MOEA
listed in the corresponding row, whereas the column ”↓” reports the
number of cases where it was inferior. The attained hypervolume
values and the corresponding statistical tests confirm the superiority
of MOEA/D-EVSD in WFG1 and WFG8. In fact, in both cases the
statistical tests confirm that MOEA/D-EVSD is superior to all the
remaining MOEAs. However, as expected, the tests also confirm the
inferiority of MOEA/D-EVSD in the remaining cases.
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Table 2: Statistics HV

MOEA/D-EVSD GDE3 MOEA/D NSGAII SMS-EMOA
Min Max Mean SD Min Max Mean SD Min Max Mean SD Min Max Mean SD Min Max Mean SD

WFG1 11.53 11.54 11.54 2.02E-03 10.90 11.40 11.12 1.50E-01 9.63 10.68 10.36 2.63E-01 10.11 10.65 10.38 2.21E-01 9.51 10.09 9.89 2.42E-01
WFG2 10.62 11.46 10.89 3.88E-01 11.47 11.47 11.47 4.75E-05 10.63 10.63 10.63 2.53E-04 10.63 10.63 10.63 2.73E-04 10.63 10.63 10.63 5.75E-04
WFG6 7.99 8.11 8.05 3.01E-02 8.60 8.65 8.61 2.06E-02 7.81 8.50 8.35 1.30E-01 8.31 8.44 8.37 3.60E-02 8.28 8.48 8.39 4.23E-02
WFG8 7.96 8.60 8.44 2.39E-01 7.93 7.94 7.93 3.97E-03 7.83 7.89 7.87 1.85E-02 7.82 7.86 7.84 1.01E-02 7.82 7.89 7.86 1.73E-02
WFG9 7.72 8.21 7.73 8.21E-02 7.72 7.79 7.75 2.27E-02 7.72 8.57 8.30 2.43E-01 7.72 8.58 7.82 2.71E-01 7.72 8.58 8.21 3.59E-01

Table 1: Statistical Test HV

WFG1 WFG2 WFG6 WFG8 WFG9
↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓

MOEA/D-EVSD 4 0 3 1 0 4 4 0 0 4
GDE3 3 1 4 0 4 0 3 1 1 3

MOEA/D 1 2 0 4 1 1 2 2 3 0
NSGAII 1 2 1 2 1 1 0 4 2 2

SMS-EMOA 0 4 1 2 1 1 1 3 3 0

6 CONCLUSIONS AND FUTURE WORK
MOEAs are one of the most popular approaches to deal with com-
plex MOPs. In the case of MOEAs, a complete convergence in
the variable space does not usually appears, because most current
approaches explicitly maintain diversity in the objective space, thus
maintaining some diversity in the variable space as a side effect.
However, we show that in some of the problematic benchmarks, the
reason of the poor performance of state-of-the-art MOEAs is that
they do not maintain a large enough diversity in the variable space.
In order to better illustrate these findings, MOEA/D-EVSD, which
is an extension of MOEA/D, is proposed. MOEA/D-EVSD is based
on the principles of inducing a large degree of exploration in the
initial stages of the optimization and on moving towards intensi-
fication in a gradual way. In order to attain this gradual behavior,
the stopping criterion set by the user is used to alter the mating
process. Particularly, MOEA/D-EVSD tends to recombine more
distant individuals in the initial stages than in subsequent stages.
The experimental validation is carried out with long-term executions
and the well-known WFG tests. This validation shows that the novel
proposal is able to properly solve the WFG1 and WFG8 instances,
which are quite problematic for the remaining tested MOEAs. The
advantages of MOEA/D-EVSD are shown both in terms of the at-
tainment surfaces and hypervolume. Moreover, statistical tests to
confirm the superiority are carried out. However, we also show that
the way in which diversity is promoted is problematic in some cases.
First, we show that the search is biased towards solutions that are
close to the corners of the search space. Second, since the mainte-
nance of diversity is not explicit, this bias is problematic because
when relatively high-quality solutions are found in such regions,
premature convergence is not avoided, so high-quality results are
not obtained. We would like to devise some explicit strategies to
control diversity, which might attain better results in the long-term
and avoid the current bias that is included in MOEA/D-EVSD.
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Code
The code is available in C++ language in:
https://github.com/joelchaconcastillo/GECCO17 MOEA D MATING.git.
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