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ABSTRACT
�e e�ectiveness of common metaheuristics on combinatorial op-
timisation problems can be limited by certain characteristics of
the �tness landscape. We use the local optima network model to
compress the ‘inherent structure’ of a problem space into a network
whose structure relates to the empirical hardness of the underly-
ing landscape. Monotonic sequences are used on the local optima
networks of a benchmark set of QAP instances (QAPLIB) to expose
landscape funnels. �e results suggest links between features of
these structures and lowered metaheuristic performance.
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1 INTRODUCTION
�e number of local optima in a �tness landscape has long been
linked to search di�culty. Some recent research, however, has
suggested that their global distribution and connectivity might be
more relevant to the performance of certain metaheuristics such as
iterated local search (ILS) [7, 11, 12]. We model �tness landscapes
as networks of local optima - local optima networks (LONs) [16].
�e nodes are the local optima con�gurations, and the edges are
possible transitions between them with a given search operator. �e
study of LONs can reveal valuable information about navigability
of a �tness landscape. If there are sub-networks of local optima
which are densely connected to one another, and yet with sparse
ties to other areas, this could impact optimisation.

In this work, we focus on the nature of landscape funnels. �e
notion of funnels has received a�ention in the combinatorial opti-
misation literature [6, 10, 12], largely because if there are multiple
funnels, ILS in particular can become trapped in them and never
reach the globally optimal solution.
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We expose landscape funnels using monotonic sequences, which
in our context are paths of local minima with only improving or
equal (in objective value) moves between them [13]. A LON can
be trimmed to retain only local optima links that lead to a be�er
solution — or one with the same �tness — and funnels can subse-
quently be identi�ed. �is is done by �rst looking for the end of
the funnels, which are the local optima with no outgoing links le�.
�ese nodes have no links to higher-quality solutions and they are
at the end of a monotonically descending sequence of local minima.

If there is only one such node, this would mean the underlying
landscape’s global structure conforms to the so-called ‘big valley’
phenomenon, and the sole funnel bo�om would be the global op-
timum. �is distribution of local minima means that the coarse-
grained trajectory of a local search naturally leads to optimality. If,
however, there is more than one, a more complex picture emerges.
If even one sub-optimal funnel is present, local search could get
trapped there.

In this work, we use the �adratic Assignment Problem Library
(QAPLIB) [2]. QAPLIB is a well-studied benchmark set of QAP
instances. �e problem classes vary from random uniform to oc-
currences from real life. Because the prevalence of multiple funnels
in combinatorial landscapes is not yet known, the QAPLIB is an
interesting test-bed for funnel analysis because of the diversity
of problem class, problem size and landscape ruggedness. �is
variance could potentially mean that �ndings would transfer to
unseen QAP problems. To gain an empirical view of the relation-
ship between the features of landscape funnels in QAPLIB and
metaheuristic ability, ILS and Simulated Annealing (SA) are used.

2 FITNESS LANDSCAPES AS NETWORKS
We �rst de�ne the fundamentals of �tness landscapes. Following
this, the local optima network model which we use to examine the
underlying landscape connectivity is described.

2.1 Preliminaries
A �tness landscape [15] is a triplet {S,V , f } where S is the set of
all possible solutions, V : S −→ 2 |S | , a neighbourhood structure, is
a function that assigns to every s ∈ S a set of neighbours V (s), and
f is a �tness (objective value) function such that f : S −→ R, where
the �tness value is a real number that can be viewed as the heiдht
of a given solution in the landscape.

In the QAP, a solution is encoded as a permutation of the set
{1, 2, ...,n}. A con�guration, S, is considered to be a neighbour of
another solution S ′ if a pairwise exchange in S can result in S ′.
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2.2 Local Optima Networks
Before de�ning the local optima network model, we �rst articulate
the components.

Nodes. A locally optimal solution, lo, has superior �tness to all
its neighbouring solutions. Formally, ∀s ∈ V (lo), f (s) ≥ f (lo) for
a minimisation problem such as the QAP. �e nodes in an optima
network, LO , are the set of local optima. In this work, due to the
large search spaces the nodes and edges of the LONs are obtained
through the sampling process described in [9].

Escape edges. �e edges in the network represent potential ‘es-
capes’ from one local optimum to another. �ese links are char-
acterised by two parameters: a representation-speci�c measure of
distance between two con�gurations, d , and an integer, D, which is
the permi�ed number of escape moves between two local optima
in order for an edge to be traced between them. Formally, there
exists a link ei j between the local optima loi and loj if ∃ s ∈ S where
d(s, loi ) ≤ D and s is a solution which — following hill-climbing
— converges to the local optimum loj . In the present study, d is
a pairwise exchange in the permutation and D is set at two. We
denote the full set of edges in the network as E. �ese links are
weighted with the probability of that escape move.

Local optima network (LON). We can now de�ne the weighted,
directed local optima network (LON) as a graph which has the set
of local optima LO as nodes, and a set of links, E, traced between
optima if the weight, wi j , of the edge, ei j , is greater than zero, i.e.
if it’s possible to ‘escape’ from the source local minimum to the
destination.

2.3 Funnel Detection with Monotonic
Sequences

We take advantage of the level of abstraction LONs provide to �nd
funnels — which are essentially higher-level basins of a�raction —
in the con�guration space. In this work, we de�ne a funnel as being
‘a region of con�guration space that can be described in terms of
a set of downhill pathways that converge on a single low-energy
structure or a set of closely-related low-energy structures’[4]. In our
context, the landscape funnels are sequences of local optima that
form downhill paths converging to a local optimum, which itself has
no possible transitions to a be�er solution. Another name for a path
of local minima such as this is a monotonic sequence [1]. We extract
monotonic sequences from the LONs of QAPLIB instances as a case
study, to identify trajectory paths that lead to the same end point.
Doing this allows us to �nd landscape ‘traps’ which could lower
search performance. With the sampled local optima networks [9],
we prune o� any edges which are deteriorating in �tness. �erefore,
what is le� are monotonic sequences of local minima which can be
seen as the ‘backbone’ of the �tness landscape. Note that neutral
links are retained. �is is dealt with by the compression of sets
of local minima who have equal �tness (and are connected) into a
single node.

Monotonic Edges. �e set of monotonic edges are LON escape
edges, and therefore characterized by the two parameters d and
D. �ese edges are all equal or improving in nature, i.e. they are
directed from a worse-�tness optimum to either a be�er-�tness

one or one equal in �tness. Speci�cally, a monotonic edge ei j
exists between loi and loi if f (loi ) ≥ f (loj ) and if ∃s ∈ S where
d(s, loi ) ≤ D and s is a solution that — following hill-climbing —
converges to the local optimum loj .

Monotonic Local Optima Network (M-LON). A directed, weighted
local optima network with the set of local optima as the vertices,
and the set of links being non-deteriorating �tness moves between
them.

M-LON plateau. A group of local optima with equal �tness which
are connected to one another in the M-LON. In other words, a
neutral network at the LON level instead of at the solution level.

Compressed LON nodes. Nodes which form a M-LON plateau
being compressed into a single node. �e set of vertices in the
compressed LON is the set of compressed nodes, with some nodes
only forming a LON plateau of size one.

Compressed Monotonic Local Optima Network (CM-LON). A lo-
cal optima network where the vertices are the compressed LON
plateaus — even if they consist of a single local optimum — and
the directed links between them are non-deteriorating in terms of
objective function evaluation. �e links are weighted by the aggre-
gation of links leading out of a compressed plateau node, resulting
in a single link. From the CM-LON, we can proceed to extract
monotonic sequences and subsequently identify funnels in the un-
derlying �tness landscape. A crucial part of a landscape funnel is
its eventual end point. �ese can be seen as the ‘destination’ of a
search algorithm following one of the downhill pathways of local
minima. We can �nd these by looking at our monotonic sequences,
and identifying nodes which have no outgoing links, which means
an algorithm using local search would not be able to make any
improving moves from there. In graph theory, such a node (one
with out-degree zero) is called a sink. We use this terminology to
refer to the end of landscape funnels. Counting the number of sinks
tells us how many funnels we are dealing with.

2.3.1 Modularity. Because we are dealing with networks of
optima, we can take advantage of clustering algorithms to assess
whether the optima form distinct groups. An interesting LON
feature which has been previously studied [7, 9] is called modularity.
Modularity is a measure for how strong — or signi�cant — a network
partition is [5]. In other words, if the network has ‘true’ community
structure, di�erent from a random graph, the modularity should
be high. �is would mean that links are much more dense within
clusters than between them. It’s possible that if clusters of optima
have this property, local search could encounter di�culty trying to
travel between communities.

Figure 1 shows the top 10% highest-quality optima in the LONs of
two seperate QAPLIB instances, with the top 30% heaviest-weighted
edges (most likely paths through the con�guration space) retained
between nodes. Figure 1a shows a LON which had been found to ex-
hibit multiple-funnel structure through the extraction of monotonic
sequences. Conversely, Figure 1b shows an instance which was
discovered to have only one funnel, otherwise known as the ‘big
valley’ global topology. �e globally optimal solutions are shown
in red.
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(a) multiple-funnel instance (b) single-funnel instance

Figure 1: the top 10% of local optima in a multiple-funnel and single-funnel QAPLIB instance LON, respectively. �e global
optima are red in colour and node size is proportional to pagerank centrality. �e multiple-funnel instance original LON had
867 optima, and the single-funnel had 910.

Comparing the two networks, which have a similar number of
local optima, we can see that the multiple-funnel LON is split cleanly
into two isolated components. Conversely, the nodes in the single-
funnel LON are one large connected component. Recalling that
these are the highest-quality optima in the instances — and that only
the most likely paths between them are traced — we can imagine the
implications for local search. Intuitively, the underlying landscape
of Figure 1a should be more di�cult to navigate. Indeed, the success
rates for ILS and SA on this QAPLIB instance were 0.639 and 0.441,
respectively. On the other hand, the landscape corresponding to the
LON in Figure 1b should be less challenging. Fi�ingly, the success
rate for ILS was 0.729 and SA had a proportional success of 0.7.

3 EMPIRICAL SETTING
3.1 Test Problem

�e �adratic Assignment Problem (QAP) Library (QAPLIB). �e
�adratic Assignment Problem (QAP) is one of the most widely-
known combinatorial optimisation problems. Solutions are encoded
permutations assigning a series of n facilities to n locations. Each
facility and location pair have a distance, di j , and a �ow, fi j be-
tween them. �e objective function is the cost of the product of
the �ows and the distances, making it a minimization problem [3].
�e QAPLIB[2] is a benchmark set of QAP instances of varying
nature arising from the structural di�erences in their distance and
�ow matrices. Some are random, some are grid-based, and some
are from real-life QAP problems. For a detailed introduction, the
reader is referred to [2].

Table 1: �e three sets of problem classes. All are from the
QAPLIB.

class instance name description
bur {26{a-h}} real life|8
chr {12{a-c},15{a-c},18{a-b},20{a-c},22{a-b},25a} tree/complete|14
nug {12,14,15,16{a-b},17,18,20,21,22,25,27,28,30} grid-based|13

In this work, we focus on three full sets of well-known instance
classes in the QAPLIB, for a total of 37 instances. �is gives rise to
varying instance size; these can be seen in the numerical values in
the instance name column in Table 1. �e smallest size is twelve and
the largest, twenty-six. �e sizes are stated along with the name
of the set (class), the names of the instances (instance name), and
how many instances are in each group (description). We extract
monotonic sequences from the local optima networks of these
instances. Two network clustering algorithms are also applied to
the LONs: Markov Clustering (MCL) [17] and Infomap [14]. For
each of 37 instances, the following metrics were computed:

- optima: the number of local optima
- subsinks: the number of sub-optimal sinks (and therefore

landscape funnels).
- subsinkweight: the aggregated incoming link weight to

the sub-optimal sinks(s) (normalized by the strength of
incoming weight to all sinks). �is should relate to the
probability a local search will be drawn to sub-optimality.

- meanFun: the mean (disjoint) funnel size, normalized by
the number of local optima in the corresponding LON;
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that is, the proportion of local minima lying on monotonic
sequences that are unique to a given funnel

- LONneut: the neutral degree of the network: for a local
minimum, the average proportion of neighbouring local
minima with equal �tness value

- modM/modI : the modularity of LON network partitions
as found by the MCL and Infomap clustering algorithms,
respectively

3.2 Metaheuristics
Our aim was to determine which landscape qualities — with par-
ticular interest in funnels - in the QAPLIB lower performance of
heuristic search. With this in mind, two trajectory methods — ILS
and SA — were used on the instances. �e ILS implementation
used best-improvement local search with the pairwise exchange
(swap) operator on the improvement stage, while the perturbation
step considers three swaps. For the SA, a hyper-parameter tuner
[8] was used to optimize temperature annealing schedule, which
follows an exponential decay with a maximum number of trials
allowed between cooling steps, with the aim of minimizing the
ratio between the best-found solution evaluation and the �tness
of the best-known solution. �e training instances used for this
were the QAPLIB problems under study. �e optimised parameters
are shown in Table 2. Init.T is the initial temperature, Final.T is the
�nal temperature, and maxT is the maximum number of iterations
at a given temperature.

Table 2: SA parameters, optimized by hyper-parameter
tuner

Parameter value
Alpha 0.8198
Init.t 893 649

Final.t 0.482
Max.t 1889

4 RESULTS
4.1 Correlations
Figure 2 shows a pairwise correlation matrix of the landscape fea-
tures with ILS and SA performance. �e blue text in the upper
right triangle represents the Spearman correlation with indication
of p-value signi�cance, as described in the caption. �e diagonal
panels report density plots, indicating the distributions of each
variable studied. �e lower le� triangle shows sca�er plots. �e
variable names are described in Section 3.1. �e most important
rows are SAs, SAt, ILSs and ILSt, which represent the success rate
and runtime of SA and for ILS, respectively.

�e success rate of ILS is lowered in a signi�cant way not only by
the number of lower-than-optimal sinks in the landscape, but also
by the incoming weight to these local optima, which can be seen as
the probability a stochastic local search will end up there. We can
see these associations by looking at the ILSs column and checking
against the subsinks and subsinkweight rows. �e ILS seems to
have raised e�ciency and e�ectiveness when the funnels are larger.

Table 3: Linear model �t using the sub-optimal sink weight
(subsinkweight), modularity (strength) of local optima clus-
ters (mod), and the neutral degree (LONneut) as predictors
and success rate of ILS as the response. ∗∗∗p < 0.001, ∗∗p <
0.01, ∗p < 0.05

coef value error
subsinkweight -0.46068 *** 0.11870

mod -0.58469*** 0.14982
LONneut -0.47332 *** 0.11678

adj R2 0.6321
p-val 6.283e-08

We can see the relationship in Figure 2 by checking where the
meanFun row meets the ILSs and ILSt columns. �e neutral degree
of the networks contributes to a slower search, as we can see from
the point where the LONneut row and ILSt column intersect. Our
results suggest that modularity slows down search for ILS. A similar
e�ect was observed in [9] for a Tabu search implementation.

To see the landscape features contrasted with the SA perfomance,
we can look along the rows labelled SAs and SAt, which are the
success rate and function evaluations, respectively. Checking these
against the columns subsinkweight and subsinks in particular, we
can see that more sub-optimal funnels — and the �ow towards
them — seems to lower the e�ectiveness and e�ciency of SA on
QAPLIB instances considerably. �e number of local optima — and
therefore ruggedness — of the landscape a�ects both measures
of performance in a signi�cant way, and so do strong (modular)
clusters of local optima (see modI ).

Looking at the row corresponding to the number of local optima
(optima), notice that in the case of both algorithms, the ruggedness
does lower their respective success rates; however, the sub-optimal
sinks and their associated incoming �ow have a stronger associa-
tion (subsinks and subsinkweight). In terms of function evaluations
(ILSt and SAt), the amount of ruggedness seems to have a slightly
stronger e�ect on ILS than the funnel metrics do; for SA, the oppo-
site is true.

4.2 Linear Model
Table 3 shows the coe�cients, standard error, adjusted R2 and p-
value for a linear model �t to the success rate of ILS. �e dependent
variable is the proportional success rate and the predictors are the
neutral degree of the LON (LONneut), the modularity of the local
optima clusters found by the Infomap algorithm (mod), and the
incoming link weight to sinks that were not optimal (subsinkweight).
�e sink weight is normalised by the total incoming weight to all
sinks in that instance.

�ese variables can explain just over 63% of the variance seen
in the success rate of ILS. We can see this looking at the value for
adjR2 in Table 3. �e p-value is su�ciently small that it would be
reasonable to reject the null hypothesis.

All predictors appear to have statistical signi�cance, with associ-
ated p-values of <0.001 (shown by ***). �e a�ributes of this linear
model seem to suggest that ILS e�ectiveness on QAP instances is
closely related to these three landscape features in particular.
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Figure 2: Correlation matrix for all cluster features studied and the performance of ILS and SA, in timesteps and success
rate. Lower triangle: relationship scatterplots. Diagonal: density plots showing the distributions. Upper triangle: Spearman
correlation coe�cients. P-values shown by asterix: ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

5 DISCUSSION
�e �ndings presented in Section 4.1 suggested a signi�cant link
between the number of sub-optimal sinks — with their associated
incoming �ow — and lowered performance from both ILS and SA.
�is suggests that in QAP �tness landscapes, funnels are important

for the operation of common trajectory-based metaheuristics. �ere
is also an association between the mean size of the funnels and
search success for ILS. �e relationship was positive, meaning the
larger the disjoint funnels, the more successful the search was.
Recalling that the sizes represent a proportion of the set of local
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optima, a large funnel size would either mean a big valley structure
(which is naturally the optimal funnel), or a few very wide funnels.
�is would mean that at least some of the time ILS would begin
its search in the correct one, and if there is li�le overlap in funnel
membership the trajectory would lead cleanly to the global best.

Another interesting result in Section 4.1 was that both algorithms
had their success rate lowered by the sub-optimal sinks – and their
incoming �ow — in a more signi�cant way than the ruggedness of
the landscape. It could be that the landscape structure at a higher
level of abstraction — an overall global picture — might possibly be
more important.

Both ILS and SA had their performance lowered by the strength
(modularity) of groups of local optima; this has been noted before
with regards to Tabu Search on QAPLIB instances in [9]. It is inter-
esting that these �ndings transfer to other algorithms. �e presence
of this behaviour across the performance of three metaheuristics
hints at the importance of sub-networks of local optima in the QAP.

Section 4.2 shows that over 63% of variance in ILS success could
be explained by sub-optimal sink weight, the neutral degree of
the LON, and the modularity of local optima clusters. Each of the
predictors had a statistically sound p-value, suggesting these three
landscape features are important in navigating through a QAP
con�guration space.

6 CONCLUSIONS
We have conducted a case study on a set of benchmark QAP in-
stances, to analyse how the nature of landscape funnels in varying
classes of QAP problems a�ect common metaheuristics. Funnels
were extracted using monotonic sequences, and the association
between features and the performance of ILS and SA was exam-
ined. �e results suggest that the number of sub-optimal landscape
funnels in QAPLIB instances — along with their incoming �ow —
negatively impact ILS and SA. Speci�cally, both algorithms seemed
to execute a slower search with lower success in part because of
the existence of sub-optimal funnels. While not a funnel feature,
the strength of communities of local optima found by cluster al-
gorithms were shown to have contributed to lowered success and
raised search time, corroborating previous �ndings [9]. �is re-
sult has spanned three trajectory-based algorithms — ILS, SA and
Tabu Search — suggesting that it could generalise to others. We
argue that the ultimate success of trajectory-based metaheuristics
in QAP instances is more dependent on the global topology and
in-depth analysis of the nature of funnels in �tness landscapes —
and how commonly they occur — should be fruitful. Future work
will include other problem domains, to gain a view of how common
multiple-funnel landscapes are.

Acknowledgements
�is work was supported by the EPSRC [grant number EP/J017515/1]
and the Leverhulme Trust [grant number RPG-2015-395]. We grate-
fully acknowledge that all data used during this research were
obtained from [9].

REFERENCES
[1] R Stephen Berry and Ralph Breitengraser-Kunz. 1995. Topography and dynamics

of multidimensional interatomic potential surfaces. Physical review le�ers 74, 20
(1995), 3951.

[2] Rainer E Burkard, Stefan E Karisch, and Franz Rendl. 1997. QAPLIB–a quadratic
assignment problem library. Journal of Global optimization 10, 4 (1997), 391–403.
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