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ABSTRACT

Feature Selective Neuroevolution of Augmenting Topologies (FS-
NEAT) and Feature De-selective Neuroevolution of Augmenting
Topologies (FD-NEAT) are two well-known methods for optimizing
the topology and the weights of Artificial Neural Networks (ANNs)
while simultaneously performing feature selection. Literature has
shown that starting the evolution with ANNs of one hidden layer
can affect FD-NEAT’s and FS-NEAT’s performances. However, no
study exists that investigates the effects of changing the networks’
initial connectivity. In this paper we investigate how the choice of
the number of initially connected inputs affects the performance
of FD-NEAT and FS-NEAT in terms of accuracy, number of gen-
erations required for convergence, ability of performing feature
selection and size of the evolved networks. For this purpose we
employ artificial datasets of increasing complexity based on the
exclusive-or (XOR) problem with irrelevant features. The different
initial topological settings are compared using Kruskal-Wallis hy-
pothesis tests with Bonferroni correction (p<0.01), while FD-NEAT
and FS-NEAT are compared using Wilcoxon rank sum hypothesis
tests (p<0.01). The results show that the initial connectivity setting
does not affect the performance of FD-NEAT and FS-NEAT.
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1 INTRODUCTION

NeuroEvolution of Augmenting Topologies (NEAT) [10] is a neu-
roevolutionary method that uses Genetic Algorithms (GAs) for
learning the connection weights as well as the topology of Artifi-
cial Neural Networks (ANNs). Its successor, called Feature Selective
NEAT (FS-NEAT) [13], performs feature selection simultaneously
with the optimization of the topology and the connectivity of the
underlying nodes. Feature De-selective NEAT (FD-NEAT) [12] is
an alternative, promising method for classification tasks [6, 11, 12].

To our knowledge only one study exists [9] where FD-NEAT
and FS-NEAT are systematically compared on the non-linear XOR
problem of multiple dimensions (5, 10 and 20 inputs). In [9] the
authors investigate the effect of beginning the evolution with a
population of ANNs with one hidden layer. Another important
topological setting that has not been studied before concerns the
selection of the number of inputs that should be connected in
the initial topologies. FD-NEAT starts the evolution from fully
connected single layer networks (i.e. networks with all the input
nodes directly connected to the outputs), whereas FS-NEAT starts
with networks with only one arbitrary input node connected. As far
as the feature selection is concerned, it is believed [12] that FS-NEAT
outperforms FD-NEAT in problems where the majority of inputs are
redundant or irrelevant, whereas FD-NEAT outperforms FS-NEAT
in problems where most of the inputs are relevant. Choosing from
which topology one should start, requires knowing the relevant
features a priori, which is of course impossible, as it is the task in
hand. In this paper we investigate whether a different connectivity
setting can have an effect on FD-NEAT’s and FS-NEAT’s ability
of performing feature selection, classifying samples as well as on
their efficiency measured by the number of generations required
for convergence and the size of the evolved networks.

2 METHODS

2.1 Neuroevolution

Neuroevolution (NE) is a learning method that uses GAs to optimize
the parameters of ANNG. It started as a method to evolve only the
connection weights of fixed topology ANNSs [3, 4, 7, 8, 14] while
later it advanced into a method of optimizing both the weights
and the topology of the underlying nodes (Topological and Weight
Evolving Artificial Neural Networks (TWEANNS)) [1, 2, 10, 15].
TWEANNS offered significant advantages, as finding the optimal
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topology of an ANN requires time-consuming evaluations of po-
tential architectures.

2.2 NEAT

NEAT [10] is a TWEANN method which encodes the ANNs with
two types of genomes: connection genes and node genes. The
ANNS’ structure is evolved over the generations by mutation and
crossover operations. The evolution starts minimally with single
layer networks whose structure becomes gradually more compli-
cated over generations by mutation operators that add new con-
nections and new nodes in the networks. The crossover between
networks is facilitated by historical markings, i.e. when a new gene
is added it is assigned a globally incremented innovation marker
which facilitates the alignment of matching genes. Moreover, NEAT
protects innovation by grouping individuals of similar topology
into species so that they compete within their own niche instead
of the whole population. Finally, NEAT tends to discover networks
without unnecessary structure by starting the evolution with a
population of minimal structures and keeping those topological
innovations that are found to increase the network’s performance.

2.3 FS-NEAT

FS-NEAT [13] is a NE method that extends NEAT in performing
feature selection simultaneously with learning the ANNs topology
and weights. It follows the three basic principles of NEAT; historical
markings, speciation and starting with minimal structure. The
difference lies that it starts the evolution even more minimally. The
initial ANNs’ topologies in NEAT consist of an input and an output
layer with all the inputs directly connected to the output nodes,
whereas in FS-NEAT only one random input is connected to one
random output node. In the course of generations more inputs will
be connected but only the connections that come from the relevant
inputs tend to survive, thus performing implicit feature section.

2.4 FD-NEAT

FD-NEAT [12] is an extension to original NEAT functioning simi-
larly to FS-NEAT in terms of performing feature selection simulta-
neously with topology and weight learning. The main difference be-
tween FS-NEAT and FD-NEAT lies in the way that feature selection
is performed. FD-NEAT starts with the same minimal topologies
as NEAT, i.e. fully connected single layer networks and drops irrel-
evant inputs throughout the evolution. Only the inputs that result
in increasing the performance of the individual tend to survive and
in this way FD-NEAT performs implicit feature selection.

3 EXPERIMENTAL SET-UP

3.1 Dataset

To be able to evaluate the effect of the investigated topological
settings we use artificial benchmark datasets so that we are aware
of their expected behaviour. The XOR problem is one of the first
datasets a researcher would consider to verify the success of their
approach [5, 10, 12]. However, XOR is a problem too easy to be
learnt with no feature selection issue, so we need to construct more
complex datasets. Towards this purpose, we build artificial 2 out of
k datasets (referring to as 2/k), where k € {5, 10, 20}. The 2 inputs
are assigned to the relevant features and the remaining k — 2 inputs
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are assigned to irrelevant booleans. To include these irrelevant
features we increase the number of samples to avoid imposing any
bias, as the larger the dataset the less probable that there is an
underlying correlation between the randomly generated data and
the output. We use the same number of samples as in [9], equal
to 700. The resulting datasets are not easy to be learnt and they
constitute a challenging task for a feature selection algorithm, as
they are constructed in such a way so that each of the individual
attributes is equally informative for predicting the output.

3.2 Proposed Method

For each of the aforementioned 2 out of k datasets, (k € {5, 10, 20})
we vary the number of initially connected inputs from 1 to k con-
nected inputs in single layer ANNs. For each of the investigated
connectivity settings we separate the datasets into training and
test sets using 10-fold cross validation. We repeat each investiga-
tion 10 times that results in 100 repetitions for each topological
choice. The parameters used for the setting of FD-NEAT and FS-
NEAT are the same as in [9]. The fitness function of FD-NEAT
and FS-NEAT is based on the error between the output of the
ANN and the correct output of the training set and it is given by

N
Fitness = (N — Y. |0; — T;|)? [9, 10], where N is the size of the
i=1

training dataset, O; the output of the ANN on the i‘" pattern of
the training set and T; the real output that corresponds to the it"
pattern of the training set.

3.3 Performance Evaluation

The effect that the different settings of connectivity patterns have
in the performance of the FD-NEAT and FS-NEAT is evaluated on
different aspects. First of all, the altered algorithms are evaluated on
their ability to correctly classify samples. This is measured by the
accuracy on the test set which is defined by the portion of correctly
classified samples and it indicates how successful the method is in
finding the right relationship between input and output.

Furthermore, the algorithms are compared on their ability to
perform feature selection. For this purpose we employ the measure
of the average of absolute weights of the connections that initiate
from each input in the best networks of the final population. It
is assumed that FD-NEAT and FS-NEAT learn to assign higher
weights to the relevant inputs compared to the irrelevant ones.
According to this, the connections that initiate from the relevant
inputs should have higher values than the connections that initiate
from the irrelevant ones. If there is a statistical difference between
the values among relevant and irrelevant inputs then we could
argue that the algorithm has a feature selection ability.

Finally, the algorithms are compared on their efficiency. This is
measured by the number of generations that are required in order
for the algorithm to converge to the solution. Smaller number
of generations indicate faster algorithms. Finally, we compare
the structure of the final evolved neural networks in terms of the
number of connections and nodes that are evolved.

3.4 Analysis of the Results

The first goal of this study is to investigate the influence that a dif-
ferent connectivity setting has in the different measures described
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Figure 1: Average accuracy on the test set and average num-
ber of generations of FD-NEAT and FS-NEAT for different
numbers of initially connected inputs on the 2/k XOR prob-
lems.

in the previous section. Towards this goal we perform multiple com-
parisons with hypothesis tests (Kruskal-Wallis test with Bonferonni
correction, p<0.01) to investigate whether a connectivity setting
results in networks whose performance is significantly different
than the performance of another connectivity setting. In order to
examine the feature selection ability of the altered FD-NEAT and
FS-NEAT for each of the different connectivity settings we perform
hypothesis tests (Wilcoxon rank sum test, p<0.01) on the values
between the relevant and the irrelevant inputs of the average of
absolute weights. Finally, we compare the performance between
FD-NEAT and FS-NEAT by performing hypothesis tests (Wilcoxon
rank sum test, p<0.01) between all the performance measures of
the two algorithms.

4 RESULTS

In Figure 1 (top) we present the results of accuracy on the test set for
the 2/5, 2/10 and 2/20 XOR problems as a function of the different
number of connected inputs in the initial topologies. It is observed
that the ability of the algorithms to solve the problem decreases as
the complexity of the problem increases, e.g. the accuracies in the
2/20 problem are lower than the accuracies in the 2/10 which are
lower than the ones of the 2/5. For all the three problems there is
no statistical difference among the different connectivity patterns
(Kruskal-Wallis, p<0.01). Overall, FS-NEAT seems to perform better
than FD-NEAT. FS-NEAT’s accuracy is statistically different than
FD-NEAT’s at the 2/20 inputs problem (Wilcoxon, p<0.01) for all
the chosen connectivity patterns except for the ones of 5, 9 and
20 connected inputs, from which the last one is the default initial
connectivity topology for FD-NEAT.

Figure 1 (bottom) shows the number of generations required by
FD-NEAT and FS-NEAT to converge, or in case of no convergence
the maximum number of generations they were allowed to evolve.
From the graphs it is clear that the harder the problem the more gen-
erations are required for the convergence. Also, the maximum limit
of 450 generations was not enough for the convergence of the 2/20
XOR problem. The comparisons among the different connectivity
settings reveal that there is no significant difference (Kruskal-Wallis,
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p<0.01) among them. Comparing FD-NEAT and FS-NEAT, it seems
that FD-NEAT in general requires more generations but a signifi-
cant difference (Wilcoxon, p<0.01) exists only at the 2/10 XOR for
setting the initial connectivity to 2, 4, 7-9 connected inputs.

In Figure 2 we present the graphs of the average absolute weights
of the connections that initiate from the input nodes. By perform-
ing Wilcoxon hypothesis tests (p<0.01) on the difference between
the relevant and the irrelevant inputs we observe that a significant
difference between them always exists independently of the choice
of the initial connectivity setting. This means that both FD-NEAT
and FS-NEAT are suitable algorithms for performing feature se-
lection. Next, we examine whether a connectivity pattern results
in a difference of relevant-irrelevant inputs which is significantly
different than the one of another connectivity setting. At the 2/5
and 2/10 XOR no significant difference exists among the different
connectivity settings (Kruskal-Wallis, p<0.01). At the 2/20 XOR,
the connectivity setting of 1 initially connected input is statistically
different (Kruskal-Wallis, p<0.01) than the settings of 11 and 19
connected inputs in FD-NEAT and 13 connected inputs in FS-NEAT.
Comparing the performances between FD-NEAT and FS-NEAT, no
significant differences were found (Wilcoxon, p<0.01).

Finally, in Figure 3 we investigate the size of the evolved net-
works in terms of number of nodes and connections. At the 2/5
and 2/10 XOR problems there is no significant difference (Kruskal-
Wallis, p<0.01) among the different connectivity settings. At the
2/20 XOR problem, there is a significant difference for FD-NEAT
between the setting of 20 inputs and the one of 1 and 3 inputs. In
comparison to FS-NEAT, FD-NEAT evolves networks with statisti-
cally (Wilcoxon, p<0.01) more nodes than FS-NEAT for connectivity
setting of 1 and 2 initially connected nodes at the 2/10 XOR problem.
On the other hand, FS-NEAT evolves networks with statistically
(Wilcoxon, p<0.01) more nodes than FD-NEAT’s for connectiv-
ity setting of 1 and 11 initially connected inputs at the 2/20 XOR
problem. At the same problem, FS-NEAT evolves networks with
significantly more connections (Wilcoxon, p<0.01) than FD-NEAT
for most of the connectivity settings.

5 CONCLUSION

Our analysis shows that different numbers of inputs connected in
the initial topology does not affect the performance of FS-NEAT and
FD-NEAT. This means that no initial connectivity pattern is proven
better than another. So, even if FS-NEAT starts the evolution having
irrelevant inputs connected it will be still able to reach the same
accuracy in the same amount of generations. Also, it is observed
that both FD-NEAT and FS-NEAT have a feature selection ability
which is independent of the number of inputs that are initially
connected. In addition, both algorithms learn to assign weights of
similar magnitude to the relevant and irrelevant inputs independent
of the number of inputs initially connected. This means that even
when FD-NEAT starts with one connected input or FS-NEAT starts
from fully connected networks they both learn to assign smaller
weights to the irrelevant inputs and higher weights to the relevant
ones. Furthermore, by comparing the feature selection abilities of
FD-NEAT and FS-NEAT we observe that FS-NEAT’s is significant
better than FD-NEAT’s at the cases when FD-NEAT does not start
from fully connected networks. We can therefore conclude that
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Figure 2: Average absolute weights of input connections of FD-NEAT and FS-NEAT for different numbers of initially connected

inputs on the 2/k XOR problems.
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Figure 3: Average number of connections and average num-
ber of nodes in the champion network of the final popula-
tion in FD-NEAT and FS-NEAT for different numbers of ini-
tially connected inputs on the 2/k XOR problems.

FD-NEAT should start the evolution with its default fully connected
setting, while FS-NEAT seems not to be affected by the number of
inputs originally connected. Finally comparing the default connec-
tivity settings of FD-NEAT and FS-NEAT, even though FS-NEAT
seems to perform better, a statistical difference does not exist.

At this point, we should take into account that these conclusions
are limited to datasets with similar format as the 2/k XOR, i.e.
with fewer relevant inputs and more irrelevant ones. Therefore, the
behaviour of FS-NEAT and FD-NEAT in datasets with different ratio
between relevant and irrelevant inputs still needs to be investigated.
For this reason, we are going to extend the set of experiments
on problems of increased complexity containing more features to
approach more realistic problems by also employing benchmark
datasets, such as the spiral plots with irrelevant features.
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