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ABSTRACT 

Econometric Genetic Programming (EGP) evolves multiple linear 

regressions through Genetic Programming (GP), which is 

responsible for model selection, aiming to generate high accuracy 

regressions with potential interpretability of parameters. It uses 

statistical significance as a feature selection tool, directly and 

efficiently identifying introns and controlling bloat. In this paper, 

EGP is tested against traditional feature-selection econometric 

algorithms in regression tasks – namely Partial Least Squares 

Regression, Ridge Regression and Stepwise Forward Regression – 

outperforming them in all three datasets. The way EGP explores 

search space of possible regressors and models is crucial for its 

results. EGP is carefully constructed considering econometric 

theory on cross-sectional datasets, giving rigorous treatment on 

topics like homoscedasticity and heteroscedasticity, statistical 

inference for estimated parameters and sampling criteria. It also 

benefits by the mathematical proof on accuracy and statistical 

significance: accuracy will only increase if the regressor presents 

a test’s statistics module in a two-sided hypothesis testing higher 

than a predefined value. 
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1 INTRODUCTION 

The very first form of regression was the method of Least Squares 

(LS), published by [1] and [2]. The term "regression" was coined 

by Francis Galton in the nineteenth century to describe a 

biological phenomenon. As stated in [3], the method for Symbolic 

Regression (SR) proposed by [4] is an alternative approach to 

curve fitting. The technique creates mathematical expressions to 

fit a set of data points using the evolutionary process of GP. 

Past literature relates some pioneer works that hybridize linear 

regression with GP. For a generous list on it, see [5]. In the 

following, just papers that most influenced EGP will be described.  

Works [3] and [6,7] create polynomial regression models for 

SR tasks. The Weierstrass approximation theorem (1885) states 

that every continuous function defined on a closed interval [a, b] 

can be uniformly approximated as closely as desired by a 

polynomial function. By itself, the theorem would be sufficient 

for a great effort on approximating the dependent variable in a 

regression task by polynomials. EGP follows this direction. 

EGP, which was first and partially introduced in [8] for 

regression tasks and tested against exhaustive search algorithms, 

is carefully constructed considering econometric theory on cross-

sectional datasets. Rigorous treatment on topics like 

homoscedasticity [9], statistical inference for estimated 

parameters and sampling criteria are made. These considerations 

represent a significant difference with its predecessors, which 

relax some hypothesis or even do not test them on datasets and 

models, although each of them has its own contribution. 

Kaizen Programming (KP) [13] is an interesting evolutionary 

tool based on concepts of continuous improvement from Kaizen 

methodology, which was successfully tested against traditional SR 

benchmark functions. EGP is similar to KP in the sense that both 

are concerned about bloat, introns and use R�� (see section 2) as a 

comparison metric between models. But they also differ in several 

aspects, in particular the fact that EGP exclusively evolves 

polynomials (enhancing potential interpretability of parameters), 
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while KP evolves linear-in-parameters individuals in a more 

general shape. 

In this paper, EGP is tested against traditional feature-

selection econometric algorithms in regression tasks 

outperforming them in all three datasets. The main reason EGP 

outperforms traditional econometric algorithms is its capability to 

explore the regressors’ and models’ search space. While the 

number of regressors for each of the feature-selection algorithms 

are just a few for each dataset, EGP generates models with 50 

statistically significant regressors or more. EGP explores non-

linearity of features, by multiplying different features, maintaining 

models with linear structure. 

This paper is organized as follows: Section 2 describes the 

elements of econometrics used by EGP: there is no intention to 

fully exhaust the theme; justification on these elements is 

presented when necessary. Section 3 succinctly describes EGP. 

Sections 4 proposes experiments and discusses results. Conclusion 

is done in Section 5. 

2 ECONOMETRICS 

2.1 Linear Regression Model, Least Squares, QR 

Decomposition 

As in [9], the multiple linear regression model with � parameters 

and � observations is: 

 

� = �	 + � (1) 

 

where ��	�	�  is the dependent variable vector, ��	�	�����  is the 

regressor’s matrix, 	�����	�	� is the vector representing the terms 

that adjust � to � and ��	�	� is an error vector. 

Vector 	  is an unknown statistical population parameter 

usually estimated by LS, which generates 	�, the ideal multiplier 

for � on ���� (the column space of �) that makes �	�  the most 

closely projection to � on ����. As ���� is orthogonal to �, some 

matrix manipulation leads to: 

 

	� = ���������� (2) 

 

In [10], it is stated: “The most commonly used, and in many 

ways the most important, estimation technique in econometrics is 

LS”. In general, calculations on (2) via matrix inversion are 

numerically unstable and QR Decomposition is recommended by 

[11,12] in such cases. 

2.3 Hypothesis Test 

Under conditions stated in [14], 	� is a BLUE estimator for 	 [9], 

which does not guarantee statistical significance for 	 =
���⋯��⋯����. I.e., it is possible that some ��  in (1), or even all 

	, is a pure random effect on � and does not present any causal 

relationship with it. To check statistical significance, it is natural 

to perform HT on �� , individually, or on 	. Just fully satisfiability 

of conditions stated in [14] allows to perform HT as described in 

the following and that is the case of models generated by EGP and 

datasets used in this article. 

HT is constructed with a null and alternative hypothesis (�� 

and � , respectively), a test statistics and a decision criteria. For a 

two-sided HT for �� , hypothesis �� and �  are frequently: 

 

��:	�� = 0 

� :	�� ≠ 0 
(3) 

 

and 	�|�	~	N�	, (��������� , while )  is a test statistic with a 

known probability distribution: 

 

) = �*� − ��
,-.�*�/ √�⁄ 	~	2	�� − � − 1� (4) 

 

with ,-.�*�/ the standard error of �*�. As � increases, )� 4→6�0,1�. 
Decision criteria is defined following Fig. 1. 

 
Figure 1: Distribution of ) under ��. 

 

The quantity )789 is the observed value of the random variable 

)  when all variables in (4) are substituted by their respective 

values. If |	)789| > 2; �⁄ , )789 is far away from the average of the 

curve in Fig. 1 and thus is less likely that )789 is indeed generated 

by the distribution of ) under ��. In this case, �� is rejected and 

��  remains in (1). Otherwise, if |	)789| < 2; �⁄ , )789  is probably 

generated by the distribution of ) under ��. In this case, �� is not 

rejected and ��  quits (1), because it is not statistical significant. 

Typically, = = 5%, 2; �⁄ = 1.96 and −2; �⁄ = −1.96. 

2.4 Statistical Significance and Accuracy 

The Root Mean Square Error (RMSE) is a typical accuracy 

measure used in SR experiments. Its relation with R��, a typical 

metric of fitness in cross-sectional econometrics that linearly 

penalizes by addition of non-statistically significant regressors 

with |	)789| < 1.00, is given by: 

 

R�� = 1 − C ��RMSE��
�� − ������ − ���G H1 +

�
� − � − 1I (5) 
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with �� the average of �. By (5), it is concluded that the RMSE 

minimization implies R�� maximization, maintaining others factors 

constant. 

It is stated in [9] that R�� will increase if, and only if, |	)789| >1.00  in a two-sided HT for �� , with null and alternative 

hypothesis, test statistics and decision criteria stated as before. 

EGP uses this mathematical proof to increase accuracy of its 

individuals by statistical significance, while simultaneously 

controlling bloat. To achieve fitness improvement with statistical 

significance, EGP uses 1.96 as threshold in HT instead of 1.00. 

3 ECONOMETRIC GENETIC 

PROGRAMMING 

EGP evolves models in format of (1) through GP, which is 

responsible for model selection. GP is mainly based in 

configuration presented in [15], as well as EGP parameters. 

3.1 Representation 

Individuals / programs / regressions / models are multigenic. Any 

constant in any program comes from LS in (2), i.e. there are no 

ephemeral constants. The terminal set, namely Ω , is purely 

composed by variables. The primitive set, namely ϑ, is composed 

just by variables and operations of sum and multiplication, due (1) 

format. 

3.2 Initial Population 

EGP uses a probabilistic version of ramped half-and-half method. 

Fig. 2 shows a possible individual generated by EGP. 

 
Figure 2: A possible individual generated by EGP. 

 

Set Ω is composed by K  features (independent variables). Every 

individual has its own set of regressors, forming its own � , 

composed by simple or combined elements of Ω. As an example, 

it is possible that L� , LML���  and LMLNLO  are regressors of a 

particular individual, formed by features L�, LM, LN, LO and L��. 

3.3 Accuracy 

RMSE is the objective function. The R�� is just used to compare 

models. Ideally, R��  would be the objective function, but some 

issues, principally when � > �, makes it little suitable in practice. 

To calculate accuracy in an EGP individual, the one showed 

in Fig. 2 needs to be transformed into a model like 	
� = �	 + � . Then, EGP will solve 	�  for P	� = ��LQ +��LRL�� + �ML�SL�T. If any of the regressors are not statistically 

significant, they will be removed from 	
� = �	 + �. In sequence, 	� is recalculated just with statistically 

significant regressors. RMSE is finally calculated using 	�  after 

these steps. This routine is traditional in econometric studies, 

ensuring statistical significance over a determined significance 

level = , and that is the way EGP performs feature selection. 

Modifications described are necessary just for accuracy 

calculation, therefore individuals will keep their multigene 

structure to mutation, crossover and elitism. 

EGP is not a kind of stepwise regression, because it does not 

build a model sequentially, variable by variable, as described in 

[20]: “(Forward) Stepwise regression builds a model sequentially, 

adding one variable at a time. At each step, it identifies the best 

variable to include in the active set, and then updates the least 

squares fit to include all the active variables.” 

EGP does not estimate on genes, just on regressors, by two 

main reasons: possible multicollinearity problem, interfering on 

HT for �� , and lack of interpretation for �*� when it is related to a 

gene. 

3.4 Selection 

Tournament selection with �U7VW� = 7  and repetitions allowed, 

with a variation on lexicographic parsimony pressure of [16], is 

used. Individuals with a large number of statistically significant 

regressors will be preferred over others with a few number, in the 

same range of fitness. Therefore, EGP is parsimonious in its 

nature, because it avoids the individuals with a large amount of 

introns (in this case, non statistically significant regressors). 

3.5 Mutation, Crossover and Elitism 

Types of mutation used: traditional mutation proposed by [4] and 

mutation by regressors’ substitution. Types of crossover used: 

intergenic and intragenic crossovers. Mutation and crossover rates 

vary through evolution following automatic adaptation of 

operators as described in [17]. Elitism rate is settled to 5% of 

individuals by generation. 

3.6 Tools and Parameters 

EGP is implemented through a modification on GPTIPS, a Matlab 

toolbox, presented in [18]. Information on EGP parameters are 

shown in Table 1. 
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Table 1: EGP Parameters 

Parameters  

- Population size 150. 

- Generations 50. 

- Maximum gene Depth 5. 

- Maximum number of genes by individual 5. 

- Probability of traditional mutation [4] 95%. 

- Probability of intragenic crossover 50%. 

4 EXPERIMENTS AND RESULTS 

Table 2 presents the results. The training set contains 70% of the 

data samples. Results for EGP (“EGP-Regression” in the table) 

are the average of 50 runs for best individuals. EGP is carefully 

constructed considering econometric theory on cross-sectional 

datasets and thus needs cross-sectional datasets to be tested. Time 

series datasets are largely available, while the same is not true for 

cross-sectional datasets. Considering availability and the quality 

of datasets, the following ones have been chosen to compare EGP 

with traditional feature-selection econometric algorithms: 

“Concrete Compressive Strength”; “Housing” and “Airfoil Self-

Noise (Nasa)”. All information on datasets can be found in UCI 

Machine Learning Repository [19]. 

Table 2: EGP and traditional feature-selection econometric 

algorithms 

 
 

The main reason EGP outperforms traditional econometric 

feature-selection methods is its capability to explore the 

regressors’ and models’ search space. The number of regressors 

for each of the algorithms shows it. Partial Least Squares 

Regression, Ridge Regression and Stepwise Forward Regression 

have at most 8, 13, and 5 regressors, respectively, in its generated 

regressions for each dataset. For Housing Dataset, as an example, 

EGP generates models with 50 statistically significant regressors 

or more. EGP explores non-linearity of features, by multiplying 

different features, maintaining models with linear structure. 

5 CONCLUSION 

EGP was successful in achieving its objective of generating high 

accuracy regressions with potential interpretability of parameters. 

Feature and model selection performed well, when comparing 

with traditional methods, as previously shown in the results. 

Statistical significance proved to be a powerful feature selection 

tool, directly and efficiently identifying introns and controlling 

bloat. 

REFERENCES 
[1] A.M. Legendre, 1805. Nouvelles méthodes pour la détermination des orbites 

des comètes, Firmin Didot Commun. Firmin Didot, Paris. 
[2] C.F. Gauss, 1809. Theoria Motus Corporum Coelestium in Sectionibus Conicis 

Solem Ambientum. 
[3] J. W. Davidson, D. Savic, and G. A.Walters. 1999. Method for the 

identification of explicit polynomial formulae for the friction in turbulent pipe 
flow. Comm. Journal of Hydroinformatics 1, 2 (1999), 115–126. 

[4] J. R. Koza. 1992. Genetic Programming: On the Programming of Computers 

by Means of Natural Selection (Complex Adaptive Systems) (1st. ed.). The MIT 
Press. 

[5] I. Arnaldo, K. Krawiec, and U.-M. O’Reilly. 2014. Multiple regression genetic 
programming In Proceedings of the 2014 Conference on Genetic and 

Evolutionary Computation (GECCO’14). ACM, New York, NY, USA, 879–
886. 

[6] J. W. Davidson, D. Savic, and G. A.Walters. 2003. Symbolic and numerical 
regression: experiments and applications. Comm. Information Sciences 150,  1-
2 (2003), 95–117. 

[7] O. Giustolisi, and D. Savic. 2006. A symbolic data-driven technique based on 
evolutionary polynomial regression. Comm. Journal of Hydroinformatics 8, 3 
(2006), 207-222. 

[8] A. L. F. Novaes, R. Tanscheit, and D. M. Dias. 2016. Programação Genética 
Econométrica Aplicada a Problemas de Regressão em Conjuntos de Dados 
Seccionais. In Proceedings of XIII Encontro Nacional de Inteligência Artificial 
(ENIAC’16). Recife, PE. 

[9] J. Wooldridge. 2009. Introductory Econometrics: A Modern Approach (4 ed.). 
Cengage Learning. 

[10] R. Davidson, and J. MacKinnon. 1993. Estimation and Inference in 

Econometrics (1 ed.). Oxford University Press. 
[11] J. M. Chambers. 1977. Computational Methods for Data Analysis (Probability 

& Mathematical Statistics) (1 ed.). John Wiley & Sons, New York. 
[12] J. H. Maindonald. 1984. Statistical Computation (1 ed.). Wiley, New York. 
[13] V. V. De Melo. 2014. Kaizen programming. In Proceedings of the 2014 

Conference on Genetic and Evolutionary Computation (GECCO’14). ACM, 
New York, NY, USA, 895–902. 

[14] A. L. F. Novaes. 2015. Programação Genética Econométrica: uma Nova 

Abordagem para Problemas de Regressão e Classificação em Conjuntos de 

Dados Seccionais. Master’s thesis. Pontifícia Universidade Católica do Rio de 
Janeiro (PUC-Rio), Rio de Janeiro, Brazil. 

[15] R. Poli, W. B. Langdon, and N. F. McPhee. 2008. A Field Guide to Genetic 

Programming (1 ed.). Lulu Enterprises, United Kingdom. 
[16] S. Luke, and L. Panait. 2002. Lexicographic parsimony pressure. In 

Proceedings of the 2002 Conference on Genetic and Evolutionary Computation 
(GECCO’02). ACM, San Francisco, CA, 829–836. 

[17] S. Silva, and J. Almeida. 2003. Gplab – a genetic programming toolbox for 
matlab. In Proceedings of the Nordic MATLAB conference. 273–278. 

[18] D. P. Searson, D.E. Leahy, and M. J. Willis. 2010. GPTIPS: an open source 
genetic programming toolbox for multigene symbolic regression. In 
Proceedings of The International Multiconference of Engineers and Computer 

Scientists 2010 (IMECS’10). Hong Kong,, 77–80. 
[19] UCI Machine Learning Repository, http://archive.ics.uci.edu/ml, last accessed 

2015/02/24, University of California, School of Information and Computer 
Science, Irvine, CA. 

[20] T. Hastie, R. Tibshirani, and J. Friedman. 2011. The Elements of Statistical 

Learning: Data Mining, Inference, and Prediction (2 ed.). Springer. 
 

1430


