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1 INTRODUCTION
The application of evolutionary robotics [1] to swarm robotics
gives evolutionary swarm robotics [8]. The evolution or learning
of multi-agent behaviors is known to be challenging [7]. Hence,
new approaches still need to be explored. Examples are innovative
methods to explore environment-driven, distributed evolution [2, 4].
Here, we are inspired to evolve collective behaviors following a
mathematical framework by Friston et al. [3], which de�nes an
information-theoretic analogon to thermodynamic (Helmholtz) free
energy. This free energy is basically an error in the predictions that
our brain makes about our environment. Evolution is related by the
rationale that minimal prediction errors are achieved by limiting
an agent’s reactions to sensory input. This results, in turn, in better
adapted behaviors: “By sampling [. . . ] the environment selectively
they restrict their exchange with it within bounds that preserve
their physical integrity and allow them to last longer” [3]. The pre-
viously investigated evolution of swarm behaviors by minimizing
surprisal [5, 6, 9] is subject to this study. Previous studies were lim-
ited to arti�cial 1-d environments, here, we report �rst results for
2-d. Although adding one dimension may seem a minor step, there
are qualitative changes in the emergent behaviors (e.g., �ocking is
a collective decision with in�nitely many options) and the future
transition to real robots will be easier starting from 2-d.

2 IMPLEMENTATION
Our approach to let robots predict their sensory input is realized
with 2 arti�cial neural networks (ANN) for each robot (Fig. 1) with
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(a) action network (b) prediction network

Figure 1: Controller for the �rst sensor model

(a) 2 discrete touch sensors (b) 4 discrete touch sensors

Figure 2: Sensor models 1 and 2

sensor model 1 (Fig. 2a). Sensor model 2 (Fig. 2b) has corresponding
ANN. The action network implements the actual controller whereas
the prediction network tries to forecast the sensory input of the
next time step. Both ANN have the same input: all sensor readings
and their last action value. The action value implements an action
selection that switches between straight motion with speed v or
rotation with angular speed w on the spot and increases the proba-
bility of observing stationary behaviors. Sensors are discrete touch
sensors (1 for contact, 0 for no robot). The robot swarms are homo-
geneous, that is, we have 2 populations: a population of genomes
encoding ANN and a homogeneous population of simulated robots.
In an evaluation, all robots share identical genomes. The �tness
function

fд =
1
NT

T∑
t

N∑
n

S∑
i
1 − |pn,i (t ) − sn,i (t ) |, (1)

encourages to minimize surprise. The �tness fд of a genome д ∈ G
with |G | = 50 is calculated for S sensors, sn,i (t ) is sensor value of
sensor i of robotn at time step t ,pn,i (t ) is the prediction for sensor i ,
N ∈ {25, 50, 75, 100} is swarm size, and T = 2000 is the number of
time steps. The theoretical best �tness is f max

д = S . We evolve for
100 generations. The environment is implemented as a 2-d torus to
emulate an in�nite space. This way we avoid wall e�ects that may
complicate behaviors such as �ocking. The simulation software is
available online1.
1https://github.com/ribork/thesis-code
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3 RESULTS
Fig. 3a shows the population’s �tness over generations of a selected
experiment. The �tness increases about until generation 50 and then
saturates. The �tness only rewards correct predictions, hence we
need an additional analysis to classify behaviors. We use the action
value to detect interesting behaviors in the populations (amount of
forward motion vs rotation, Fig. 3b). Genomes producing behaviors
with a median action value excluding 0 and 1 are indicating reac-
tive behaviors. Within these genomes we identify basic collective
behaviors, such as aggregation (in 2 variations), �ocking, and cir-
cling dispersion. Aggregation occurs either with stopped robots2 or
with circling robots3, where robots form rotating clusters (Fig. 4a).
Flocking emerged for lower swarm densities where less interactions
occur (Fig. 4c). The �ocking behaviors show good scalability with
an increasing transient time for higher swarm densities4. Using
sensor model 1, dispersion behaviors are based on motion (Fig. 4b).
Robots move in circles and adjust their distances by short stops
based on detecting robots5. In an early test of whether we can in�u-
ence the emergence of certain behaviors, we tried to bias towards
dispersion with less motion. We introduce that bias by changing
the sensor model. We create sensor model 2 by adding 2 sensors at
the robot’s back (Fig. 2b, the ANN are adapted accordingly). The
approach is successful, see trajectories in Fig. 4d and the video6

(including tests for scalability and robustness by post-evaluations
with di�erent swarm sizes and obstacles). In preliminary experi-
ments we implemented continuous distance sensors. Then also the
prediction network and the �tness function (eq. 1) operate on con-
tinuous values. The hypothesis was that the evolutionary process
may pro�t from the additional information provided by continu-
ous di�erences. However, continuous sensors combined with the
action-value approach resulted in irregular behaviors.

4 CONCLUSION
We have shown that the ‘evolution of swarm behaviors by minimiz-
ing surprise’ approach is successfully applied to 2-d environments
and that the evolutionary dynamics can be biased by the sensor
models of the robots. In future work, we plan to investigate how
to balance exploration during the evolutionary process with bias
towards desired behaviors. We also want to make the step to exper-
iments with real robots, such as the Kilobots.
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