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ABSTRACT
We describe a small, simple, and lightweight microframework for
the Genetic Improvement of Java code. We call the framework
“GI in no time”, or “Gin”. Gin is designed to be a straightforward,
hackable, GI tool for Java. It currently lacks large features found
in comparable program repair tools, but nonetheless it is capable
of performing optimisation of a Java class via local search. We
hope that providing this contribution will encourage researchers to
collaborate on GI tool development, whilst lowering the barrier to
entry for those interested in experimenting with GI. It is intended to
serve both as a toolkit to be extended, and also an example of how
GI can be implemented. We discuss some of the design principles
behind Gin, and outline observations made during its development.
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1 INTRODUCTION
Genetic Improvement is still a young �eld, and the tools available
to researchers are limited. �e area of program repair is quite well-
served by a number of frameworks [4, 6], but tools for canonical
o�ine program optimisation are comparively scarce, with a few
notable exceptions such as Langdon’s GISMOE and Schulte’s GOA
[3, 5]. To encourage collaboration in �lling this niche, we have
constructed the �rst iteration of a very simple and minimal GI
framework, called “GI in No time” or “Gin”. Gin is designed to
be used in a white-box manner: using it requires modifying its
source code. Gin is implemented in Java, and optimises Java code.
It contains less than 400 lines of Java code and four major classes.
We achieve this very small footprint by leveraging two popular
libraries: we parse code using JavaParser [7] and evaluate patches
using JUnit [2]; we delegate most of the hard work to those libraries.
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We release the code under the permissive MIT license and we
encourage reuse, forking, extension, issue reports, feature requests,
and pull requests. We hope that Gin will be of use in creating
simple experiments for teaching and research. Gin is available at
h�ps://github.com/drdrwhite/gin.

2 DESIGN
To drive the design of Gin, we proposed two use cases: the in-
vocation of a local search from the commandline, and the same
invocation in a programmatic manner. �e goal was to simplify
these invocations as much as possible.

In both cases, we considered only the optimisation of a single
class �le, and correspondingly a single JUnit test �le. We perform
optimisation at the statement level, although new edit types could
easily be added to Gin. Generalising the system to multiple �les
should only require a modest amount of work. �e main focus
of Gin is to minimise the amount of e�ort needed, in terms of
time spent studying the system, or lines of code to perform the
above. A further goal, more di�cult to measure, was to make the
entire framework intuitive so that it can be fully understood by a
newcomer in the minimum amount of time possible.

We achieve this minimalism by leveraging two popular libraries:
the JavaParser library [7], which presents a very simple interface
to Java parsing, and the JUnit unit test library [2], which allows us
to test candidates solutions with minimal e�ort. We also choose
to deliberate violate some principles of good practice in design,
such as reducing abstraction, repeating code, avoiding unnecessary
inheritance, and implementing “heavyweight” constructors that
complete several substantial tasks. We avoid caching data where
it would reduce readability. In making any design decision, the
solution that reduced the complexity of the framework was taken.

�e system class diagram is given in Figure 1. �ere is no central
class, rather we anticipate all usage to be through modifying the
code, based on the provided example search class as a reference.
No parameter �le system is used: parameters are hardcoded, and
sensible defaults are chosen. A user should tweak these parameters
or parameterise the system depending on their intended usage.

2.1 Gin Classes
We describe all of the functionality of the main Gin classes.

Program encapsulates the original source �le, and parses it with
JavaParser to create a CompilationUnit. �is holds the original
source, structured by nodes in the Java grammar. Program also
counts the number of statements in the code, so that the potential
points of insertion and change are known.

Patch contains a sequence of edits. Separation of concerns is
violated: the Patch class is aware of the possible types of edit,
and is responsible for applying them, improving the readability of
the code. It also creates random patches for a program. �e edits
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Figure 1: Complete Class Diagram for the Gin System

supported by default are those commonly found in GI applications:
deletion, removal, and copying of statements.

Tester places the modi�ed source and accompanying JUnit test
class in a temporary directory and compiles them. It dynamically
loads the two classes and executes JUnit, whilst reporting the mean
execution time of the test cases over a given number of repetitions.

LocalSearch is an example GI algorithm implemented using
Gin. It generates random patches of up to length ten as neighbours,
and only accepts improving moves that result in a new solution
that passes all test cases whilst reducing execution time.

3 EXAMPLE USAGE
Gin can be invoked via the commandline:
java gin.LocalSearch examples/Example.java

To achieve the same e�ect programatically:
localSearch = new LocalSearch("examples/Example.java");
Patch result = localSearch.search();

4 OBSERVATIONS
During implementation, we came across subtleties that are rarely
discussed. We describe three points of interest here.

4.1 No “Hello World”
Genetic Improvement, particularly non-functional GI, lacks a canon-
ical “Hello World” example. During development, a contrived ex-
ample was used to test the system. �e lack of such an example, as
well as a benchmark suite more generally, make standardisation of
GI systems and empricial comparison of di�erent methods di�cult.
A set of simple optimisation challenges and reference code would
be immensely helpful in developing GI tools.

4.2 Interactions within Patch Sequences
Most GI work uses a combination of line deletion, copying, and
replacement. Gin allows for the deletion of any statement, at multi-
ple levels of abstraction (it may delete an entire method body, for

example, as well as a single statement in the else branch of an if
expression), and it allows for insertion of code before any individ-
ual statement contained within a block statement, both through
copying and moving existing code. We do not implement a “replace”
operator, as Java imposes more constraints on patches than C, the
traditional language of GI, and a replace operator is of less use here.

Applying a sequence of edits to a program involves design de-
cisions that de�ne the structure of the search space. For example,
care must be taken to ensure that deletions occur a�er all copying
of code has taken place; moving code is decomposed into a copy
and a deletion. Furthermore, if two di�erent edits require insertion
at the same point, an ordering dependency exists. Hence adding
a new edit to a patch may impact not only the lines that the edit
changes, but also the e�ect of pre-existing edits. Gin implements
the patching process by building two queues of deletions and inser-
tions, before executing those operations. �is ensures predictable
behaviour, but does not remove ordering dependencies. Addition-
ally, when inserting code at a given location we must consider
whether the code should be inserted before or a�er a statement.

�e nature of the landscape induced by the patch representation
needs to be studied carefully. Certainly representations exist that
do not su�er from this particular �aw: the direct manipulation of
the abstract syntax tree is one (suboptimal) example.

4.3 Hidden Language Assumptions
Most work in GI has tended to focus on C code. When implementing
GI for the Java language, it became apparent that manipulating
lines of code does not translate well to Java. Java �les can include
multiple type declarations, interfaces, package names, complex
method signatures and a hierarchical structure that is appears to be
more fragile to change than C.�us Ginworks at the statement level
and restricts insertion points to the children of block statements.

Previous work illustrating the robustness of C code may not gen-
eralise to other languages, which use complex language constructs
and large grammars. It may be necessary to reinvent the component
operations that constitute patches to suit the host language.

5 CONCLUSION & FUTUREWORK
�ere are several potential features of immediate interest: handling
multiple class �les and larger projects; full unit testing of the Gin
code; incorporation of pro�ling to guide the search using a library
such as SPF4J [1]. Gin is designed to be an open and ongoing
project. Whether it serves as an example of how to quickly exploit
JavaParser and JUnit, or develops into a general framework, depends
on interest from the research community.
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