
evospace-js: Asynchronous Pool-Based Execution of
Heterogeneous Metaheuristics

Mario Garcı́a-Valdez
Instituto Tecnolgico de Tijuana

Tijuana BC, Mexico
mario@tectijuana.edu.mx

JJ Merelo
Grupo GeNeura, Depto. ATC + CITIC, Universidad de

Granada
Granada, Spain
jmerelo@ugr.es

ABSTRACT
�is paper is part of a continuing e�ort in the �eld of EC to develop
algorithms that follow an opportunistic approach to computing,
allowing the exploitation of freely available services over the In-
ternet by using free tiers of cloud services or volunteer computing
resources; the EvoSpace model is able to tap from both kind of re-
sources, using asynchronous evolutionary algorithms. We present
its design, which follows an an event-driven architecture and asyn-
chronous I/O model, and its implementation, with a server-side tier
programmed in Node.js that uses Redis as an in-memory and high
performance data store for the population. �is population store is
exposed to clients running population-based and nature-inspired
metaheuristics through a REST API. Additional capabilities where
implemented in this version to allow the logging of experiments
where heterogeneous algorithms are executed in parallel. �ese
logs can then be transformed to other formats. As a case study an
hybrid global optimization algorithm has been implemented mixing
two algorithms: a PSO algorithm from the EvoloPy library and a
GA using the DEAP framework. �e result was transformed to �les
compatible to the Comparing Continuous Optimizer platform in
order to use their post-processing code. Clients in this case have
been developed in the Python language, the language used to imple-
ment both libraries. �e results from this case study suggest, �rst,
that EvoSpace can be used as a paradigm- and language-agnostic
platform for population-based optimization algorithms, and also
that this so�ware can yield performance improvements and a vi-
able platform to execute and compare asynchronous pool-based
metaheuristics.

CCS CONCEPTS
•Computing methodologies → Heuristic function construc-
tion;

KEYWORDS
Nature-inspired metaheuristics, Distributed Evolutionary Algo-
rithms

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’17 Companion, Berlin, Germany
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-4939-0/17/07. . . $15.00
DOI: h�p://dx.doi.org/10.1145/3067695.3082473

ACM Reference format:
Mario Garcı́a-Valdez and JJ Merelo. 2017. evospace-js: Asynchronous Pool-
Based Execution of Heterogeneous Metaheuristics. In Proceedings of GECCO
’17 Companion, Berlin, Germany, July 15-19, 2017, 7 pages.
DOI: h�p://dx.doi.org/10.1145/3067695.3082473

1 INTRODUCTION
A large body of work exists on the parallelization of EAs, with tech-
niques leveraging multiple CPU cores, many computing nodes, and
GPUs [3, 17, 22]. However, asynchronous EAs [1, 2, 20, 23] have
started to become common only relatively recently, in an e�ort to
exploit computing resources available through di�erent Internet
technologies, including cloud. In this work, we are interested in
those asynchronous EAs following an approach that uses a shared
pool of individuals with a collection of heterogeneous worker pro-
cesses carry out population search tasks by collaborating through
this pool. We will refer to such algorithms as Pool-based EAs or
PEAs, and highlight the fact that such systems are intrinsically
parallel, distributed and asynchronous.

Pool-EAs di�er from the Island Model mainly with regards to
the responsibilities assigned to the server. When there is a server
in the island model, it is responsible for the interaction and syn-
chronization of all the populations, and this server might have a
possibly ephemeral pool of migrants in the process of being moved
from one island to another. In Pool-EAs, on the other hand, the
population repository only receives stateless requests from isolated
workers or clients. In this way, Pool-EAs are capable of using and
leveraging an ad-hoc and ephemeral collaboration of computing
resources.

�e platform presented in this paper is a new implementation of
the EvoSpace model [14] in which workers asynchronously interact
with the population pool in the following way. Following their
own schedule, EvoWorkers request samples of the population from
the pool and perform a local evolutionary search using them as
initial population, which a�er a number of iterations is returned
to the pool. �e sample size and the number of iterations this
cycle lasts depends on the implementation and is actually not so
important for the overall performance of the algorithm. Sample
size has got more to do with protocol overhead: the bigger the
population, the higher proportion of payload-to-total-packet-size
is achieved. �e number of iterations of every cycle is also mainly
an implementation detail: the shorter the cycle, the higher the
load on the server. �e actual parameters used in this paper are
listed in Table 1. �is is a particular instance of a Pool-based EA,
which, as long as there is a common population pool, leaves every
other detail to particular implementations. Other PEAs, for instance,

1202

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany Mario Garcı́a-Valdez and JJ Merelo

might return only one individual to the pool, or use it as a read-only
resource, not returning any member to it; the frequency with which
resources are taken or returned to the population are not set by
the model either, leaving it as a implementation or model-speci�c
parameter.

�e previous version [30] was implemented using CherryPy, a
basic HTTP server wri�en in Python. �is new version uses Node.js,
an event-driven interpreter with a built-in event loop capable of
asynchronous I/O [29], that is running on the JavaScript V8 engine.
Node.js is used to optimize throughput and scalability of the server.

Additionally to the increased performance this version adds new
functionality: In the former version workers could only ask for ran-
dom samples of a particular size, now clients can retrieve objects
from the server ordered by a score. Designers can use this func-
tionality to implement asynchronous versions of the island model
or to force the retrieval of di�erent objects in every request resem-
bling a circular queue. Instead of using the JSON-RPC protocol
the server functionality is now exposed as a RESTful Web Service.
�e server now keeps a log of the work performed by workers:
�e number of evaluations, the best solution in each generation
(or iteration), parameters and algorithm used among others. �is
log can later be used to compare the performance of the algorithm
against others, for instance against algorithms using the COCO
(COmparing Continuous Optimisers) platform [16]. �e aim of the
evospace-js so�ware is to provide researchers with a high perfor-
mance platform in which they can execute pool-based algorithms
using heterogeneous workers.

�e remainder of the paper proceeds as follows. Section 2 re-
views related work. A�erwards, Section 3 describes the proposed
EvoSpace implementation, the experimental work is presented in
Section 4. Finally, a summary and concluding remarks are given in
Section 5.

2 RELATEDWORK
�ere are two important practical issues faced by many EA and
other optimization systems, namely the size of the parameter space
and the high computational cost when it is compared with math-
ematical programming or numerical techniques. Concerning the
la�er, one approach to mitigate this issue is to use parallel or dis-
tributed implementations [4, 8]. For instance, Fernández et al. [12]
use the well-known Berkeley Open Infrastructure for Network
Computing (BOINC) to distribute EA runs across a heterogeneous
network of volunteer computers using virtual machines. Another
recent example is found in the FlexGP system developed by Sherry
et al. [25]. FlexGP is probably the �rst large scale GP system that
runs on the cloud, using an island model approach and implemented
over Amazon EC2 with a socket-based client-server architecture.
�ere is a considerable improvement in performance and scalability
in this approach, but this scalability has a cost which is proportion-
ally much smaller than installing a permanent infrastructure, but
onerous nonetheless.

In general, all the techniques and implementations mentioned
above rely on more or less traditional parallel or distributed evo-
lutionary algorithms, using farming for o�oading evaluations to
ephemeral resources or using more traditional island-based models
in distributed or cloud-based resources. However, there is another

approach to distributed EAs: the so called Pool-based architec-
ture [6, 24, 28]. In general, a Pool-based system employs a central
repository where the evolving population, or a part of it, is stored.
Distributed clients interact with the pool, performing some or all of
the basic EA processes (selection, genetic operators, survival), but
these clients join the search by just using an API, and quit by simply
not doing it any more. Clients are not considered reliable in any
way, and the threshold to join the pool and perform an operation is
kept as low as possible. A representative work of this approach is
that by Merelo et al. [19] implementing a JavaScript based PEA that
distributes the evolutionary process over the web, providing the
added advantage of not requiring the installation of additional so�-
ware in each computing node. Other similar cloud-based solutions
are based on a global queue of tasks and a Map-Reduce implemen-
tation which normally handles failures by the re-execution of tasks
[7, 10, 26]. Using the BOINC volunteer platform Smaoui et al. [11]
uses work units that consist of a �tness evaluation task and multiple
replicas were produced and sent to di�erent clients.

While using a distributed framework can ease the computa-
tional cost, it can also exacerbate the �rst issue mentioned above;
i.e., it increases the size of the algorithm parameter space, which
makes parameter tuning a more di�cult task. �e issue of optimal
parametrization of EAs is a widely studied subject [5], with many
approaches in literature. For instance, one of the most success-
ful approaches is the F-Racing and iterative F-Racing techniques
[18]. However, while such algorithms can �nd high performance
parametrization, they require additional computational e�ort which
can be too expensive in some applications (even if they are more
e�cient than an exhaustive search).

3 EVOSPACE-JS IMPLEMENTATION
�e main components of the EvoSpace framework are: the evospace-
js population repository, remote clients called EvoWorkers. Each
of these components are de�ned in the following subsections.

3.1 evospace-js Population Repository
�e evospace-js server provides a collection of REST methods to
operate over a set of objects ES , which can be seen as the population.
Multiple populations can be created and are distinguished by their
identi�er ESid . Objects in each ESid can be selected, removed or
replaced through the following endpoints:

(1) population name/initialize �is is a POST request used
to create a new population.

(2) population name/individual�is is a POST request used
to create and add a new object to a population. �e object is
de�ned in a JSON format, and there is no restriction on its
structure, only the following properties are required: “id”
this is an integer and is generated if not present, “�tness”
also de�ned as a JSON object, the structure been speci�c
to each application, and �nally a “chromosome” property
again de�ned as a JavaScript object giving the internal rep-
resentation of the solution, by default de�ned as a list of
objects. �ere is also an optional integer property called
“score” used when objects are going to be retrieved in a
certain order.

1203

evospace-js: Asynchronous Pool-Based Execution of Heterogeneous MetaheuristicsGECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

Figure 2: Stack diagram of the evospace-js framework components.

(3) population name/sample/n �is is a GET request used
to take from the population a sample of n objects. �ese
objects are removed from the population and are no longer
available to other requests until and only if they are put
back. Objects can be returned to the population either by
a PUT sample request called from the same client or by a
respawn request. �e reason for this is to avoid concur-
rently write con�icts and duplication of work.

(4) population name/sample �is is a POST request used to
put back a sample to the population. �e new sample is
sent in the request body as a JSON object. If the client
created new objects or changed their original state, these
objects replace the originals.

(5) population name/respawn �is is a POST request used
to put back n samples to their original state. �e number
of samples is sent in the request body.

�ere are other secondary REST endpoints used to: select all objects
in a population, select objects with scores with in a range, read the
top n objects according to a score and read the number of objects
currently on the population.

�e above methods were implemented �rst as JavaScript library
with two classes: Individual and Population depicted in Fig-
ure 1 with calls to the Redis memory store through the ioredis
asynchronous library.

In order to expose the library as a REST Web service endpoints
were implemented using the Express HTTP framework. An op-
tional dashboard type application, can be used to inspect the popu-
lations currently available on the server. �is dashboard uses the
Jade (which has recently been renamed to Pugs) template engine
and Express.

When a worker is pu�ing back a sample, it can send an addi-
tional property called benchmark data to send supplementary
information about the execution of the experiment. �is data can

later be used to benchmark the performance of the algorithm. �is
data is again stored in Redis as an ordered list, keeping a log for each
experiment. Currently the JSON benchmark data structure contains
the following details to later be used by the COCO platform: the al-
gorithm identi�er, parameters used, name, dimension, instance and
optimal value of the function that is been optimized, worker and
experiment identi�ers and �nally a list of details of each iteration
or generation of the local execution. �e details include: the best
solution and the function value, and the number of function evalu-
ations required. Depending on the application other data could be
recorded. �e source code for the evospace-js server is in the follow-
ing Github repository: h�ps://github.com/mariosky/evospace-js.

3.2 EvoWorkers
As we mentioned earlier, EvoWorkers are independent of the pop-
ulation repository, and developers can implement them in any
language that supports HTTP requests. To develop an EvoWorker,
a programmer could just write the code needed to take a sample of
the population and use this sample to replace the initial population
of a local algorithm. �en a�er a certain number of iterations return
the current population back to the server.

In this work, EvoWorkers were implemented in Python taking ad-
vantage of two open source libraries of nature inspired optimization
metaheuristics: DEAP [13], which use the con�guration parameters
included in Table 2 and EvoloPy [9] using the parameters listed in
Table 3. For each algorithm a Python script was responsible for
the initialization using the required parameters and se�ing up the
initial population, then a�er some iterations, the current population
and benchmark data is sent back to the server. EvoWorker scripts
can run in Docker containers, by receiving the initial parameters
as environment variables, and the script ends when it reaches a
maximum number of samples. �e source code for the Python

1204

https://github.com/mariosky/evospace-js

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany Mario Garcı́a-Valdez and JJ Merelo

Figure 1: UML Class diagram of the Population and Individ-
ual classes.

EvoWorkers proposed in this work are in the following GitHub
repository: h�ps://github.com/mariosky/EvoWorker.

4 EXPERIMENTS
As a case study, a simple hybrid algorithm consisting of PSO and
GA EvoWorkers was used to run a benchmark that included the �rst
three functions found in the COCO platform: Sphere (F1), Ellipsoid
(F2), and Rastrigin (F3). �e objective of the algorithm is not to
be a competitive solution for the optimization benchmark, as the
intention is to test the so�ware functionality. A�er the execution,
a script processed the logs and generated the �les needed by the
COCO platform post-processing scripts.

A requirement of the COCO platform is that it needs to inspect
each function evaluation to keep the log required to analyze the
execution. �e logging code maintains a sequential record of the
number function calls. �is exact order is not practical to keep in an
asynchronous execution as many workers are calling the function
at the same time. For this reason, the granularity of the number of
function evaluations and their order is kept at the sample-iteration
level. As we mentioned earlier, each worker returns a record with

Table 1: EvoWorker Setup

Dimension 2 3 5 10 20 40
Iterations per Sample 50 50 50 50 50 50
Sample Size 100 100 100 200 200 200
Samples per Worker 20 30 25 25 25 25
PSO Workers 1 1 2 2 4 8

Table 2: DEAP GA EvoWorker Parameters

Search space [−4, 4]D
Selection Tournament size=12
Mutation Gaussian µ = 0.0, σ = 0.5, indbp=0.05
Mutation Probability [.1,.6]
Crossover Two Point
Crossover Probability [.8,1]

Table 3: EvoloPy PSO EvoWorker Parameters

Search space [−4, 4]D
Vmax 6
Wmax 0.9
Wmin 0.2
C1 2
C2 2

benchmark data, with the number of evaluations performed in each
iteration.

As we mentioned earlier, each worker returns the number of
evaluations performed in each iteration. �e order of function calls
was given by the order in which the server received the samples
and the order of the iterations in each. On the other hand, the
number of function evaluations is incremented in each iteration
by the sample size and the best function evaluation is assigned
that number, as if in each iteration the best solution was found in
the last function evaluation. Instead of increasing the number by
one it is incremented by the number of solutions in the sample. Is
important to notice that EvoWorkers run the algorithm only for a
small number of iterations and with a relatively small sample of
the population. For instance, for the COCO benchmark presented
in the case study the maximum number of function evaluations in
a single iteration was 200.

4.1 Set-up
A script was responsible for creating the EvoWorker containers and
running the benchmark. �e �rst three functions F1 to F3 were
tested with 15 instances for each of the dimensions: 2, 3, 5, 10, and 20.
�e maximum number of function evaluations was set to 105 ∗dim.
In order to maintain the required number of function evaluations
the following EvoWorker setup was set for each dimension. An
instance of a function in COCO is a di�erent version of the function,
with a di�erent location of the global optimum and a di�erent
optimal function value.

1205

https://github.com/mariosky/EvoWorker

evospace-js: Asynchronous Pool-Based Execution of Heterogeneous MetaheuristicsGECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8
1

15 instances
absolute targets v0.0.0

1 Sphere

-8

-5

-3

-2

-1

0

1

Figure 3: Average numbers of function evaluations to reach the target for every dimension for the Sphere function. �is �gure
and the following ones have been generated with the BBOB report generator. �e lines represent the average running times,
the crosses themedian runtime of successful runs to reach themost di�cult target, x-crosses themax number of f-evaluations
in any trial. �e y scale is logarithmic. �e light line on the bottom with diamonds indicates the best algorithm from BBOB
2009. �is shows that, for the time being, the runtime is worse than the one obtained in the best BBOB 2009; however, for the
time being no attempt to optimize results has been made

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

5

13

2

15 instances
absolute targets v0.0.0

2 Ellipsoid separable

Figure 4: Average numbers of function evaluations to reach target for every dimension for the Ellipsoid function. Interpreta-
tion of results as in Figure 3.

4.2 Results
A�er the experiment was run a script generated the �les and folders
needed by the COCO post-processing scripts; this script generated
the comparative tables and graphics for checking the performance

of the algorithm against those found in the COCO repository. Re-
sults from experiments according to [16] on the benchmark func-
tions are presented in Figures 3, 5 and 4. �e whole experiment,
with all dimensions and instances, took less three hours to execute.
�e results obtained show that the algorithm performs quite well

1206

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany Mario Garcı́a-Valdez and JJ Merelo

2 3 5 10 20 40
0

1

2

3

4

5

6

7

8

14

1

14

9

15 instances
absolute targets v0.0.0

3 Rastrigin separable

Figure 5: Average numbers of function evaluations to reach target for every dimension for the Rastrigin function. Interpreta-
tion of results as in Figure 3.

on separable functions 1-3, both regarding results and scaling when
compared to results from other nature inspired algorithms [15].
Results obtained with the Rastrigin function are be�er than the
rest, giving hope that with adequate tuning much be�er results
could be obtained.

In fact, all runs have ended successfully with a completely new
asynchronous, heterogeneous, and pool based evolutionary algo-
rithm. Our intention in this paper was to present this framework
and present how it can successfully tackle and solve di�cult prob-
lems using heterogeneous workers that consume the same evospace-
js API.

5 CONCLUSIONS AND FURTHERWORK
�e evospace-js platform has been applied to implement and test
a hybrid nature-inspired algorithm against a testbed of noiseless
continuous functions. Design and implementation details have
been presented. �e results obtained show that an asynchronous
execution following a pool-based approach is possible and easy
to implement, and that it is able to successfully �nd solutions to
di�cult optimization problems. Results, however, are still prelimi-
nary and further tuning of the parameters could potentially yield
be�er results, mainly time-wise. �ere is also the question about
the performance of the algorithm on the remaining functions of
the benchmark and other real-world problems; however, these are
only implementation details.

Our results have been entirely published in GitHub, along with
sources. We think it is important to help reproductibility as much
as possible by opening our science. Publishing results and so�ware
with an open source license will help achieve this reproductibility,
and you can �nd all results, code as well as the source for this paper
in h�ps://github.com/mariosky/2017-EvoSpace.

Future lines of work will focus on using other EA or meta-
heuristic population-based techniques, such as the Grey Wolf Opti-
mizer [21] or Di�erential Evolution [27] for creating workers that
are heterogeneous in more than one sense. RPSS could be used in
those cases where each algorithm has a di�erent set of parameters,
but also to randomly select the technique employed in each node.

Another interesting line of work is the dynamic adaptation of
parameters by measuring the diversity of each worker or returned
sample. �is adaptation could be especially useful in cases where
the random parametrization technique seems to achieve bad results.

ACKNOWLEDGMENTS
�is work has been supported in part by Ministerio español de
Economı́a y Competitividad under project TIN2014-56494-C4-3-P
(UGR-EPHEMECH).

REFERENCES
[1] Enrique Alba and José M Troya. 2001. Analyzing synchronous and asynchronous

parallel distributed genetic algorithms. Future Generation Computer Systems 17,
4 (2001), 451–465.

[2] J. Atienza, P. A. Castillo, M. Garcı́a, J. González, and J.J. Merelo. 2000. Jenetic:
a distributed, �ne-grained, asynchronous evolutionary algorithm using Jini. In
Proc. JCIS 2000 (Joint Conference on Information Sciences), P. P. Wang (Ed.), Vol. I.
1087–1089. ISBN: 0-9643456-9-2.

[3] Erick Cantu-Paz. 2000. E�cient and accurate parallel genetic algorithms. Vol. 1.
Springer Science & Business Media.

[4] Erick Cantú-Paz. 2001. Migration Policies, Selection Pressure, and Parallel
Evolutionary Algorithms. Journal of Heuristics 7, 4 (2001), 311–334. DOI:h�p:
//dx.doi.org/10.1023/A:1011375326814

[5] Kenneth De Jong. 2007. Parameter se�ing in EAs: a 30 year perspective. In
Parameter se�ing in evolutionary algorithms. Springer, 1–18.

[6] P.S. de Souza and S.N. Talukdar. 1991. Genetic algorithms in asynchronous
teams. In Proceedings of the Fourth International Conference on Genetic Algorithms.
Morgan Kaufmann Publishers, 392–399.

[7] Sergio Di Martino, Filomena Ferrucci, Valerio Maggio, and Federica Sarro. 2013.
Towards Migrating Genetic Algorithms for Test Data Generation to the Cloud. In
So�ware Testing in the Cloud: Perspectives on an Emerging Discipline. IGI Global,
IGI Global, 113–135. DOI:h�p://dx.doi.org/10.4018/978-1-4666-2536-5.ch006

1207

https://github.com/mariosky/2017-EvoSpace
http://dx.doi.org/10.1023/A:1011375326814
http://dx.doi.org/10.1023/A:1011375326814
http://dx.doi.org/10.4018/978-1-4666-2536-5.ch006

evospace-js: Asynchronous Pool-Based Execution of Heterogeneous MetaheuristicsGECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

[8] Jerzy Duda and Wojciech Dlubacz. 2013. GPU acceleration for the web browser
based evolutionary computing system. In System �eory, Control and Computing
(ICSTCC), 2013 17th International Conference. IEEE, 751–756.

[9] Hossam Faris, Ibrahim Aljarah, Seyedali Mirjalili, Pedro A. Castillo, and Juan J.
Merelo. 2016. EvoloPy: An Open-source Nature-inspired Optimization Frame-
work in Python. In Proceedings of the 8th International Joint Conference on Com-
putational Intelligence, IJCCI 2016, Volume 1: ECTA, Porto, Portugal, November
9-11, 2016., Juan Julián Merelo Guervós, Fernando Melı́cio, José Manuel Cadenas,
António Dourado, Kurosh Madani, António E. Ruano, and Joaquim Filipe (Eds.).
SciTePress, 171–177. DOI:h�p://dx.doi.org/10.5220/0006048201710177

[10] Pedro Fazenda, James McDermo�, and Una-May O’Reilly. 2012. A Library to
Run Evolutionary Algorithms in the Cloud Using Mapreduce. In Proceedings
of the 2012T European Conference on Applications of Evolutionary Computation
(EvoApplications’12). Springer-Verlag, Berlin, Heidelberg, 416–425. DOI:h�p:
//dx.doi.org/10.1007/978-3-642-29178-4 42

[11] Malek Smaoui Feki, Viet Huy Nguyen, and Marc Garbey. 2009. Parallel Ge-
netic Algorithm Implementation for BOINC. In PARCO (Advances in Parallel
Computing), Barbara M. Chapman, Frédéric Desprez, Gerhard R. Joubert, Alain
Lichnewsky, Frans J. Peters, and �ierry Priol (Eds.), Vol. 19. IOS Press, 212–219.

[12] Francisco Fernández De Vega, Gustavo Olague, Leonardo Trujillo, and Daniel
Lombraña González. 2013. Customizable Execution Environments for Evolution-
ary Computation Using BOINC + Virtualization. Natural Computing 12, 2 (2013),
163–177.

[13] Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner, Marc
Parizeau, and Christian Gagné. 2012. DEAP: Evolutionary algorithms made easy.
Journal of Machine Learning Research 13, Jul (2012), 2171–2175.

[14] Mario Garcı́a-Valdez, Leonardo Trujillo, Juan-J Merelo, Francisco Fernández de
Vega, and Gustavo Olague. 2015. �e EvoSpace Model for Pool-Based Evolu-
tionary Algorithms. Journal of Grid Computing 13, 3 (2015), 329–349. DOI:
h�p://dx.doi.org/10.1007/s10723-014-9319-2

[15] Anne Auger��Ste�en Finck��Nikolaus Hansen and Raymond Ros. 2010. BBOB
2009: Comparison Tables of All Algorithms on All Noiseless Functions. (2010).

[16] Nikolaus Hansen, Anne Auger, Olaf Mersmann, Tea Tusar, and Dimo Brockho�.
2016. COCO: a platform for comparing continuous optimizers in a black-box
se�ing. (2016).

[17] Johannes Hofmann, Ste�en Limmer, and Dietmar Fey. 2013. Performance in-
vestigations of genetic algorithms on graphics cards. Swarm and Evolutionary
Computation 12 (2013), 33–47.

[18] Manuel López-Ibánez, Jérémie Dubois-Lacoste, �omas Stützle, and Mauro Birat-
tari. 2011. �e irace package, iterated race for automatic algorithm con�guration.
Technical Report. Citeseer.

[19] J. J. Merelo, P.A. Castillo, J.L.J. Laredo, A. Mora, and A. Prieto. 2008. Asyn-
chronous Distributed Genetic Algorithms with JavaScript and JSON. In WCCI
2008 Proceedings. IEEE Press, 1372–1379. h�p://atc.ugr.es/I+D+i/congresos/2008/
CEC 2008 1372.pdf

[20] Juan J. Merelo, Antonio M. Mora, Pedro A. Castillo, Juan L. J. Laredo, Lourdes
Araujo, Ken C. Sharman, Anna I. Esparcia-Alczar, Eva Alfaro-Cid, and Carlos
Co�a. 2008. Testing the Intermediate Disturbance Hypothesis: E�ect of Asyn-
chronous Population Incorporation on Multi-Deme Evolutionary Algorithms. In
Parallel Problem Solving from Nature - PPSN X (LNCS), Gunter Rudolph, �omas
Jansen, Simon Lucas, Carlo Poloni, and Nicola Beume (Eds.), Vol. 5199. Springer,
Dortmund, 266–275. DOI:h�p://dx.doi.org/10.1007/978-3-540-87700-4 27

[21] Seyedali Mirjalili, Seyed Mohammad Mirjalili, and Andrew Lewis. 2014. Grey
wolf optimizer. Advances in Engineering So�ware 69 (2014), 46–61.

[22] Heinz Mühlenbein. 1989. Parallel genetic algorithms, population genetics and
combinatorial optimization. In Workshop on Parallel Processing: Logic, Organiza-
tion, and Technology. Springer, 398–406.

[23] Victor M. Rivas, Juan Julián Merelo-Guervós, Gustavo Romero-López, Mari-
bel Arenas-Garcı́a, and Antonio M. Mora. 2014. An Object-Oriented Library
in JavaScript to Build Modular and Flexible Cross-Platform Evolutionary Al-
gorithms. In Applications of Evolutionary Computation, Anna I. Esparcia-
Alcázar and Antonio M. Mora (Eds.). Springer Berlin Heidelberg, 853–862. DOI:
h�p://dx.doi.org/10.1007/978-3-662-45523-4 69

[24] G. Roy, Hyunyoung Lee, J.L. Welch, Yuan Zhao, V. Pandey, and D. �urston.
2009. A distributed pool architecture for genetic algorithms. In Evolutionary
Computation, 2009. CEC ’09. IEEE Congress on. 1177–1184. DOI:h�p://dx.doi.org/
10.1109/CEC.2009.4983079

[25] Dylan Sherry, Kalyan Veeramachaneni, James McDermo�, and Una-May O’Reilly.
2012. Flex-GP: genetic programming on the cloud. In Applications of Evolutionary
Computation. Springer, 477–486.

[26] Dylan Sherry, Kalyan Veeramachaneni, James McDermo�, and Una-May
O�Reilly. 2012. Flex-GP: Genetic Programming on the Cloud. In Applications of
Evolutionary Computation, Cecilia Chio, Alexandros Agapitos, Stefano Cagnoni,
Carlos Co�a, FranciscoFernndez Vega, GianniA. Caro, Rolf Drechsler, Anik
Ekrt, AnnaI. Esparcia-Alczar, Muddassar Farooq, WilliamB. Langdon, JuanJ.
Merelo-Guervs, Mike Preuss, Hendrik Richter, Sara Silva, Anabela Simes, Gio-
vanni Squillero, Ernesto Tarantino, AndreaG.B. Te�amanzi, Julian Togelius,
Neil Urquhart, A.ima Uyar, and GeorgiosN. Yannakakis (Eds.). Lecture Notes

in Computer Science, Vol. 7248. Springer Berlin Heidelberg, 477–486. DOI:
h�p://dx.doi.org/10.1007/978-3-642-29178-4 48

[27] Rainer Storn and Kenneth Price. 1997. Di�erential evolution–a simple and
e�cient heuristic for global optimization over continuous spaces. Journal of
global optimization 11, 4 (1997), 341–359.

[28] S. Talukdar, L. Baerentzen, A. Gove, and P. De Souza. 1998. Asynchronous teams:
Cooperation schemes for autonomous agents. Journal of Heuristics 4, 4 (1998),
295–321.

[29] Stefan Tilkov and Steve Vinoski. 2010. Node.js: Using JavaScript to build high-
performance network programs. IEEE Internet Computing 14, 6 (2010), 80–83.

[30] Mario Garcı́a Valdez, Leonardo Trujillo, Juan Julián Merelo-Guervós, Fran-
cisco Fernández de Vega, and Gustavo Olague. 2015. �e EvoSpace Model
for Pool-Based Evolutionary Algorithms. J. Grid Comput. 13, 3 (2015), 329–349.
DOI:h�p://dx.doi.org/10.1007/s10723-014-9319-2

1208

http://dx.doi.org/10.5220/0006048201710177
http://dx.doi.org/10.1007/978-3-642-29178-4_42
http://dx.doi.org/10.1007/978-3-642-29178-4_42
http://dx.doi.org/10.1007/s10723-014-9319-2
http://atc.ugr.es/I+D+i/congresos/2008/CEC_2008_1372.pdf
http://atc.ugr.es/I+D+i/congresos/2008/CEC_2008_1372.pdf
http://dx.doi.org/10.1007/978-3-540-87700-4_27
http://dx.doi.org/10.1007/978-3-662-45523-4_69
http://dx.doi.org/10.1109/CEC.2009.4983079
http://dx.doi.org/10.1109/CEC.2009.4983079
http://dx.doi.org/10.1007/978-3-642-29178-4_48
http://dx.doi.org/10.1007/s10723-014-9319-2

	Abstract
	1 Introduction
	2 Related Work
	3 evospace-js Implementation
	3.1 evospace-js Population Repository
	3.2 EvoWorkers

	4 Experiments
	4.1 Set-up
	4.2 Results

	5 Conclusions and Further Work
	Acknowledgments
	References

