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ABSTRACT
In this work the temporal folding process with a cellular
automaton like-scheme was modeled. The cellular automaton
is implemented with an artificial neural network and evolved
with Differential Evolution. This neural-CA model is applied
sequentially to the amino acids of the protein chain to obtain,
iteratively and through time, a final folded conformation. The
Face-Centered Cubic lattice model was used for the protein
conformation representation, using a relative encoding of the
amino acid moves on the lattice. First results of different
folded conformations with different proteins are presented
and discussed.
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1 INTRODUCTION
One of the most important problems in molecular biology is
to obtain the native structure of a protein from its primary
structure, i.e., the amino acid chain. The gap between known
protein sequences and known three-dimensional form of pro-
teins is difficult to be closed using classical time-consuming
and difficult methods such as X-ray crystallography and NMR
spectroscopy. As a result, computational methods to predict
the native structure are becoming more important. Ab-initio
methods are a computational approaches that consists of
finding the lowest energy structure using only the amino acid
sequence. This approach is based on the Anfinsen’s dogma
[1] that specifies that the native structure of a protein is its
minimum free energy conformation.

Ab-initio methods adopt different approaches for the pro-
tein structure representation. For example, lattice models
impose the constraint that the location of amino acids must
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be in the lattice sites. In the ab-initio protein structure pre-
diction problem (PSP) many authors have been working on
the use of search methods, specially evolutionary algorithms,
employing the simple HP lattice model [9][12][18] or more
complex lattice models like the Face-Centered Cubic (FCC)
model [11][16][17]

However, there is a very limited research in the modeling
of the dynamic folding, taking into account the different
amino acid interactions through the temporal folding process.
We have modeled this temporal process as an emergent and
dynamic process using the classical tool of cellular automata
(CA), implemented with an artificial neural network (ANN)
model.

In previous work, Krasnogor et al. [8] used CA and Lin-
denmayer systems to try to define the folding process in 2D
lattices, with very limited success. Calabretta et al. [4] tried
to establish the protein tertiary structure by modeling the
folding process through evolved matrices of attraction forces
of the 20 amino acids in an off-lattice model. In previous
work we have used CA to model protein folding using the
basic HP model [6], with the 2D square [13] and the 3D cubic
lattices [14][15], as well as with the off-lattice coarse-grain
model of the Rosetta system [19].

This work is a first attempt to extend the methodology
to the Face-Centered Cubic lattice model. The next section
summarizes the methods used for the modeling: The FCC
model and the neural-CA that provides the folding. We used
Differential Evolution (DE) [10] to evolve the neural-CA. The
results section shows initial results of the folding provided
by the methodology.

2 METHODS
2.1 Face-Centered Cubic lattice model
One of the most studied lattice models is the HP model [6].
This model simplifies a protein’s primary structure to a linear
chain of H’s (hydrophobic, i.e. nonpolar) and P’s (hydrophilic,
i.e. polar) that represents the pattern of hydrophobicity in
the protein’s amino acid sequence. The model is widely used
because of its simplicity and it is powerful enough to capture
a variety of properties of actual proteins [7].

The HP model imitates the hydrophobic effect by assigning
a negative (favorable) energy weight to interactions between
adjacent (in the lattice topology) and non-consecutive H
amino acids in the primary structure. Proteins that have
minimum energy are assumed to be in their native state. The
energy of a protein conformation is defined as:
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Figure 1: FCC lattice.

E =
∑

i<j−1
cij · eij (1)

where cij = 1 if amino acids i and j are non-consecutive
neighbors on the protein sequence and are neighbors (or in
contact) on the lattice, otherwise 0; The term eij depends
on the type of amino acids: eij = −1 if ith and jth amino
acids are hydrophobic (H), otherwise 0.

The Face-Centered Cubic lattice has the highest average
density compared to other lattices like the cubic or the body-
centered cubic [5]. In the FCC lattice, the amino acids are
located in the center and in the middle of the edges of the
cubic unit cell, as shown in Figure 1. As a result, each lattice
point has 12 neighbors with 12 basis vectors.

A protein of i amino acids can be encoded as a sequence of
i − 1 basis vectors that defines the 3D form. It will be a valid
conformation if the sum of coordinates of each point is even
and it consists of a self-avoiding walk. In the FCC lattice,
two points p = (x, y, z) and q = (x’, y’, z’) are adjacent in
the lattice if and only if |x - x’| ≤ 1, |y - y’| ≤ 1, |x - x’| ≤ 1
and |x - x’| + |y - y’| + | z - z’| = 2.

To represent a protein conformation, relative moves were
used in this work. This means that the next move depends
on (or it is relative to) the previous one, rather than relative
to the axes defined by the lattice. Thus, there are 11 relative
moves in the FCC lattice (further details can be found at
[3]). This has the advantage that there is not a “back move”,
so there are not conflicts (collisions) between the next amino
acid and the previous one.

2.2 Neural cellular automata
A simple feed-forward neural network is used as a cellular
automaton to decide the moves of the amino acids in the
FCC lattice and through time. We call it Neural Cellular
Automaton (neural-CA) because the ANN implements the
rule set of a classical CA.

The modeling of the protein folding process is as follows:
the ANN is applied sequentially to each amino acid i of the
protein chain, beginning with the unfolded protein confor-
mation (protein in a straight line). The ANN receives input

Figure 2: Neural CA scheme.

information from the energy landscape and the output decides
the next move. For obtaining the appropriate information
from the energy landscape, all possible moves between amino
acids i and i + 1 are considered (Figure 2), calculating the
energy differences between the current protein conformation
and the alternative conformations with these possible relative
moves between i and i + 1.

Therefore, there are 11 ANN inputs that correspond to
the energy changes (positive, 0 or negative) when each of the
relative moves are considered. For those energy calculations,
only the close amino acids to the central amino acid i are
considered, using the Euclidean distance with a given radius.
Additionally, in these energy calculations, the HH contacts are
weighted with −1 and the HP or PH contacts with a value 0.1.
This provides a more detailed view of the energy landscape,
which is useful when few H amino acids are located in that
closest area to the central amino acid. Moreover, if a move
implies a collision, the energy conformation is penalized with
a high positive value. Finally, the ANN inputs are normalized
in the range (-1, 1) in each situation.

This input information provides a partial view of the energy
landscape to the ANN and can be associated with the central
element and its neighborhood states in a classical CA. The
output layer has 11 outputs that correspond to each of the
11 possible relative moves. The ANN node with the highest
activation value determines the relative move to apply in
each situation.

The process with the ANN is repeated several steps, that
is, the ANN is applied sequentially to all the amino acids of
the chain several times.

These neural cellular automata that perform the folding
process are optimized by means of Differential Evolution [10].
The genotypes of the population define possible feed-forward
ANNs (the connection weights), whereas the fitness function
is defined as the energy (Eq. 1) obtained once the folding
process has ended. The population size was 500 and the
evolutionary algorithm was run for 1000 generations. In the
folding process defined by each encoded ANN, if the encoded
ANN decides a move that implies an immediate collision
(in the next amino acid i + 1), then the folding process is
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initial unfolded conformation amino acid 13, step 1 amino acid 21, step1

amino acid 31, step 1 amino acid 4, step 2 amino acid 12, step 2

amino acid 22, step 2 amino acid 1, step 3 amino acid 12, step 3

Figure 3: Different snapshots in the folding process with protein sequence HPPHPPHPPHPPHPPHPPHPPHPPHPPHPPH-
PPH. The evolved neural-CA was applied to define the relative move between the amino acid specified in the caption of each
subfigure and the next one.

ended and the energy before the collision is returned to the
evolutionary algorithm. This helps that the encoded solutions
(ANNs) can be refined progressively to obtain final folded
conformations that maximize the number of HH contacts
(minimize the energy conformation).

3 RESULTS
The methods explained in the previous section are used to
obtain the folded conformations in different proteins were
applied. The algorithmic setup is as follows. In DE, standard
parameters were used (weight factor F = 0.9 and crossover
probability CR = 0.9) [10]. Regarding the ANN, the ANN
weights were set in the range [-1,1], sufficient to saturate the
nodes of the ANN (sigmoid functions). The topology of the
ANN is 11:5:11, trying to define a trade-off between the ANN
capability to memorize and generalize. For the calculation of
the energy increases, a spherical neighborhood (centered on
the amino acid i to which the ANN is applied, Figure 2) with

a radius (r = 3) was used in the different proteins, and the
maximum number of steps (application of the ANN through
the all the amino acids of the chain) was set to 3.

Figure 3 summarizes the neural-CA process with a se-
quence of 34 amino acids. The best evolved ANN is applied
sequentially to the amino acids, through the maximum num-
ber of steps, beginning with the unfolded conformation. The
different subfigures show partially folded conformations when
the ANN applied the selected move in different amino acids
and temporal steps. The optimal final folded conformation
has 32 HH contacts with an internal hydrophobic core which
maximizes the number of HH contacts.

Figure 4 shows the final folded conformation after the
folding process defined by the best evolved neural cellular
automaton for a benchmark sequence of 48 amino acids. This
is one of the Harvard instances (H2) [20] commonly used with
the FCC model. Again, there is a clear central core, where
the H amino acids are located, which provides 55 contacts.
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Figure 4: Final folded conformation of sequence H2.

However, the maximum number of possible HH contacts was
not obtained. One of the methods that produces best results
on the FCC model is the constraint-based protein structure
approach (CPSP) by Backofen and Will [2]. The CPSP ap-
proach computes maximally compact sets of points used as
hydrophobic cores. Then, it searches for a structure constrain-
ing the H-monomers to the H-core positions of the optimal
hydrophobic core, obtaining a minimal energy conformation
[7]. The CPSP approach obtains 69 HH contacts for that
sequence. It should be taken into account that our objective
is to define a possible modeling of the folding process and not
to compete with the direct prediction methods of the final
folded structure. But at the same time, this result indicates
that the information the ANN receives may be insufficient in
order to obtain the best optimized conformation regarding
the number of HH contacts.

Figure 5 is another example with a PDB protein (3mse)
with 179 amino acids. As in the previous case, the folded
conformation provided by the best evolved neural cellular au-
tomaton does not obtain an optimal conformation, although
many HH contacts are obtained in localized areas of the
folded conformation. This conformation has 86 contacts out
of 323 contacts of the optimal structure, obtained in this case
by an exhaustive search [16]. This suggests that the radius
considered to check the contacts around the central amino
acid i (Figure 2), in order to inspect the dynamic energy
landscape, should be tuned in relation, for example, to the
protein length.

Figure 5: Final folded conformation of pdb sequence 3mse.

4 CONCLUSIONS
The neural-CA methodology provides an alternative to define
the temporal folding process of a protein. Unlike the ample
research performed on the protein prediction problem, which
is only aimed at predicting the final folded conformation,
the methodology presented here is an attempt to model
the folding process as an emergent and dynamic process,
incorporating the constraints of the FCC lattice model used.
The next steps in this research must be focused on obtaining
a better detailed view of the dynamic energy landscape the
ANN receives and on the training of the ANN with different
proteins and on the validation with other proteins.
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