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ABSTRACT
Evolutionary illumination is a recent technique that allows pro-
ducing many diverse, optimal solutions in a map of manually de-
�ned features. To support the large amount of objective function
evaluations, surrogate model assistance was recently introduced.
Illumination models need to represent many more, diverse optimal
regions than classical surrogate models. In this PhD thesis, we
propose to decompose the sample set, decreasing model complexity,
by hierarchically segmenting the training set according to their
coordinates in feature space. An ensemble of diverse models can
then be trained to serve as a surrogate to illumination.
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1 INTRODUCTION
Computer-automated design was �rst introduced in 1963 by Ka-
mentsky and Liu [14], who created a computer program to design
character recognition logic based on the processing of data samples.
Many applications and methods have since been developed. Today,
optimization of high-dimensional problems, such as in computa-
tional �uid dynamics [8] or robotics [7], can be extremely expensive
in terms of computational e�ort.

To decrease the necessary e�ort to optimize an expensive objec-
tive function, approximative models are used to serve as a surrogate
for these simulations. Surrogate-assisted optimization (SAO) is a
technique which, supported by models from machine or statistical
learning, is typically used when the objective function is complex,
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data is scarce or evaluation of potential solutions is expensive. A sur-
rogate model only needs to learn an approximation of the objective
function, also called the response surface, close to optimal solutions.
In evolutionary optimization (EO) speci�cally, the approximation
accuracy requirement devolves to a ranking accuracy requirement.
�e model only needs to accurately compare solutions.

�e necessary number of evaluations can be further reduced by
using Bayesian optimization (BO) [5]. �e technique uses a prior
over the objective function and evidence from known samples to
select the best next observation based on a utility function, also
called an acquisition function. �is function balances exploration,
sampling from uncertain areas, and exploitation, choosing samples
that are most likely to perform well.

Both techniques, surrogate-assistance and the acquisition func-
tion, are used for data e�cient learning. In this paradigm, learning
requires a modeling technique that can not only accurately predict
the objective function, but also estimate its prediction con�dence.

SAO is used to �nd a single solution, or a Pareto front of solutions
in multi-objective optimization. To �nd more interesting designs or
design principles, illumination algorithms, introduced by Mouret et
al. [17], are used to explore the relationship between user-de�ned
features and the maximal performance. For example, if an engineer
wants to design a car, the relationship between the volume of the
car’s luggage space and its turning radius can be illuminated. �e
engineer can use this feature relationship as a basis for design
decisions. �e method needs many evaluations of the objective
function, which can be greatly reduced using surrogate-assisted
illumination (SAIL), which was introduced by Gaier et al. [9].

2 SURROGATE-ASSISTED OPTIMIZATION
�e SAO process is depicted in Figure 1. Initial training of the sur-
rogate model is performed on a small training set, which is evenly
spread over parameter space. �e expensive objective function is
used to retrieve samples’ �tness value. �en, a surrogate model is
created based on the initial sample set.
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Figure 1: Surrogate assisted optimization.

�e surrogate model is updated in an online fashion. �e op-
timization is used to explore the model for optimal solutions. In
Bayesian optimization, to acquire new samples, the model’s con-
�dence about its prediction is included. A common acquisition
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function is upper con�dence bound (UCB) sampling [1]. �e uncer-
tainty of the model is added to the predicted �tness to overestimate
the solution’s performance. �e weighting of �tness and con�dence
controls the exploratory and exploitative behavior of the optimizer.
�is helps lowering regret: even if the sample is not of high �tness,
the model bene�ts from this additional knowledge.

Because Gaussian process regression (GPR) models are e�ective
with small sample sets and include an uncertainty measure, they
are o�en used in optimization [5, 7–9, 13, 20]. A GPR describes a
random distribution of functions which are de�ned by the mean
function m and the covariance function k. GPR models are inter-
polative. �e predicted value depends on the proximity to a known
sample and its value, which is de�ned by the covariance function.

Optimization performance does not depend on the surrogate
model’s prediction accuracy alone. Depending on the chosen op-
timization technique, over��ing of the surrogate model can have
an adverse e�ect on the convergence speed of the optimizer. As
can be seen in Figure 2, in gradient based approaches, a model
which does not �t the data perfectly can o�er a smoother, easier
traversable response surface, a phenomenon also called the blessing
of uncertainty, which is described in work by Ong et al. [18]. �e
same is valid in EO but to a lesser degree. Even though EO only
depends on rank comparisons between solutions, they still depend
on a virtual gradient, which is induced by the fact that solutions
are only mutated in small steps. Local optima can still lead the
algorithm into traps, leading to longer convergence times [18].

EO have shown to be be�er at divergent search than classical,
gradient-based approaches [6]. Whereas exploitation of existing
knowledge to improve solutions is an aspect that is central to both
�elds, many EO techniques exist that focus on exploration of the
solution space, also known as novelty search. All techniques bene�t
from surrogate models that are not too accurate, creating a smoother
objective function for the optimizer.

Target BANN GPR

Figure 2: It is easier to �nd the global minimum of the objec-
tive function (le�) in the smoother surrogatemodel (middle)
than in the more accurate one (right).

3 SURROGATE ASSISTED ILLUMINATION
In recent work, Mouret and Clune introduced a new divergent
optimization technique, Multi-dimensional Archive of Phenotypic
Elites (MAP-Elites), which can illuminate the relationship between
features and their impact on optimal solutions [17]. �e technique
is a mixture of optimization and novelty search. Solutions are
mapped from their high-dimensional parameter space onto a low-
dimensional map of features (Figure 3). �e space is discretized into
niches in which individuals are similar with respect to the features.

To initialize MAP-Elites, a set of random solutions is �rst evalu-
ated and assigned to bins. If a bin is empty, the solution is placed
inside. If another solution is already occupying the bin, the new

solution replaces it if it has a higher �tness, otherwise it is discarded.
As a result, each bin contains the best solution found so far (elite).
To produce new solutions, parents are chosen randomly from the
elites, then mutated and evaluated, and �nally assigned to a bin
based on their feature values. Child solutions have two ways of
joining the breeding pool, either by discovering an unoccupied bin
or out-competing an existing solution for its bin. By repeating this
process, the feature space gets increasingly explored, resulting in
an increasingly optimal collection of solutions.

�e technique allows engineers to generate a large number of
optimal solutions that can be used to easily switch strategies in ro-
botics control [7] or model the optimal solutions in feature space [9].
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Figure 3: MAP-Elites projects high-dimensional samples
onto a low-dimensional feature map (taken from [17]). �e
surface (right) shows the elites’ objective function values.

SAIL is an extension to this algorithm. Gaier et al. [9] use a
GPR model to support the illumination process by UCB sampling
to add knowledge to the surrogate model during optimization. �e
GPR model needs to predict the objective function based on all 11
dimensions of the parameter space. In the evaluation case that was
de�ned, optimization of a 2D airfoil, the number of dimensions and
samples is not very large. When optimizing 3D shapes however,
the dimensionality can easily go up to 88 or 96 dimensions [4, 11].

4 DEFICITS
In many aspects, SAIL is similar to SAO. Both are online methods
that require a retrainable model. �ey can both bene�t from smooth
models that annotate their prediction with a con�dence interval.
In both cases, the amount of samples needed for an accurate model
should be minimal, as evaluations are usually expensive.

On top of this, SAIL needs millions of comparisons, depending
on the map’s resolution, many more than most SAO methods. In
SAO, the training of the surrogate is o�en more expensive than
evaluation, but since SAIL needs to evaluate the model more o�en,
models with low evaluation times are bene�cial to the computa-
tional requirements of the optimization process.

Another di�erence is the fact that SAIL is divergent and �nds
many, diverse optima. Locally accurate surrogate models could be
too expensive to accurately model for example the optimal regions
for 64x64 bins. In this case, 4096 local models would have to be
trained. Also, since the diversity of the training set is high and bins
are de�ned by non-linear features, the optimal regions within the
bins do not necessarily belong to a continuous optimal region in the
objective function (Figure 4). In this simpli�ed example, notice that
samples belonging to the same bin can belong to di�erent regions
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in parameter space. Within each bin, the surrogate model only
needs to be accurate towards the more optimal solutions, but this
region can consist of solutions from multiple regions in parameter
space. A single surrogate model would have to learn the high-order
polynomial (green), although for rank comparisons in illumination
it can be su�cient to learn linear trend lines (gray).
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Figure 4: Le�: parameter space and objective function for
surrogate model. Right: map produced by non-linear fea-
ture transformation.

Training a global model that approximates the entire objective
function is not feasible in optimization, as samples are expensive
and we will not be able to create su�cient samples to train such
a high-dimensional model. A contradiction seems to have opened
up. On one hand, in order to have models that allow comparing all
individuals in a bin, a local model could be trained that specializes
on this task. On the other hand, tractability will be lost if every
bin gets its own local model. We therefore need to train models
that are more general than local surrogates but less complex than
global models, placing illumination surrogates between the two
techniques in terms of accuracy and e�ciency (Figure 5). �is
surrogate technique needs to be accurate for larger and more diverse
regions of the input space and we expect it to be less resource
e�cient, when compared to local models.
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Figure 5: Trade-o� between accuracy and resource e�-
ciency [13].

SAIL will push GPR to its limits in terms of computational com-
plexity when applied to real world problems. Training complexity
is O (n3) (n = number of samples) for training and O (n2) for pre-
diction [19]. Optimized versions exist, reducing the complexity
to O (m2n) for training and O (m2) for prediction by reducing the
number of interpolation points usingm pseudo-inputs [21].

Ensemble methods, like bootstrapped arti�cial neural networks
(BANN) [3], can provide con�dence measures as well, by training a
homogeneous set of models. �e ensemble’s prediction is calculated

by taking the mean of all its members. A con�dence measure is
obtained by evaluating the variation in member predictions.

We compared GPR with BANN1 using a hill climber to optimize
a 1D Ackley function. �e hill climber was initialized from 10 �xed
equidistant starting locations in every run in order to show how a
naive optimization algorithm would perform from any starting po-
sition. �e experiment was replicated 100 times. Figure 6 shows all
optima that were found. Although the GPR-assisted runs converge
quicker than the BANN, most runs do not reach the global optimum.
�e median and variance of the discovered minima is much larger
than the ones found using BANN-assisted hill climbing. �is is due
to the much smoother BANN model (Figure 2). GPR-assisted illumi-
nation might not bene�t as much from the blessing of uncertainty
as do more global models like arti�cial neural networks (ANN).
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Figure 6: Comparison of surrogates assisting hill climber.

5 PROPOSAL
In order to support illuminating a high-dimensional search space,
we propose to segment the objective function into simpler func-
tions, along the same feature dimensions used by the illumination
algorithm. �is decomposition can simplify the modeling process,
by allowing the optimal region in a bin, which can be disparate in
parameter space, to be approximated by lower complexity models.

0 5 10 15 -40 -20 0 20 40
Relative change in MSE [%]Dimensions used

Feature 1

Feature 2 Feature 2

Figure 7: Dimensionality reduction and changes in model-
ing errors on airfoil optimization map.

Figure 7 shows a preliminary result on modeling 2D airfoils,
produced by MAP-Elites. �e airfoils are de�ned by 15 parameters,
typical airfoil features are used for the map, and the objective func-
tion is the aerodynamic drag coe�cient of the airfoils. �e sample
set is segmented using unbiased k-means. �e dimensionality in
every segment is reduced using principal component analysis and
1trained with Levenberg-Marquardt [15]
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dimensions which explain less than 1% of total variation removed.
ANN surrogates are trained to predict the drag coe�cient. �e
segmentation leads to a varying dimensionality reduction (le�) in
all segments. In many segments, the error, compared to the error
of a �at model trained on all samples, is reduced as well. Various
segmentation methods will be evaluated.

Hypothesis 1. Using segmentation of training samples in feature
space, decomposing the problem of modeling the objective function
can lead to dimensionality reduction, simplifying training.

Using separate surrogates for all training set segments might be
too naive, as some bins could be described by the same model and
some bins might need complex models that cannot be trained with
only a small amount of samples. By using a hierarchical decompo-
sition, we can create more general models, those that are trained
on large, continuous regions of the �tness space, as well as more
specialized models, reusing samples in many ways. �is idea is
borrowed from deep learning and other hierarchical approaches in
computer vision [2]. Figure 8 shows how a hierarchical decomposi-
tion of the map could be directly mapped onto a surrogate model
structure. In the example above (Figure 7), every submodel on layer
n is connected to their parent models using residual coupling [12]:
models are trained to predict the discrepancy between the parent
model and samples’ true values.

general

specialist
models

feature map
model

segmentation

Figure 8: Hierarchical decomposition of feature map with
accompanying hierarchical surrogate model.

An open question is whether to use a direct coupling between
models, or to separately train models on various-sized sample sub-
sets. In SAO and SAIL, training models is relatively cheap, because
we do not have many samples. We are also willing to invest some
time to reduce the amount of necessary real �tness evaluations.
By training models on many subsets of the training data, we can
maximize model diversity. We can use these diverse models to cre-
ate a (hierarchical) ensemble, similar to bagging, whereby multiple
models are trained to decrease the total prediction variance [3].
Gu [10] showed that diverse, heterogeneous ensembles o�en show a
signi�cantly higher accuracy than the base classi�ers on their own.

Hypothesis 2. Hierarchical decomposition of training samples can
be used to train a diverse ensemble of surrogate models, allowing
us to learn complex structure by using many shallow models.

�e large set of diverse models can be used to extract con�dence
intervals, but it is unclear how to combine the predictions from
ensemble members in a hierarchy. Whereas in normal ensemble
learning we can straightforwardly look at the prediction variance
over all members to construct con�dence intervals, this might not be
the best option for hierarchical ensembles. Specialist members are
expected to be more accurate than the more general models. We can

therefore make a more informed weighting of models’ prediction,
pu�ing di�erent con�dence to di�erent layers of the hierarchy.
Hypothesis 3. Con�dence can be determined from a model hier-
archy in a more informed way than direct variance estimation.

�e working hypotheses do not include a speci�c modeling
technique. In order to evaluate them, we will look at three main
techniques: backpropagation training (Levenberg-Marquardt), GPR
models and neuroevolution. In the la�er case, by training a diverse,
large number of ANNs on hierarchical training segments, we mimic
the mini-batch training method that was introduced by Morse
et al. [16]. �is technique showed that neuroevolution can rival
stochastic gradient descent training on large training problems.

We aim to increase the surrogate’s accuracy and the diversity of
illuminated solutions in a data e�cient learning context by using
hierarchical surrogate models. By combining hierarchical surrogate
modeling and ensemble techniques, we reuse samples in multiple
ways, increasing the probability that an accurate surrogate is found.
We further reduce illumination convergence time by using smoother
surrogate models. Finally, we hope to contribute a data e�cient
model which can be used in SAO, as well as in SAIL.
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