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ABSTRACT
Grammatical Evolution (GE) is a population-based evolutionary
algorithm, where a formal grammar is used in the genotype to
phenotype mapping process. PonyGE2 is an open source imple-
mentation of GE in Python, developed at UCD’s Natural Computing
Research and Applications group. It is intended as an advertise-
ment and a starting-point for those new to GE, a reference for
students and researchers, a rapid-prototyping medium for our own
experiments, and a Python workout. As well as providing the char-
acteristic genotype to phenotype mapping of GE, a search algorithm
engine is also provided. A number of sample problems and tutorials
on how to use and adapt PonyGE2 have been developed.
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1 INTRODUCTION
Grammatical Evolution (GE) is a grammar-based form of Genetic
Programming [7], where a formal grammar is used in the genotype
to phenotype mapping process [18]. Whereas previous releases
of Grammatical Evolution have been wri�en in C [14], Java [16],
R [15], and even Ruby [20], PonyGE2 is an implementation of GE
in Python. �e original version of PonyGE [9] was designed to be
short and contained in a single �le. However, over time it grew to
become unwieldy and a more structured approach was needed. �is
has led to the development of PonyGE2, presented here. PonyGE2
is intended as an advertisement and a starting-point for those new
to GE, a reference for students and researchers, a rapid-prototyping
medium for our own experiments, and a Python workout.

Grammatical Evolution marries principles from molecular biol-
ogy to the representational power of formal grammars [18]. GE’s
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rich modularity gives a unique �exibility, making it possible to use
alternative search strategies, whether evolutionary, deterministic
or some other approach, and to radically change its behaviour by
merely changing the grammar supplied. As a grammar is used to de-
scribe the structures that are generated by GE, it is trivial to modify
the output structures by editing the grammar, typically represented
in plain text BNF (Backus-Naur Form) format. �is is one of the
main advantages that makes the GE approach so a�ractive. �e
genotype-phenotype mapping also means that instead of operating
exclusively on solution trees, as in standard GP, GE allows search
operators to act on the genotypes (i.e. integer or binary lists), on
partially derived phenotypes, or on the fully-formed phenotypic
derivation trees themselves.

�e rest of this paper is structured as follows. Section 2 frames
PonyGE2 against the backdrop of previous GE releases, and outlines
its modular structure. Section 3 gives an overview of grammars
under PonyGE2, including how grammars are parsed using Regu-
lar Expressions in Section 3.2, and PonyGE2’s handling of special
grammar characters in Section 3.3. Section 4 details the linear
representation of PonyGE2 (including mapping, wrapping, invalid
individuals, and unit productions), while Section 5 details deriva-
tion tree representations. Operators are listed in Section 6. A list of
example problems provided with PonyGE2 is given in Section 7, be-
fore conclusions are drawn and avenues for future work identi�ed
in Section 8.

2 PONYGE2
GEVA [16] represented a feature-rich, mature representation of
linear GE. However, the codebase was verbose and di�cult to main-
tain or modify, and the release cycle of GEVA had stagnated due to
a knowledge gap within the development community. Furthermore,
advances in Java 7 and 8 were not being taken advantage of.

Python has become a widely used language, and has seen broad
adoption from people with li�le or no programming background
in both academia and industry as it provides an easy �rst step
into data science and machine learning. Since GEVA had become
verbose, the original version of PonyGE [9] was developed as a
clean, compact, and overall user-friendly implementation for a user
base of varying research needs and backgrounds. Recently PonyGE
had seen an uptake in new users, and feedback was that while
PonyGE presented a usable Python implementation of GE, the code
base had become disorganised. While the original incarnation was
intended to be small and compact (‘pony-sized’) and as such was
implemented as a single source �le, the continual extension of
this original code base to accommodate varying requirements of
di�erent researchers negated this original goal. What was once
small and compact had become large and unmanageable.

�e decision was made to merge the feature-rich and modular
aspects of GEVA with Python, and to re-structure the development
code base of PonyGE into a package structure. As such, the original
PonyGE �le was re-factored, re-wri�en, and greatly extended to
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src ponyge.py

algorithm mapper.py

parameters.py

search loop.py

step.py

fitness evaluation.py

classification.py

regression.py

string match.py
. . .

operators crossover.py

initialisation.py

mutation.py

replacement.py
. . .

representation derivation.py

grammar.py

individual.py

tree.py

stats stats.py

scripts . . .

utilities . . .

Figure 1: Organizational structure of the PonyGE2 Code-
base.

present a cleaner and simpler structure with much added function-
ality. �is modular code base allows users to work on a single
package without having to wade through thousands of lines of
potentially irrelevant code. As shown in Fig. 1, each element of the
algorithm has been con�ned in a modular way and the code adapted
to allow for usage of multiple search engines and operators. �is
move harks back to some of the design choices made for GEVA [16],
but also embraces the original ideology behind GE [14, 18].

�e modular structure of PonyGE2, as shown in Fig. 1, allows
for a high degree of �exibility in the algorithm. �e control �ow
for a typical PonyGE2 setup is shown in Fig. 2. All function blocks
in Fig. 2 represent parametrisable functions. �is means that in
PonyGE2 not only is it possible to specify unique operators, but it
is also possible to easily de�ne unique step and search loop control
�ows. Unlike with previous o�cial releases of GE systems which
required compiling (such as C [14] or Java [16]), the plug-and-play
nature of Python programming coupled with the modularity of
the control �ow makes PonyGE2 an intuitive, highly user-friendly
system that has been designed �rst and foremost with customisation
and personalisation in mind. Furthermore, PonyGE2 is fully PEP-8
compliant [21].

A major strength of PonyGE2 is the ability to mix and match
representation types. Both linear genome representations [18]
and derivation tree representations [23] are implemented simul-
taneously in PonyGE2, meaning that every individual has both a
genome and full derivation tree. Operators of either type can be
mixed and used freely, while maintaining full compatibility with
both representation types. �ere are advantages and disadvantages
to both types, discussed later in Sections 4 and 5.

PonyGE2 is run from the command line from within the source
directory. Executing the main ponyge.py �le will run an example

Figure 2: PonyGE2 control �ow diagram for typical GE/GP
setup.

regression problem1 and generate a results folder. Each results
folder generated by an evolutionary run contains several �les, de-
tailing all statistics gathered over the course of the run, a graph
of the best �tness plo�ed against generations, a documented list
of all the parameters used, as well as a �le detailing the best in-
dividual. An array of command line arguments are available for
specifying desired parameters, which can also be speci�ed in an
external parameters �le.

An important issue for any scienti�c �eld is experimental clarity
and comparability, i.e. allowing for experiments to be easily repro-
duced. To that extent, it is possible to exactly recreate a PonyGE2
run by using the parameters �le saved from that run. Parameters
�les are saved automatically for each run, and include all necessary
information (including random seeds) to set the parameters of a new
run in order to perfectly reproduce a given experiment2. Further-
more, PonyGE2 comes pre-packaged with a number of benchmark
1Note that the default se�ings do not necessarily represent suggested good se�ings,
but are to serve primarily as examples of how to use the system.
2Note that this is contingent on the use of the original grammar, �tness function, and
datasets (if used). Note also that changes to the code may a�ect result outcomes.
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datasets and grammars which can be used to verify and test previ-
ous results [10, 11].

�e PonyGE2 project uses GitHub [4] to allow for open usage
of the code with forking and version control. �is allows users to
stay up to date with current releases as new functionality is rolled
out. �e use of GitHub also provides issue tracking and a forum
for users to voice their desires/problems with the so�ware.

PonyGE2 requires Python 3.5 or higher, and uses the matplotlib,
numpy, scipy, scikit-learn (sklearn), and pandas packages. All re-
quirements can be satis�ed with Anaconda. PonyGE2 v0.1.0 has
been released under GNU GPL version 3 [4].

2.1 Scripts and Utilities
Besides the main ponyge.py �le that can be found in the src direc-
tory, a number of extra scripts are provided with PonyGE2. �ese
are located in the scripts folder. �ese extra scripts have been
designed to work either as standalone �les, or to work in tandem
with PonyGE2. Various functions from within these scripts can
provide extra functionality to PonyGE2. Most prominent of the
scripts are a basic experiment manager and statistics parser for ex-
ecuting multiple experimental runs. A full breakdown of all scripts
is provided in the README �le [4].

�e utilities folder provides an array of additional functions
used by PonyGE2, such as �le I/O, plo�ing, the command-line
parser, protected mathematical operators, and error metrics.

3 GRAMMARS
When tackling a problemwith GE, a suitable grammar must initially
be de�ned. �e grammar can be either the speci�cation of an entire
programming language or, perhaps more usefully, a subset of a
language geared towards the problem at hand.

In PonyGE2, Bacus-Naur Form (BNF) is used to describe the
output language to be produced by the system. BNF is a notation
for expressing a grammar in the form of production rules. BNF
grammars consist of terminals, which are symbols that can appear
in the language, e.g. locally or globally de�ned variables, binary
boolean operators and, or, xor, and nand, unary boolean operators
not, constants, True and False etc. and non-terminals, which can
be expanded into one or more terminals and non-terminals.

A grammar is a set of production rules that de�nes a language.
Each production rule is composed of a le�-hand side (a single non-
terminal), followed by the ”goes-to” symbol ::=, followed by a list
of production choices separated by the ”or” symbol |. Production
choices can be composed of any combination of terminals or non-
terminals. Non-terminals are enclosed by angle brackets <>. For
example, consider the following production rule:

<a> ::= <b>c | d

In this rule, the non-terminal <a>maps to either the choice <b>c
(a combination of a new non-terminal <b> and a terminal c), or a
single terminal d.

3.1 Recursion
One of the most powerful aspects of GE is that the representation
can be variable in length. Notably, rules can be recursive (i.e. a
non-terminal production rule can contain itself as a production

choice), which can allow GE to generate solutions of arbitrary size,
e.g.:

<a> ::= <a> + b | b

�e grammar is used in a developmental approach whereby the
evolutionary process chooses the productions to be chosen at each
stage of a mapping process, starting from the start symbol, until
a complete program is formed. A complete program is one that is
comprised solely from elements of the terminal set T.

In PonyGE2 the BNF de�nition is comprised entirely of the set of
production rules, with the de�nition of terminals and non-terminals
implicit in these rules. �e �rst non-terminal symbol is by default
the start symbol. As the BNF de�nition is a plug-in component of
the system, it means that GE can produce code in any language
thereby giving the system �exibility.

3.2 Grammar Parsing
Instead of a handwri�en tokenization parser (as implemented in
previous versions of GE [9, 14, 16] and in other systems such as
ECJ [8]), BNF grammars in PonyGE2 are parsed using regular ex-
pressions. �e use of regular expressions allows other researchers
to integrate parsing BNF grammars easily in their EC systems. �e
regular expressions have originally been created by [5].

�e parser allows for the separation of productions onto multiple
lines, Python-esque line commenting with ‘#’, as well as single
quotations within double quotations and vice versa for terminals.
�is allows for the creation of ‘meta-grammars’.

3.3 Variable ranges in grammars
A useful special case is available when writing grammars: a pro-
duction can be given as:

GE RANGE:4

for example, and this will be replaced by a set of productions:
0 | 1 | 2 | 3.

With GE RANGE:dataset n vars, the number of productions
will be set by the number of columns in the dataset. Using grammar
productions like the following, we can avoid hard-coding the num-
ber of independent variables, as illustrated in the grammar excerpt
shown in Fig. 3.

<var> ::= x[<varidx>]
<varidx> ::= GE_RANGE:dataset_n_vars

Figure 3: Grammar excerpt showing use of GE range.

Along with the �tness function, the grammar is one of the most
problem-speci�c components of the PonyGE2 algorithm. �e per-
formance of PonyGE2 can be greatly a�ected by the grammar.

4 LINEAR GENOME REPRESENTATION
Canonical Grammatical Evolution uses linear genomes (also called
chromosomes) to encode genetic information [18]. �ese linear
genomes are then mapped via the use of a formal BNF-style gram-
mar to produce a phenotypic output. All individuals in PonyGE2
have an associated linear genome which can be used to exactly
reproduce that individual.
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4.1 Genotype-Phenotype Mapping Process
�e genotype is used to map the start symbol as de�ned in the
Grammar onto terminals by reading codons to generate a corre-
sponding integer value, from which an appropriate production rule
is selected by using the Mod (or modulus) rule:

Rule = c % r

where c is the codon integer value, and r is the number of rule
choices for the current non-terminal symbol.

Consider the rule described in Fig. 4. Given the non-terminal
<op> which describes a set of mathematical operators that can be
used, there are four production rules to select from. As can be seen,
the choices are e�ectively labelled with integers counting from zero.

<op> ::= + (0)
| - (1)
| * (2)
| / (3)

Figure 4: De�nition of a non-terminal <op> with four termi-
nal production choices.

If we assume the codon being read produces the integer 6, then
6 % 4 = 2would select rule (2) *. �erefore, the non-terminal <op>
is replaced with the terminal * in the derivation string. Each time
a production rule has to be selected to transform a non-terminal,
another codon is read. In this way the system traverses the genome.

�e linear genotype-to-phenotype mapping process in PonyGE2
compiles a full derivation tree for the individual in question by
default (this process is detailed in Section 5). However, in certain
con�gurations (such as when all variation operators operate on
the linear genome), PonyGE2 has no need to maintain the full
derivation trees of individuals during the course of an evolutionary
run3. In this case, a separate mapper is used which only generates
numerical information on aspects of the derivation tree such as the
overall maximum derivation tree depth and the number of nodes
in the tree, resulting in a substantial reduction in the run-time of
the algorithm. �us, individuals mapped from a genome will have
the same a�ributes as those generated from a derivation tree.

4.2 Tails and Wrapping
�e ‘used’ portion of the genome (i.e. the portion of the genome
that directly maps to the phenotype) may not necessarily cover the
entire length of the genome. �e remaining unused portion of the
genome is referred to as the ‘tail’ of the genome. When initialis-
ing individuals by derivation tree-based methods such as Sensible
initialisation [19] or Position Independent Grow [3], a complete
individual is generated with a complete genome (i.e. the number
of used codons is equal to the length of the initial genome). A tail
of randomly generated codons is then appended to the complete
genome. Tails in PonyGE2 are initialised at 50% of the length of
the original genome, as per recommendations described in [13].
However, it must be noted that the use of linear genome operators
means that these tails may become used (i.e. tails are not maintained
subsequent to initialisation).
3Note that this excludes the initialisation of the initial population.

Evenwith the presence of tails, during the genotype-to-phenotype
mapping process, it is possible to run out of codons before the map-
ping process has terminated. In this case, a wrapping operator
can be applied which results in the mapping process re-reading
the genome again from the start (i.e. wrapping past the end of
the genome back to the beginning). As such, codons are reused
when wrapping occurs. �is means that it is possible for codons
to be used two or more times depending on the number of wraps
speci�ed. GE works with or without wrapping, and wrapping has
been shown to be useful on some problems [18], however, it does
come at the cost of introducing functional dependencies between
codons that would not otherwise arise [13].

By default, wrapping in PonyGE2 is not used, however it is pos-
sible to specify the desired maximum number of times the mapping
process is permi�ed to wrap past the end of the genome back to
the beginning again. Note that permi�ing the mapping process to
wrap on genomes does not necessarily mean it will wrap across
genomes. �e provision is merely allowed.

4.3 Invalid Individuals
In GE each time the same codon is expressed it will always generate
the same integer value, but depending on the current non-terminal
to which it is being applied, it may result in the selection of a
di�erent production rule. �is feature is referred to as “intrinsic
polymorphism”. What is crucial however, is that each time a partic-
ular individual is mapped from its genotype to its phenotype, the
same output is generated. �is is the case because the same choices
are made each time. In some cases it is possible that an incomplete
mapping could occur; if the genome has been completely traversed
(even a�er multiple wrapping events), and the derivation string
(i.e. the derived expression) still contains non-terminals, such an
individual is dubbed invalid as it will never undergo a complete
mapping to a set of terminals. For this reason an upper limit on the
number of wrapping events that can occur is imposed (as detailed
in Section 4.2), otherwise mapping could continue inde�nitely in
this case. In the case of an invalid individual, the mapping pro-
cess is typically aborted and the individual in question is given
the lowest possible �tness value. �e selection and replacement
mechanisms then operate accordingly to increase the likelihood
that this individual is removed from the population.

To reduce the number of invalid individuals being passed from
generation to generation various strategies can be employed. Strong
selection pressure could be applied, for example, through a steady
state replacement. Alternatively, a repair strategy can be adopted
which ensures that every individual results in a valid program. For
example, in the case that there are non-terminals remaining a�er
using all the genetic material of an individual (with or without the
use of wrapping) default rules for each non-terminal can be pre-
speci�ed that are used to complete the mapping in a deterministic
fashion. Another strategy is to remove the recursive production
rules that cause an individual’s phenotype to grow, and then to
reuse the genotype to select from the remaining non-recursive
rules. Finally, the use of genetic operators which manipulate the
derivation tree rather than the linear genome can be used to ensure
the generation of completely mapped phenotype strings.
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4.4 A note on unit productions
A unit production is a production which is the only production on
the right-hand side of a rule. Traditionally, GE would not consume
a codon for unit productions. �is was a design decision taken
by O’Neill et al. [18]. However, in PonyGE2 unit productions con-
sume codons, the logic being that it helps to do linear tree-style
operations.

�e original design decision on unit productions was also taken
before the introduction of evolvable grammars whereby the arity of
a unit production could change over time. In this case consuming
codons will help to limit the ripple e�ect from that change in arity.

In summary, the merits for not consuming a codon for unit pro-
ductions are not clearly de�ned in the literature. �e bene�ts in
consuming codons are a reduction in computation and improved
speed with linear tree style operations. Other bene�ts are an in-
crease in non-coding regions in the chromosome that through
evolution of the grammar may then express useful information.

5 DERIVATION TREE REPRESENTATION
During the linear genotype-to-phenotypemapping process, a deriva-
tion tree is implicitly generated; since each production choice gen-
erates a codon, it can be viewed as a node in an overall derivation
tree. �e parent rule that generated that choice is viewed as the par-
ent node, and any production choices resultant from non-terminals
in the current production choice are viewed as child nodes. �e
depth of a particular node is de�ned as how many parents exist in
the tree directly above it, with the root node of the entire tree (the
start symbol of the grammar) being at depth 1. Finally, the root of
each individual node in the derivation tree is the non-terminal pro-
duction rule that generated the node choice itself. A full derivation
tree of a PonyGE2 individual is encoded as a recursive class, with
all nodes in the tree being instances of that class.

While linear genome mapping means that each individual codon
speci�es the production choice to be selected from the given pro-
duction rule, it is possible to do the opposite. Deriving an indi-
vidual solution purely using the derivation tree (i.e. not using the
genotype-to-phenotype mapping process de�ned in Section 4.1) is
entirely possible, and indeed provides a lot more �exibility towards
the generation of individuals than a linear mapping.

In a derivation tree based mapping process, each individual be-
gins with the start rule of the grammar (as with the linear mapping).
However, instead of a codon from the genome de�ning the pro-
duction to be chosen from the given rule, a random production is
chosen. Once a production is chosen, it is then possible to retroac-
tively create a codon that would result in that same production
being chosen if a linear mapping were to be used. In order to gener-
ate a viable codon, �rst the index of the chosen production is taken
from the overall list of production choices for that rule. �en, a
random integer from within the range:

[no. choices : no. choices : CODON SIZE]

(i.e. a number from no. choices to CODON SIZE with a step
size of no. choices). Finally, the index of the chosen production
is added to this random integer. �is results in a codon which
will re-produce the production choice. For example, consider the
following rule:

<e> ::= a | b | c

Now, let us randomly select the production choice b. �e index
of production choice b is 1. Next, we randomly select an integer
from within the range [3: 3: CODON SIZE], giving us a random
number of 768. Finally, we add the index of production choice
b, to give a codon of 769. In this manner it is possible to build a
derivation tree, where each node will have an associated codon.
Simply combining all codons into a list gives the full genome for
the individual.

Importantly, since the genome does not de�ne the mapping
process, invalid solutions can not be generated by derivation tree-
based methods.

5.1 Context-Aware Operations
Since production choices are not set with the use of a derivation tree
representation (i.e. the production choice de�nes the codon, rather
than the codon de�ning the production choice), it is possible to
build derivation trees in an intelligent manner by restricting certain
production choices. For example, it is possible to force derivation
trees to a certain depth by only allowing recursive production
choices to be made until the tree is deep enough that branches can
be terminated at the desired depth. �is is the basis of context-aware
derivation methods such as Ramped Half-and-Half (or Sensible)
initialisation [19].

It is also possible to perform intelligent variation operations
using derivation treemethods. For example, crossover andmutation
can be controlled by only selecting speci�c types of sub-trees for
variation (e.g. sub-trees of speci�c sizes or sub-trees rooted at
speci�c nodes). Note that the use of derivation tree-based operators
comes at the expense of increased computational run-time.

In general, the use of a linear genome does not allow for such
context-aware operations, i.e. operations on linear genomes are
performed randomly, without reference to the e�ect or output of
any particular portion of the genome. Although intelligent lin-
ear genome operators exist, e.g. [1], they are not implemented
in PonyGE2 as similar functions can be performed in a simpler
manner using derivation-tree based operations.

6 OPERATORS
�is section contains a list of all operators currently implemented
in PonyGE2.

6.1 Initialisation
�ere are two main ways to initialise a GE individual: by generating
a genome, or by generating a derivation tree. Generation of a
genome can only be done by creating a random genome string, and
as such the use of genome initialisation cannot guarantee control
over any aspects of the initial population. Population initialisation
via derivation tree generation on the other hand allows for �ne
control over many aspects of the initial population, e.g. depth
limits or derivation tree shape. Unlike with genome initialisation,
there are a number of di�erent ways to initialise a population
using derivation trees. Currently implementedmethods are detailed
below.
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6.1.1 Linear genome initialisation.
At present, the only method for initialising a population of individ-
uals through the use of linear genomes in Grammatical Evolution
is to generate random genome strings, known as Random Genome
Initialisation. Random genome initialisation in Grammatical Evolu-
tion should be used with caution as poor grammar design can have
a negative impact on the quality of randomly initialised solutions
due to the inherent bias capabilities of GE [3, 12].

6.1.2 Derivation tree initialisation.
Initialising a population of individuals through the use of derivation
tree-based methods allows for much greater control over many
aspects of individuals in the population, including derivation tree
depth, number of nodes, and shape. At present, there are three such
initialisation methods in PonyGE2, outlined below.

Random tree initialisation
Random derivation tree initialisation generates individuals by ran-
domly building derivation trees up to the speci�ed maximum initial-
isation depth limit. �is is analogous to using the Grow component
of Ramped Half-and-Half/Sensible initialisation to generate an en-
tire population [19]. Note that there is no obligation that randomly
generated derivation trees will extend to the depth limit; they will
be of random size, but depending on how the grammar is wri�en
they may have a tendency towards smaller tree sizes with the use
of a grammar-based mapping [3, 12].

Ramped Half-and-Half/Sensible Initialisation [19]
Ramped Half-and-Half initialisation in Grammatical Evolution is
o�en called “Sensible Initialisation” [19]. Sensible Initialisation fol-
lows traditional GP Ramped Half-and-Half initialisation by initial-
ising a population of individuals using two separate methods: Full
and Grow. Full initialisation generates a derivation tree where all
branches extend to the speci�ed depth limit. �is tends to generate
very bushy, evenly balanced trees [3]. Grow initialisation generates
a randomly built derivation tree where no branch extends past the
depth limit.

Note that the Grow component of Sensible initialisation is analo-
gous to random derivation tree initialisation, i.e. no branch in the
tree is forced to reach the speci�ed depth. Depending on how the
grammar is wri�en, this can result in a very high probability of
small trees being generated, regardless of the speci�ed depth limit
[3]. Note also that RHH initialisation with the use of a grammar-
based mapping process such as GE can potentially result in a high
number of duplicate individuals in the initial generation, resulting
from a potentially high number of very small solutions [3, 6, 12]. As
such, caution is advised when using RHH initialisation in grammar-
based systems, as particular care needs to be given to grammar
design in order to minimise this e�ect [3, 6].

Position Independent Grow Initialisation [3]
Position Independent Grow (PI Grow) initialisation in Grammatical
Evolution mirrors Sensible/Ramped Half-and-Half initialisation
by initialising a population of individuals over a ramped range
of depths. However, while RHH uses two separate methods Full
and Grow to generate pairs of individuals at each depth, PI Grow
eschews the Full component and only uses the Grow aspect. �ere

are two further di�erences between traditional GP Grow and PI
Grow [3]:

(1) At least one branch of the derivation tree is forced to the
speci�ed maximum depth in PI Grow, and

(2) Non-terminals are expanded in random (i.e. position in-
dependent) order rather than the le�-�rst derivation of
traditional mappers.

6.2 Selection
�e selection operator takes the original Generation n population
and produces a parent population to be used by the variation opera-
tors. As detailed in Section 4.3, the linear genome mapping process
in Grammatical Evolution can generate invalid individuals. Only
valid individuals are selected by default in PonyGE2, however this
can be changed with the use of an optional argument.

Two selection operators are provided in PonyGE2. �ese opera-
tors are detailed below.

6.2.1 Tournament Selection.
Tournament selection randomly selects tournament size in-

dividuals from the overall population and returns the best. �is
process continues until generation size individuals have been se-
lected. If no elitism is used, the generation size is equal to the full
population size. However, if elitism is used, the generation size
is equal to the full population size minus the number of elites.
�is prevents extra individuals from being generated and evaluated
which would constitute additional search.

6.2.2 Truncation Selection.
Truncation selection takes an entire population, sorts it, and

returns a speci�ed top proportion of that population.

6.3 Variation
Variation operators in evolutionary algorithms explore the search
space by varying genetic material of individuals in order to explore
new areas of the search space. �e two main types of variation
operator implemented in PonyGE2 are Crossover and Mutation.

6.3.1 Crossover.
Crossover randomly selects pairs of parents from the parent

population created by the selection process. Unlike canonical
Genetic Programming [7], crossover in Grammatical Evolution
always produces two children from these two parents [17]. As
with Tournament Selection, Crossover in PonyGE2 continues un-
til generation size children have been generated (i.e. crossover
operates over the entire parent population rather than a speci�ed
percentage of that population).

One derivation tree-based crossover operator is provided in
PonyGE2, along with four linear crossover operators. Note that
with all linear genome crossovers, crossover points are selected
within the used portion of the genome by default (i.e. crossover
does not occur in the unused tail of the individual). Note also that
while subtree-based operators do not allow invalid individuals to
be generated, this is possible with all linear operators.

1199



PonyGE2: Grammatical Evolution in Python GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

Fixed Onepoint Crossover
Given two individuals, �xed onepoint crossover creates two chil-
dren by selecting the same point on both genomes for crossover
to occur. �e head of genome 0 is then combined with the tail of
genome 1, and the head of genome 1 is combined with the tail of
genome 0. �is means that genomes will always remain the same
length a�er crossover.

Fixed Twopoint Crossover
Given two individuals, �xed twopoint crossover creates two chil-
dren by selecting the same points on both genomes for crossover
to occur. �e head and tail of genome 0 are then combined with
the mid-section of genome 1, and the head and tail of genome 1
are combined with the mid-section of genome 0. �is means that
genomes will always remain the same length a�er crossover.

Variable Onepoint Crossover
Given two individuals, variable onepoint crossover creates two
children by selecting a di�erent point on each genome for crossover
to occur. �e head of genome 0 is then combined with the tail of
genome 1, and the head of genome 1 is combined with the tail of
genome 0. �is allows genomes to grow or shrink in length.

Variable Twopoint Crossover
Given two individuals, variable twopoint crossover creates two chil-
dren by selecting two di�erent points on each genome for crossover
to occur. �e head and tail of genome 0 are then combined with
the mid-section of genome 1, and the head and tail of genome 1 are
combined with the mid-section of genome 0. �is allows genomes
to grow or shrink in length.

6.3.2 Mutation.
While crossover operates on pairs of selected parents to pro-

duce new children, mutation in Grammatical Evolution operates on
every individual in the child population a�er crossover has been
applied. Note that this is di�erent in implementation so canonical
GP crossover and mutation, whereby a certain percentage of the
population would be selected for crossover with the remaining
members of the population subjected to mutation [7].

One subtree mutation operator is provided in PonyGE2, along
with to linear genome mutation operators, detailed below. By de-
fault, linear genome mutation operators in PonyGE2 operate only
on the used portion of the genome.

Codon-based Integer Flip Mutation
Codon-based integer �ip mutation randomly mutates every indi-
vidual codon in the genome with a certain probability.

Genome-based Integer Flip Mutation
Genome-based integer �ip mutation mutates a speci�ed number of
codons randomly selected from the genome.

6.4 Evaluation
PonyGE2 takes advantage of vectorised evaluation to enable fast
evaluation on large dataset arrays for supervised learning prob-
lems. Furthermore, caching is provided in PonyGE2, along with
a few options for dealing with cached individuals as discussed in
[12]. Multicore evaluation is also provided, but this feature is not
currently supported on machines using a Windows OS.

6.5 Replacement
�e replacement strategy for an Evolutionary Algorithm de�nes
which parents and children survive into the next generation. Two
replacement operators are provided in PonyGE2.

6.5.1 Generational Replacement with Elitism.
Generational replacement replaces the entire parent population

with the newly generated child population at every generation.
Generational replacement is most commonly used in conjunction
with elitism. With elitism, the best ELITE SIZE individuals in the
parent population are copied over unchanged to the next generation.
Elitism ensures continuity of the best ever solution at all stages
through the evolutionary process, and allows for the best solution
to be updated at each generation.

6.5.2 Steady State Replacement.
Steady state replacement uses the GENITORmodel [24] whereby

new individuals directly replace the worst individuals in the popu-
lation regardless of whether or not the new individuals are ��er
than those they replace. Note that traditional GP crossover gen-
erates only 1 child [7], whereas linear GE crossover (and thus all
crossover functions used in PonyGE2) generates 2 children from 2
parents [17, 18]. �us, PonyGE2 uses a deletion strategy of 2.

7 EXAMPLE PROBLEMS
Four example problems are provided in the initial release of PonyGE2.
�ese problems are described in this section.

7.1 String-match
�e grammar speci�es words as lists of vowels and consonants
along with special characters. �e aim is to match a target string.
�e default string match target is Hello world!.

7.2 Regression
�e grammar generates a symbolic function composed of standard
mathematical operations and a set of variables. �is function is then
evaluated using a pre-de�ned set of inputs, given in the datasets
folder. Each problem suite has a unique set of inputs. �e aim is to
minimise some error between the expected output of the function
and the desired output speci�ed in the datasets. �is is the default
problem for PonyGE. �e default dataset is the Vladislavleva-4
dataset [22].

7.3 Classi�cation
Classi�cation can be considered a special case of symbolic regres-
sion but with a di�erent error metric. Like with regression, the
grammar generates a symbolic function composed of standardmath-
ematical operations and a set of variables. �is function is then
evaluated using a pre-de�ned set of inputs, given in the datasets
folder. Each problem suite has a unique set of inputs. �e aim is to
minimise some classi�cation error between the expected output of
the function and the desired output speci�ed in the datasets.

7.4 Pymax
One of the strongest aspects of a grammatical mapping approach
such as PonyGE2 is the ability to generate executable computer
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programs in an arbitrary language [18]. In order to demonstrate
this in the simplest way possible, we have included an example
python programming problem.

�e Pymax problem is a traditional maximisation problem, where
the goal is to produce as large a number as possible. However, in-
stead of encoding the grammar in a symbolic manner and evaluating
the result, we have encoded the grammar for the Pymax problem as
a basic Python programming example. �e phenotypes generated
by this grammar are executable python functions, whose outputs
represent the �tness value of the individual. Users are encouraged
to examine the pymax.bnf grammar, the pymax.py �tness function,
and the resultant individual phenotypes to gain an understanding of
how grammars can be used to generate such arbitrary programs [4].

7.5 Adding New Problems
It has been made as simple as possible to add new problems to
PonyGE. To add a new problem, any number of the following may
be required:

(1) a new grammar �le named with a .bnf su�x and placed
in grammars/;

(2) a new �tness function implemented as a class in a �le
fitness/x.py where x is the name of the class (note that
existing �tness functions may be re-used, e.g. for super-
vised learning problems);

(3) for supervised learning, a new dataset split into
datasets/x/Train.csv and datasets/x/Test.csvwhere
x is a subdirectory named a�er the dataset.

8 CONCLUSIONS AND FUTUREWORK
�is paper described PonyGE2, a modern Python implementation of
Grammatical Evolution. While this paper presents a brief overview
of the system, comprehensive documentation is available on GitHub
at h�ps://github.com/jmmcd/PonyGE2. �e codebase is fully com-
mented to facilitate understanding and to provide ease of extensi-
bility, and is PEP-8 compliant for readability. We welcome future
contributors and collaborators from the wider �eld, and GitHub
provides a forum for future discussion [4].

A number of additions to PonyGE2 are planned in the immediate
future. Development is ongoing, and will see the implementation
of a number of additional features, including:

(1) Multi-objective optimisation using NSGA-II [2],
(2) Python packaging integration (e.g. setup.py, MANIFEST.in,

etc.): the aim is to have PonyGE2 PIP-installable.
(3) Parametrisable termination conditions,
(4) Extension of multicore evaluation support to Windows

OS machines, and look into the integration of cloud based
multicore support.

(5) Addition of more search engines and problems.
Finally, PonyGE2 will be kept up to date with the most current

best-of-practice techniques.
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