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ABSTRACT
�e need of manual hyper-parameter selection can seriously ham-
per the model optimization of Deep Neural Networks (DNNs). Con-
ventional automated approaches tackling this problem su�er from
poor scalability or fail in certain scenarios. In this paper, we intro-
duce a parallel method that applies Particle Swarm Optimization
(PSO) for the hyper-parameter selection in DNNs. To estimate the
best hyper-parameters, a population of particles is evolved, with
their �tness calculated in parallel. �e experimental results demon-
strate very desirable scalability properties for di�erent DNNs. We
show that the parallel PSO can further optimize existent models
designed by experts in an a�ordable amount of time.
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Ranilla Pastor. 2017. Hyper-Parameter Selection in Deep Neural Networks
Using Parallel Particle Swarm Optimization. In Proceedings of GECCO ’17
Companion, Berlin, Germany, July 15-19, 2017, 8 pages.
DOI: h�p://dx.doi.org/10.1145/3067695.3084211

1 INTRODUCTION
Selecting the hyper-parameters of a DNN model can be arguably
one of the hardest stages of its design. DNNs have achieved an
unprecedented success in many areas, particularly due to the acces-
sibility to very large datasets and GPUs. �ese allow for training
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the models that can surpass human performance at many tasks, but
once these models become su�ciently complex, �nding their best
parameters is a di�cult problem even for experts in the �eld.

Most DNN models are driven by a set of hyper-parameters that
control many aspects of the algorithm behavior. �ese hyper-
parameters a�ect the time and memory cost of running the algo-
rithm, the quality of the model resulting from the training process,
or its ability to generalize to the unseen data when deployed in the
wild. For these reasons, �nding the best possible parameters for a
given DNN architecture becomes crucial.

�ere are two main approaches to the hyper-parameter selection:
manual or automatic methods. Retrieving the hyper-parameters
manually assumes that there exists an understanding of how the
hyper-parameters a�ect the outcome of the model and make it
achieve a good generalization. On the other hand, automatic hyper-
parameter selection methods greatly reduce the need for this under-
standing, but they come at the expense of the costlier computation.

Hyper-parameter selection for a DNN can be seen as an optimiza-
tion problem, where the objective is to �nd the hyper-parameters
that minimize an objective function—typically the validation error.
In the simplest formulations, this problem is unconstrained, but
limitations (e.g, training time or generalization accuracy) can be im-
posed. In traditional approaches, whether manual or automatic, it
is assumed that although it could be possible to obtain the gradient
of the error measure, it is infeasible to compute it in practice.

�is paper introduces a parallel variant of PSO for optimizing
the hyper-parameters of a DNN model sustained by the �ndings
obtained in our recent work [23]. We exploit task parallelism in
order to concurrently evaluate the �tness (de�ned as the classi�-
cation accuracy of a trained model over a validation set) of each
particle in the swarm in every generation. We a�empt to keep the
amount of parallelization proportional to the number of indepen-
dent tasks to be performed, with the goal of simplifying the load
balancing and enforcing loose parallelism between the concurrent
tasks. Additionally, our experimental study revealed that utilizing
the archive of already-analyzed particles during the optimization
greatly decreases the execution time of the parallel PSO.

We assume that the PSO hyper-parameters (e.g, the swarm size
and the maximum number of generations) remain �xed, keeping
the focus on the speedup obtained by parallelization. Our approach
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currently requires almost no user interaction, and can be considered
as a step towards the parameter-less design of DNNs.

1.1 Contributions
An extensive experimental study, involving scenarios with various
DNN architectures trained on the well known MNIST dataset and
using di�erent hardware setups, showed that:

- Parallel PSO displays very desirable scalability properties while
consistently delivering high-quality results.
- Applying parallelism in PSO allows for the e�cient exploration
of large parts of the entire solution space, without a drastic increase
in the computation time.
- Exploiting the archive of the DNN models trained during the
execution (for di�erent hyper-parameter combinations) helps sig-
ni�cantly decrease the running time of the parallel PSO.
- Parallel PSO signi�cantly improves the existent DNN topologies,
boosting the performance of LeNet-4 over the MNIST dataset.

1.2 Paper Structure
In Section 2, we discuss the state of the art on the hyper-parameter
selection in DNNs, alongside the parallel evolutionary algorithms.
Our parallel PSO is introduced in Section 3. �e experimental study
is discussed in Section 4. Section 5 concludes the paper.

2 RELATEDWORK
In this section, we discuss the state of the art on automatic hyper-
parameter selection (Section 2.1), alongside the main approaches
and techniques in parallel evolutionary algorithms (Section 2.2), in
order to contextualize our work within the literature.

2.1 Automatic Hyper-Parameter Optimization
Searching for good hyper-parameters can be cast as an optimiza-
tion problem, typically convex, where the hyper-parameters of
the model are the decision variables. �e cost to be optimized is
the validation set error resulting from training using these hyper-
parameters. However, in most practical se�ings, it is infeasible to
compute the gradient of a di�erential error measure on the val-
idation set due to its high computation or memory cost [3, 21].
All approaches for the automatic optimization of the DNN hyper-
parameters can be split into model-free and model-based methods.

2.1.1 Model-Free Methods.
Model-free approaches are characterized by not utilizing the knowl-
edge about the solution space extracted during the optimization.
�is lack of adaptability makes them simple to implement, at the
expense of poor results for large hyper-parameter spaces (the infor-
mation about the regions of the search space that have been already
traversed, along with their characteristics are not propagated to
the next algorithm iterations).

Grid Search (GS) is commonly used for optimizing DNN hyper-
parameters only if their number is very low, and it works by training
the underlying DNN architecture using all joint speci�cations of
the hyper-parameter values [4]. �en, the validation set error is
retrieved for each DNN, and the best-performing hyper-parameters
are obtained. �e evident downside of this method is its poor

scalability, with its cost growing exponentially for each dimension
in the search space.

Random Search (RS) is a trivial to implement alternative to
GS, more convenient to use and faster to converge to an acceptable
parametrization. Although di�erent improvements can be added to
RS, it is typically not adaptive, although it can be a part of hybrid
approaches that re�ne its performance drastically [4, 15].

2.1.2 Model-Based Methods.
Model-based methods build a model of the validation set error, and
then elaborate hyper-parameter values by performing optimiza-
tion within this model. Most of such model-based methods use a
Bayesian regression approach in order to estimate the expected
value of the validation set error for each hyper-parameter, along-
side the uncertainty around this expectation. �us, optimization
involves a careful balance between exploration and exploitation
of the solution space. Contemporary approaches to this include
Spearmint [24] and Tree Parzen Estimators [4]. Currently,
Gaussian Processes based Bayesian optimization methods cannot
be unambiguously recommended as an established tool for the
hyper-parameter optimization. �eir major drawback is that the
inference time grows cubically in the number of observations, as it
necessitates the inversion of a dense covariance matrix.

Other model-based techniques include various Radial Basis Func-
tion (RBF) surrogate models [11] and evolutionary approaches,
encompassing covariance matrix adaptation evolution strategies
CMA-ES [20] or PSO, which has been proposed in our very recent
work [23]. In PSO, a population of candidate solutions (represent-
ing tuples of the hyper-parameter values) evolves in time in search
of the best possible DNN parameters. �e extensive experimental
study revealed that PSO is able to not only optimize simple DNN
architectures (e.g., including one up to three convolutional layers),
but also to signi�cantly improve existing models developed by the
experienced practitioners.

2.2 Parallel Evolutionary Algorithms
Evolutionary Algorithms (EAs) are inspired by the biological evolu-
tionary processes that occur in nature [2, 9]. �e main idea behind
these approaches is that in order for a population of individuals to
adapt to some environment, it should behave like a natural system.
�erefore, survival and reproduction are promoted by the removal
of useless or harmful traits, and by rewarding desirable behavior.
An EA works by maintaining a population of candidate solutions
and evolving it by iteratively applying a set of evolutionary op-
erators: selection, recombination and mutation [25]. �e resulting
process tends to converge to a globally satisfactory, if not opti-
mal, solution to the problem much like the populations of di�erent
species of organisms adapt to their surrounding environment [14].
Due to their wide applicability, they have been exploited to tackle
a plethora of various challenging optimization tasks [10, 18].

Parallelism has become a key technology in order to deliver an
increase of performance in those problems that include an expen-
sive �tness evaluation, which can be met in principle by adding
processors, memory, and interconnection network. �ere are two
main reasons for parallelizing an evolutionary algorithm: one is
to achieve time savings by distributing computational e�ort, and
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the second is to bene�t from a parallel se�ing from the algorithmic
point of view, in order to retrieve higher-quality individuals [22].

�e �rst type of parallel EAs exploit available machines to pro-
cess independent populations. �is approach to simultaneous work
can be very useful, for instance, in running several versions of the
same algorithm with di�erent initial conditions. On the other hand,
the second approach is directed towards genuinely parallel EAs.
�ere are several possible levels at which an EA can be parallelized:
the population, individual and �tness levels.

Individual or population-based parallel approaches usually rely
on the spatial structure of the population, isolating some subgroups
of individuals and limiting their ability to couple with other ele-
ments of the population. �e two most important categories in
this approach are the island and grid models. In the island-model
parallel EAs, the parallel processes (referred to as the islands) o�en
co-operate with each other to e�ectively guide the search towards
the best parts of the solution space. �is co-operation is steered
by the co-operation scheme that de�nes the co-operation topology,
frequency and strategies for handling emigrants and immigrants.
However, if the islands do not co-operate during the execution,
then this model can be seen as the batch processing.

Master

Slave 0 Slave 1 Slave n

Indiv
idu

al

Fit
ness

…

Figure 1: Schematic view of the master-slave model of par-
allel evolutionary algorithms, in which the slave processes
evaluate the �tness values of the received individuals.

Parallelization at the �tness evaluation level does not require
any change to the standard EA, since the �tness of an individual
is independent from the rest of the population. An obvious ap-
proach is to evaluate each individual �tness simultaneously using
a di�erent processing unit, with the master process managing the
population and handing out individuals to evaluate to a number of
slave processes (this model is presented in Figure 1).

3 PARALLEL PSO FOR HYPER-PARAMETER
OPTIMIZATION IN DNNS

As discussed in [23], the hyper-parameter selection is an optimiza-
tion task where the objective is to �nd a value that minimizes a
value of the loss function L(T ;M) for a modelM (elaborated us-
ing a training algorithm A) over a training set T . �e model is
parametrized by a set of hyper-parameter values λ, and it is given as
M = A(T ;λ) [6]. �e objective of the hyper-parameter selection
process is to retrieve the parameters λ∗ that yield a desired model
M∗, while minimizing L(V ;M∗), whereV is the validation set [7]:

λ∗ = arg min
λ
L(T ;M) = arg min

λ
f (λ;A,T ,V ,L). (1)

�e generalization performance ofM is quanti�ed using the test
set Ψ, that was unseen during the optimization. In the following
sections, we discuss the parallel PSO for retrieving the desired
hyper-parameter values in detail.

3.1 PSO for Hyper-Parameter Optimization
PSO is a population-based stochastic algorithm which is based on
social-psychological principles. Unlike other evolutionary algo-
rithms, e.g., genetic or hybrid genetic algorithms, PSO does not
exploit the selection operation—all population members (referred
to as particles) survive from the beginning of a trial until its end.
�eir interactions result in the iterative improvement of their qual-
ity, quanti�ed as the �tness value [12]. �e swarm, being a set of
particles, moves towards the best-��ed individual in the population.

In our recent work, we introduced PSO for the hyper-parameter
selection task [23]. In this algorithm, f : Rk → R denote the
objective function, which maps a tuple of k hyper-parameter values
to a real number (the classi�cation accuracy of the trained DNN
obtained for V )—it is a �tness function in the proposed PSO. �e
goal is to �nd a solution λ∗ for which f (λ∗) ≥ f (λ) for all λ ∈ χ,
where χ is the set of all possible combinations of hyper-parameter
values. In PSO (Figure 2), the initial swarm of particles (created
during the swarm initialization—see Section 3.2) undergo the swarm
evolution (Section 3.3), until the termination condition has been
reached. PSO can be stopped if (i) the hyper-parameter values that
allow to retrieve a model of the desired quality have been obtained,
(ii) the maximum execution time has been exceeded, or (iii) the
maximum number of swarm generations (Gmax) have been already
processed. Finally, the best particle is returned.

Swarm
initialization

Update velocities Update positions

Swarm evolution

Evaluate particles
(�nd �tness)

Evaluate particles
(�nd �tness)

Evaluate particles
(�nd �tness)

Done?

no

yesReturn best
hyper-

parameters

Figure 2: Flowchart of the parallel PSO. �e parallel opera-
tion (�tness evaluation) is rendered as a stacked step.

3.2 Swarm Initialization
In our PSO, each particle represents a set of hyper-parameters—a
numerical vector λ of k dimensions randomly initialized in a search
space Rk . It can be interpreted as a point in a high-dimensional
space (the number of dimensions re�ects the number of hyper-
parameters of the DNN architecture that is being optimized). Each
particle traverses the search space towards the best-��ed particles,
hence the swarm moves towards the desired regions of the space.

For each i-th particle in the swarm, its initial position λi is
randomly sampled from a uniform distributionU(bl ,bu ), bounded
by the hyper-parameter lower and upper limits (bl and bu ). �e
initial position λi is the current best known position of this particle
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λ∗i , and if f (λ∗i ) > f (λS ), it is stored as the new best known position
in the swarm λS . �e velocityvi of this particle is randomly drawn
from a uniform distribution. Similarly, the values are bounded by
the upper and lower hyper-parameter limits. A�erwards, the swarm
of s particles (

i=0,1, ···<s
{λi ,vi ,λ∗i = λi } tuples) undergoes the evolution.

3.3 Swarm Evolution
In each swarm generation д (where Gmax denotes the maximum
number of generations), the velocity of all particles is updated
(line 4 in Algorithm 1):

vi ← ωvi + ϕprp (λ∗i − λi ) + ϕдrд(λ
S − λi ), (2)

where rp ,rд are drawn from a uniform distributionU(0, 1) (this
stochastic component is applied to the velocity updates to diversify
the search), ω is an inertia weight scaling factor, and ϕp and ϕд are
the acceleration coe�cients. �ese factors control the in�uence of
the best particle position (λ∗i ), alongside the best swarm position
(λS ) on the velocity. �e position λi is updated, and it becomes
λi ← λi +vi (line 5). A�erwards, the best position for each particle
is modi�ed, together with the best position in the swarm (lines 8
and 10)—they are updated only if they have been changed. For
more details, see [23].

3.4 Parallel Fitness Evaluation
In this paper, we introduce the parallel version of our PSO algorithm
for the hyper-parameter optimization in DNNs. Parallelization of
PSO allows to simultaneously extract the �tness of a number of
particles when hardware resources are available. Calculating the
value of the �tness function for each particle in the swarm is an
inherently parallelizable operation (line 6 in Algorithm 1), since
these evaluations are independent from each other. Hence, the
master-slave model introduced in Section 3 has been tailored to
PSO. In the parallel PSO, the �tness values of the particles are
elaborated by the available slave (GPU)—see Figure 2, in which the
parallel �tness evaluation is annotated as a stacked operation.

Procedure 1 PSO evolution with the parallel �tness evaluation.
1: while д ≤ Gmax do
2: for i = 0, 1, . . . , s do
3: rp ,rд ∼ U(0, 1)
4: Update velocityvi
5: λi ← λi +vi
6: Calculate f (λi ) by the available slave
7: if f (λi ) > f (λ∗i ) then
8: λ∗i ← λi
9: if f (λ∗i ) > f (λS ) then

10: λS ← λ∗i
11: д← д + 1
12: return λS

It is worth mentioning that this is the most computationally in-
tensive part of the PSO optimization because it requires training the
DNN model, and then classifying the validation set to quantify its
performance. Importantly, in PSO we introduced an archive, which

contains the models already trained using the hyper-parameter val-
ues that have been analyzed during the evolution process. �erefore,
if the particle is a�racted to the position which was already visited
during the evolution, then the �tness is immediately retrieved from
the archive—it greatly speeds up the computation. Once the �t-
ness values are found for all the particles in the swarm, the master
process controls the evolution as presented in the previous sections.

4 EXPERIMENTAL RESULTS
Our experimental study is divided into two main experiments.
Firstly, we verify how the parallel PSO copes with relatively small
hyper-parameter search spaces. For this purpose, we use the paral-
lel PSO to optimize our experimental DNN architecture (which is
quite shallow) over the MNIST dataset, in the parallel and sequen-
tial setups. A�erwards, we investigate the behavior of the parallel
PSO for a larger hyper-parameter search space over LeNet-4 on
MNIST, comparing the classi�cation accuracy obtained using this
architecture with the state-of-the-art performance for MNIST.

4.1 Experimental Setup
Our parallel PSO for the hyper-parameter selection was imple-
mented in Python utilizing the NumPy library. �e DNNs were
trained using Keras [5] coupled with a TensorFlow [1] backend
over CUDA 8.0 and CuDNN 5.1. �e experiments were executed on
the computational cluster consisting of the GPU nodes, equipped
with the Intel Xeon E5-2698 v3 (40M Cache, 2.30 GHz) with 128GB
of RAM processors, and NVIDIA Tesla K80 GPU 24GB DDR5. In
the setup A, we exploit 1 GPU in the node, whereas in the setup
B, all 6 GPUs available in the node are used.

Examples of training images

Examples of test images

Figure 3: Example training and test MNIST images.

We used a �xed parametrization for the internals of PSO across
all experiments, whereω = ϕp = ϕд = 0.5 (search parameters). �e
parallel PSO is terminated if Gmax = 100 generations have been
processed. For all experiments, we exploit 10-fold cross-validation,
where |T | = 9 |V |. �e training setT is used for the DNN training,
whileV is exploited to �nd the �tness during the PSO optimization.
�e generalization performance is quanti�ed as the accuracy over
the unseen test set Ψ. �e DNNs are trained for a maximum of 100
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epochs using batches of size 128, with the objective of minimizing
the categorical cross-entropy (multi-class log loss). We used the
ADAM optimizer to steer the learning rate [13].

In this work, we focused on the multi-class classi�cation, and the
well-known MNIST benchmark dataset to verify the e�cacy of the
parallel PSO [17]—this set was exploited to assess the classi�cation
performance of the DNNs optimized using our parallel approach.
MNIST is a dataset of handwri�en digits encompassing 70,000
grayscale images (28×28 pixels) divided into 10 classes, with approx.
7,000 images per class. Example images belonging to each class
are rendered in Figure 3—it is easy to notice its high intra-class
variability (see e.g., training set images representing 1’s). �ere are
60,000 training images inT , and 10,000 test images in Ψ (both sets
are balanced). �e validation setsV (for the 10-fold cross validation)
are extracted fromT , |T | = 9 |V |, andT ∩V = ∅. Each experiment
is run 10× without overlaps between the folds.

4.2 Parallel PSO in Small Search Spaces
In the experiments, we also verify the in�uence of the archive on the
PSO performance and convergence capabilities. �is archive caches
already investigated hyper-parameter combinations alongside the
classi�cation accuracy, in order to avoid training the DNN with
the same hyper-parameter values. �e swarm size s = 6 is utilized
across all trials in this experiment, and the underlying DNN which
is being optimized is SimpleNet-1 over the MNIST dataset. �is
experiment was run using both setups A and B.

Table 1: Parameters of the layers in SimpleNet-1.

Layer type Parameters Values

Convolutional (C) Receptive �eld size (sF × sF )
No. of receptive �elds (n)

sF ≥ 2
n ≥ 1

Max Pooling (P) Stride size (`)
Receptive �eld size (sP )

` ≥ 2
sP ≥ 2

SimpleNet-1 is our experimental DNN (one convolution and one
max pooling layer, terminated by a 10-output So�max activation).
�e hyper-parameters of the layers, alongside their allowed ranges
are collected in Table 1. SimpleNet-1 is visualized in Figure 4.

Input C0 P0 So�max

28 × 28 (sF × sF ) × n (sP × sP ) × `

Figure 4: SimpleNet-1 applied to the MNIST image.
In Figure 5, we show that the parallel PSO consistently delivers

very similar best results for both setups A and B. �is re�ects
that the parallelization does not compromise the quality of the
hyper-parameters. For the average and best results, the spread
of the retrieved accuracy values is practically the same, re�ecting
identical capabilities in the exploration of the search space. �ese

capabilities are driven by the swarm size, which is kept �xed at
6 particles (however, it has been shown that the swarm size does
not in�uence the �nal accuracy signi�cantly [23]). Finally, the
di�erences in the worst results respond to the randomness of the
particle initialization (the termination condition of the parallel PSO
was the maximum number of processed generations, hence the
swarm did not converge to the same-quality results—it could be
addressed by increasing Gmax).

6 GPUs1 GPU

Max MaxAvg AvgMin Min

1
0.98
0.96
0.94

0.92
0.90

Ac
cu

ra
cy

on
Ψ

Figure 5: Minimum, average andmaximum accuracy (of the
best PSO particles across all folds) obtained for Ψ using the
optimized SimpleNet-1 for setups A and B.

In order to check if the di�erences in the average and best ac-
curacy values are statistically important (for both setups), we per-
formed the two-tailed Wilcoxon tests (we veri�ed the null hypothe-
sis saying that “using both setups leads to the same-quality results” ).
�is hypothesis could not be rejected (the p-values were p = 0.1471
and p = 0.2113 for the average and best cases, respectively), there-
fore both serial (for 1 GPU) and parallel (6 GPUs) retrieve the �nal
DNN parameters of very similar quality.

2.5
2

1.5
1

0.5
0

0 1 2 3 4 5 6 7 8 9

Ti
m

e
(h

)

Fold index
Figure 6: Total execution time per fold for setups A and B,
and their corresponding average.

In Figure 6, we present the total execution time across 10 folds in
both setups A and B, alongside the average execution time. It may be
noticed that the speedupS of the parallel version is not close toS =
6 (which would indicate the linear scalability), and it remains atS ≈
2. Although it could be interpreted as an indicator of poor scalability
of the parallel PSO, this relatively low S value is the result of
applying the archive during the optimization. In small search spaces,
PSO—whether parallel or not—can quickly converge towards a �nal,
well-��ed solution. In this case, the archive is constantly being read,
hence the execution time of the following generations drastically
drops. �erefore, in scenarios with an expensive objective function,
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a particle evolution time is strongly in�uenced by its initialization
and the distance it needs to cover towards the �nal position (i.e., the
number of hyper-parameter combinations that are being tested on
its path, if they are not cached in the archive).

0 25 50 75 100

1 2 3 4 5 6 7 8 9 10
Folds for 1 GPU (le�) and 6 GPUs (right)

Generation

Avg
reads

100
…
600

0
1
2
34
5
6

Figure 7: Proportion of combinations trained during the
PSOoptimization, rendered in light pink (the Y-axis is scaled
for visibility) compared with the hyper-parameter values
read from the archive (top). Average archive reads per gen-
eration across all folds for setups A and B (bottom).

Figure 7 visualizes the in�uence of the archive on the swarm
optimization process. In the upper part of this �gure, we observe
that at least 80% of the time, PSO is reading the �tness of the hyper-
parameter combination (i.e., particle position) from the archive,
which is performed almost instantly. �is shows that for such a
small hyper-parameter space, the evolution converges quickly (in
a very small number of generations), and a�er that the particles
lose their velocity and remain static. �is removes the need for
additional trainings of the DNN. In the bo�om part of the �gure, we
observe in more detail that the optimization converges a�er around
10 swarm generations (around the 25th generation rarely any ad-
ditional training takes place). �erefore, the archive is the main
element delivering the speedup in this scenario, as the paralleliza-
tion can only be e�ectively applied during the �rst 10 generations
with a marginal chance to show observable results.

0 25 50 75 100
Generation

Ti
m

e
(h

)

0

1

2

3

4

5

Figure 8: Total and average time per generation for
SimpleNet-1 over MNIST on the setups A and B.

In Figure 8, we render the average generation time for both
setups, along with the average generation time (the average gener-
ation time is roughly 2× smaller for the parallel PSO). As already
mentioned, the processing time of a single generation di�ers across
the sequential and parallel PSO for the initial generations (when the
size of the archive is still relatively small and the particles traverse
the unseen parts of the solution space). Hence, the archive is the
pivotal component of PSO which allows to notably decrease its
running time for small search spaces.

Although the parallel PSO delivers results of an identical quality
with a 2× speedup in scenarios where the hyper-parameter space
is small, it becomes critical to use the archive of the previously an-
alyzed hyper-paramater combinations. However, it is still notable
how—on such a small proportion of trainings—a parallel imple-
mentation of PSO can make a signi�cant di�erence and deliver an
undeniable speedup. �is comes to show how much improvement
can be gained from the application of parallelism in PSO.

4.3 Parallel PSO in Larger Search Spaces
In this experiment, we optimize an existent DNN architecture using
parallel PSO (with the swarm size s = 6) for MNIST—we focus
on the well-known canonical DNN model (LeNet-4) which has a
reported error rate of 1.1% on this dataset [16]. Let FCi de�ne a fully
connected layer with sFC denoting its size. �e original LeNet-4
hyper-parameters are given in Table 2, along with the parameter
limits for PSO—the original LeNet-4 values have been doubled. �e
experiment was run exclusively in the setup B.

Input C1 P1 C0 P0 FC0 So�max

28 × 28

Figure 9: LeNet-4 applied to the MNIST image.

LeNet-4 is a 5-level convolutional neural network designed for
the digit classi�cation [16]. It is formed by two blocks of convolu-
tion and max pooling layers, �nished by a fully connected layer
and a So�max (Figure 9). Its parameters are gathered in Table 2.

Results for DropConnect [8] (currently reported as the best per-
forming DNN over the MNIST dataset with an error rate of 0.21%)
are overlayed in Figure 10, in order to contextualize our results,
elaborated using the parallel PSO within the state of the art. �e
conclusion that we can obtain from this experiment is that the
parallel PSO can reliably optimize more complex models in larger
search spaces, and achieve the results that maximize the potential
of the existing architecture (LeNet-4).

It is also worth mentioning that the parallel PSO retrieved the
statistically be�er hyper-parameter values (leading to the be�er-
performing DNN) compared with the sequential PSO in the best
case (at p = 0.0074, using the two-tailed Wilcoxon tests)—the par-
allel PSO delivered the average best accuracy of 99.36%, and the
accuracy for the best fold was 99.45%, whereas the serial PSO gave

1869



Hyper-Parameter Selection in DNNs Using Parallel PSO GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

Table 2: Original LeNet-4 hyper-parameter values, lower
and upper parameter boundaries for parallel PSO, along
with the hyper-parameters obtained using the parallel PSO.

Layer Orig. LeNet-4 [16] bl bu PSO results

C0
n = 24
sF = 5

n = 1
sF = 2

n = 48
sF = 10

n = 29
sF = 8

P0
sP = 2
` = 2

sP = 2
` = 2

sP = 4
` = 4

sP = 3
` = 2

C1
n = 50
sF = 5

n = 1
sF = 2

n = 100
sF = 10

n = 92
sF = 5

P1
sP = 2
` = 2

sP = 2
` = 2

sP = 4
` = 4

sP = 2
` = 1

FC0 sFC = 500 sFC = 1 sFC = 1000 sFC = 258

the average best accuracy equal to 99.08%, with the best fold of
99.34% (the average di�erences between the independent runs for
each fold were not statistically important for the serial and parallel
PSO, since p = 0.0629). In Table 2, we gather the hyper-parameter
values retrieved using the parallel PSO. It can be observed, that
they notably di�er from the baseline LeNet-4 hyper-parameters
which have been tuned by an experienced practitioner (see e.g., the
number of receptive �elds forC1). Hence, our approach can further
boost the performance of a DNN architecture which is carefully
designed by a human.

1

0.99

0.98

0.97

Accuracy
on

Ψ

Min Avg Max
Figure 10: Minimum, average and maximum accuracy (of
the best PSO particles across all folds) obtained for Ψ using
the optimized LeNet-4 architecture for setup B.

In Figure 11, we observe that for the parallel PSO (s = 6) on setup
B, the optimization of LeNet-4 over MNIST takes on average less
than 3 hours. �is, combined with the low discrepancy among the
best reported hyper-parameter combinations, makes the parallel
PSO a very a�ordable alternative to optimize models similar to
LeNet-4, even with the additionally imposed time constraints.

In this scenario, with a signi�cantly larger search space, the
in�uence of the archive on the PSO evolution time is reduced as
shown in Figure 12. �e number of the performed DNN trainings
o�en surpasses 50% of the total �tness evaluations across all folds.
In the bo�om of this �gure, we observe that the average number of
the archive hits remains steadily growing, as opposed to Figure 7
where it converged quite rapidly. For LeNet-4, it might be an indica-
tor of an insu�cient number of generations (the optimization ran
for 100 swarm generations), re�ecting that some of the particles

still had momentum when the algorithm �nished, and could poten-
tially explore high-quality regions of the solution space. �is might
ultimately be a factor in�uencing the termination condition, as it
would be an indicator of when the convergence has been achieved.
In these circumstances, we can see the parallelism playing a bigger
role in the optimization as opposed to the previous experiment.

5
4
3
2
1
0

0 1 2 3 4 5 6 7 8 9

Ti
m

e
(h

)

Fold index
Figure 11: Total execution time per fold for LeNet-4 opti-
mized in setup B, and the average of all executions.

0 25 50 75 100

1 2 3 4 5 6 7 8 9 10
Folds for 1 GPU (le�) and 6 GPUs (right)

Generation

Avg
reads

0
1
2
3
4
5
6

200
400
600

Figure 12: Proportion of combinations trained during the
PSO optimization, rendered in light pink comparedwith the
hyper-parameter values read from the archive (top). Aver-
age archive reads per generation across all folds for setups
A and B (bottom).

Although all trainings to be performed in a generation can be
parallelized, the time necessary to process each generation is always
bounded to the longest training tasks (i.e., to the largest time of
calculating the �tness of a particle in the swarm). As shown in
Figure 13, the time per generation remains stable, for as long as
at least one DNN training is executed by the slave nodes. In the
case of many tasks running in parallel, the time per generation is
still determined by the slowest-to-evaluate combination of hyper-
parameters, meaning that once the other particles have �nished
being evaluated, the slave nodes will remain idle waiting for the last
one to complete (these slaves would be assigned with other particles
for evaluation if the swarm size was larger). In this scenario, our
parallel setup matches the number of GPUs available with the
swarm size (s = #GPUs = 6), however, this behavior would be
mitigated for larger values of s . �erefore, the average time per
generation in this experiment matches the average of the longest
hyper-parameter combinations to be calculated across the folds.
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Figure 13: Total and average time per generation for LeNet-4
over MNIST on the setup B.

5 CONCLUSIONS
In this paper, we proposed a parallel version of the PSO algorithm
for the hyper-parameter optimization in DNNs. �e population of
particles (each representing a combination of hyper-parameter val-
ues) is evolved in parallel searching for the hyper-parameters that
yield the best possible classi�cation performance of the underlying
DNN model. Experiments performed on the widely-used multi-
class dataset of hand-wri�en digits (MNIST), revealed that PSO
greatly bene�ts from the speedup delivered by parallelization of the
�tness calculation. By running this �tness calculation concurrently,
there is a big potential for the speedup directly proportional to the
number of GPUs for large swarm sizes (where the number of parti-
cles in the swarm is larger than the number of available GPUs). �e
fact that this parallel evaluation is simple to implement is another
remarkable property of the parallel PSO. �e DNNs architectures
optimized using our parallel PSO retrieved the classi�cation perfor-
mance surpassing the performance of the architecture elaborated
using a human practitioner, and was very close to the best-known
state-of-the-art classi�cation accuracy.

Most of our e�ort has focused on comparing the performance
of a serial implementation of PSO and its parallel counterpart. �e
convergence capabilities of our methods are signi�cantly a�ected
by the presence of the archive, which serves as a cache that stores
the already visited hyper-parameter positions during the swarm
evolution. �is archive notably reduces the execution time in small
search spaces, but still remains extremely useful in larger ones. A
comprehensive set of illustrations provided insights into the capa-
bilities of the parallel PSO, alongside the in�uence of the archive
on the entire optimization process.

�ere are a number of common modi�cations to PSO that help
improve its exploration and exploitation capabilities [19]. Optimiz-
ing those parameters could further improve the PSO performance
alongside its ease of use. However, we focused on the analysis of
the throughput derived by the introduction of parallel processing,
and we ultimately tried to characterize the resulting speedup. Our
future work encompasses introducing strategies to overcome the
expensive evaluation of the objective function to be able to optimize
notably larger DNN models. Also, we work on the adaptation and
augmentation schemes which will allow for expanding the initial
(quite o�en very simple) DNN architectures for challenging tasks
in the medical imaging �eld, by dynamically adding new layers of
di�erent types.
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berg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wa�enberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
(2015). h�p://tensor�ow.org/ So�ware available from tensor�ow.org.

[2] Enrique Alba and Marco Tomassini. 2002. Parallelism and evolutionary algo-
rithms. IEEE Transactions on Evolutionary Computation 6, 5 (2002), 443–462.

[3] Yoshua Bengio. 2000. Gradient-Based Optimization of Hyperparameters. Neural
Computation 12, 8 (2000), 1889–1900.

[4] James Bergstra and Yoshua Bengio. 2012. Random Search for Hyper-Parameter
Optimization. Journal of Machine Learning Research 13 (2012), 281–305.

[5] François Chollet. 2015. Keras. h�ps://github.com/fchollet/keras. (2015).
[6] Marc Claesen and Bart De Moor. 2015. Hyperparameter Search in Machine

Learning. CoRR abs/1502.02127 (2015), 1–5.
[7] Marc Claesen, Jaak Simm, Dusan Popovic, Yves Moreau, and Bart De Moor. 2014.

Easy Hyperparameter Search Using Optunity. CoRR abs/1412.1114 (2014), 1–5.
[8] Sanjoy Dasgupta and David Mcallester. 2013. Regularization of Neural Networks

using DropConnect. In Proc. ICML, Vol. 28. JMLR Conf. Proc., 1058–1066.
[9] Yue-Jiao Gong, Wei-Neng Chen, Zhi-Hui Zhan, Jun Zhang, Yun Li, Qingfu Zhang,

and Jing-Jing Li. 2015. Distributed Evolutionary Algorithms and �eir Models.
Applied So� Computing 34, C (2015), 286–300.
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