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ABSTRACT
�e simultaneous optimization of multiple objectives arises in sev-

eral problems in di�erent disciplines. �is optimization, mainly for

many-objective problems brings challenges to the state-of-the-art

Multi-Objective Evolutionary Algorithms. Given the various char-

acteristics of the di�erent problem instances and also the features

of the algorithms, no single algorithm performs well in all prob-

lem instances. Although, if the algorithms characteristics could be

combined, cooperatively, to face the problem together, the search

ability can be improved. In this work, we evaluate this research

question and propose a distributed framework for cooperation

of Many-objective Evolutionary Algorithms. In the framework,

di�erent algorithms can be executed simultaneously, with small

sub-populations and collectively solve the problem instance. �e

framework performs the cooperation by sharing solutions between

the subpopulations. In this way, sharing the information learned

from one algorithm to the other. �e framework is evaluated us-

ing two state-of-the-art algorithms for cooperation, and compared

to the algorithms executed alone. �e results indicate that the

cooperation improves the convergence and diversity of the algo-

rithms in most problem instances. �e obtained results motivate

the investigation of future works on the proposed framework.
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1 INTRODUCTION
Several real-world problems involve the simultaneous optimiza-

tion of two or more objectives. �ey are usually con�icting, which

di�culties the optimization of one without decreasing the quality

of the other. �e aim of the Multi-Objective Evolutionary Opti-

mization is to �nd an approximation set of non-comparable (or

non-dominated) solutions. �ose solutions should be as close as

possible to the non-dominated front of the problem (the Pareto

front set), and well diversi�ed, comprising solutions with di�erent

trade-o�s between the objectives [3].

�e Evolutionary Algorithms (EAs) were adapted to Multi-Ob-

jective Optimization (MOO), creating the Multi-Objective Evolu-

tionary Algorithms (MOEAs). Besides their good results in the

single-objective, another characteristic contributes to the use of

EAs for MOO: the ability to output a set of solutions in a single run.

�is ability allows the algorithm to output, in a single execution,

a Pareto set approximation, with several solutions representing

di�erent trade-o�s between the objectives [3].

�e adaptation of EAs to MOO was capable of achieving success

when applied to multi-objective problems (with two or three). Al-

though, problems with more than three objectives arise naturally in

several disciplines, and the MOEAs face challenges when applied for

many-objective optimization [6, 13]. One of the di�culties in han-

dling many-objective problems is that a signi�cant portion of the

population is non-comparable, a�ecting the quality of the selection

of solutions to guide the search. Also, the recombination operator

may be ine�cient, as it o�en generates solutions widely di�erent

from the parents due to the large-dimensional space. Another di�-

culty is the increasing of the computational cost to compute quality

measures, such as diversity and convergence. It is also di�cult

for the decision maker, �rst because a signi�cant number of solu-

tions is necessary to represent the di�erent trade-o�s between the

objectives. Further, the visual comparison of solutions in a high

dimension may be di�cult [6].

�ere are various algorithms for many-objective optimization

in the literature [13]. Although, according to the No Free Lunch

�eorem [19], if someone executes all algorithms for all problems,

in average, they would all perform similarly. However, no single al-

gorithm can outperform in all problems. �at is, the algorithms per-

form di�erently depending on the problem characteristics and the

number of objectives. �e aim of this paper is to join the strengths

of di�erent algorithms in a cooperative way. For this goal, we pro-

pose a distributed framework for cooperation of Many-objective

Evolutionary Algorithms (COMOEA). �e COMOEA distributes the

population between the algorithms creating small subpopulations,

each one executing a di�erent MOEA. �e information learned
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using one algorithm can be used to improve the others, using an

information exchange policy. Also, the cooperation of strategies

or parameter se�ings increases the robustness of global search on

di�erent problem characteristics [1, 4]. �e COMOEA framework is

a multi-population and multi-strategy approach for many-objective

optimization.

In this work, two state-of-the-art MOEAs were selected to assess

the quality of the proposed framework: NSGA-III [6] and MOEA/D-

STM [16]. We compare the cooperation between those MOEAs,

using the proposed framework, to the MOEAs executed alone. �e

performed experiments use 3 to 15 objectives, in 6 di�erent prob-

lem instances, representing di�erent MOP characteristics. Two

employed quality measures, IGD and Hypervolume, assessed the

convergence and diversity of the generated results.

In most problem instances, the cooperation between the algo-

rithms using the proposed approach was the best or equivalent

than the MOEAs executed alone, for both IGD and Hypervolume.

�e obtained results indicate that the proposed framework is capa-

ble of combining the strengths of MOEAs, improving the quality

of the output, and encourages further investigation on the topic.

�e following sections present initially some related works and

background about many-objective optimization, hybrid approaches,

and distributed evolutionary algorithms at Section 2. Section 3

describes the proposed framework, the general procedure, and de-

tails. �en, at Section 4, the COMOEA is instantiated using two

MOEAs, NSGA-III and MOEA/D-STM. �e section presents brie�y

the MOEAs used for cooperation and some implementation details.

�e experimental setup is shown next, in Section 5, such as the

number of objectives, population sizes, benchmark problems and

quality measures. Finally, Section 6 presents the average results

of the evaluated algorithms, for each problem instance and quality

indicator. Besides, it presents also a general comparison among

the algorithms. At last, the major conclusions arrives in Section 7

along with some topics for further research.

2 LITERATURE REVIEW
�is section presents some literature review and background about

the topics related to this work. First, we present a review of the

state-of-the-art many-objective optimization. �en, it is described

some works on hybrid evolutionary algorithms for many-objective.

Finally, we show a short review about distributed evolutionary

algorithms.

2.1 Many-objective Optimization
�ere are di�erent approaches for many-objective optimization in

the literature [13]:

• �e aggregation-based, such as MOEA/D, MOEA/D-DRA

[20], MOEA/D-STM [16] and MOEA/DD [15]. �ey do

not su�er from the selection pressure problem as they do

not use Pareto dominance. However, they still su�er from

the di�culty to search the space in high dimensionality

(“curse of dimensionality”). Also, the construction of a

well-spread set of points in a high dimension space may

be an issue [13].

• �e indicator based, such as SMS-EMOA, HypE, MOMBI-II,

and IBEA [13]. �ey also do not use Pareto dominance,

so, they do not su�er from the selection pressure problem.

However, the computational cost is an issue when the in-

dicator used is the Hypervolume, plus, the algorithm may

prefer the knee points instead of a uniform distributed set.

Although, other indicators may lead performance degrada-

tion due they are not strictly monotonic. Besides, they also

su�er from the curse of dimensionality [13]. Li et. al [14]

proposes a multi-indicator algorithm (SRA), since indica-

tors may have di�erent biases, one might complement

the other. �e SRA was implemented using two quality

indicators, one for convergence and other for diversity.

Besides, an archive strategy is capable of improving the

performance of SRA [14].

• �e preference-based approaches that can be split on: a

priori, during the search and post optimization [13].

• �e dimensionality reduction approach that tries to remove

redundant objectives, which limits the application of the

approach to problems with redundant objectives [13].

• Besides, there is also research on relaxed dominance, such

as GrEA. A di�culty of these methods is the tuning of the

relaxation for di�erent problems [14].

• Also, there are the diversity based approaches, such as

Shi�-based Density Estimation (SDE) [14].

• Hybrid approaches, such as NSGA-III [6] that combines

Pareto and aggregation [14]; and Two Arch2 [17], where

one archive is guided by a quality indicator while the other

uses Pareto dominance and a distance measure.

Other research related to many-objective optimization may in-

clude customized mutation and crossover operators, and measures

for diversity and convergence.

2.1.1 Many-objective Hybrid approaches. Since the proposed

framework is a hybrid approach in this section, we emphasize some

hybrid approaches from the literature.

• �e Two Arch2 [17], that uses two di�erent selection prin-

ciples to update two archives. One archive is intended to

promote the convergence, using the additive epsilon in-

dicator (Iϵ+) to select the solutions. �e other archive is

designed for diversity and stores the non-dominated so-

lutions and prunes the archive with a proposed diversity

maintenance scheme based on the Lp -norm-based distance.

• �e PMEA [18], which keeps three di�erent populations,

guided by three distinct environment selection strategies: a

decomposition-based (guided by the Penalty-based Bound-

ary Intersection utility function - PBI), an indicator based

(Iϵ+) and a Shi�-based Density Estimation. First, the algo-

rithm selects the parents randomly with equal probability

for each population. �en the o�spring set is generated by

SBX and polynomial mutation. A�er that, each population

is updated, in parallel, with the generated o�spring, each

one using its selection strategy.

• �e HEA-DP proposes a dual population MOEA [21]. �e

Hybrid Evolutionary Algorithm with Dual Population com-

bines decomposition and indicator based approaches. �e

environment selection for the �rst population is deter-

mined by an aggregation function (PBI), while for the other

population it is de�ned by the additive epsilon indicator
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(Iϵ+). �e parent selection is performed randomly selecting

solutions from both populations.

�e Two Arch2 [17], PMEA [18], and HEA-DP [21] share similar

characteristics for combining multiple strategies. All of them keeps

multiple populations (or archives) updated by di�erent quality mea-

sures. Also, they combine the information of the quality measures

by selecting parents from the di�erent populations. Another sim-

ilarity is the selected quality measures used for environmental

selection: the Iϵ+ for HEA-DP, PMEA, and Two Arch; and the PBI

utility function for PMEA and HEA-DP. �ose works selected these

metrics due to previous good results obtained in the literature.

2.2 Distributed Evolutionary Algorithms
�e distributed evolutionary algorithms (dEA) for multi-objective

optimization is a hot-spot in the dEA �eld [11]. �e distribution al-

lows to maintain the population diversity and avoiding local optima.

�is section presents some characteristics of previous works and an

example of a multi-population distributed evolutionary algorithm.

• Many existing distributed MOEAs are based on NSGA-II,

varying according to the model used [11].

• Also, some works have developed Distributed versions of

MOEA/D [11].

• Besides, there is also works on distributed SPEA, VEPSO,

and PSFGA [11].

• �e coevolutionary MOEAs divides the decision vectors

into subcomponents and evolves the di�erent parts coop-

eratively [11].

• Although, most works apply the model homogeneous, ap-

plying the same algorithm for all subpopulations [11].

An example of multi-population distributed evolutionary al-

gorithm is the AsAMPdDE, presented by Falco et. al. [10], that

proposes an asynchronous adaptive multi–population model for

Distributed Di�erential Evolution (AsAMP-dDE). �e motivation

is that the population partition explores the search space more

evenly and preserves an overall higher diversity. �e AsAMP-dDE

is also adaptive, with the hope that the subpopulations with poor

performance will eventually �nd a parameter set values capable of

enhancing their performance. Every iteration, each subpopulation

performs the information exchange using a migration policy. �e

algorithm was proposed for single objective problems and evaluated

on the CEC2016 benchmark with good performance.

2.3 Discussion
In [13] it is suggested the research on hybrid algorithms, combining

two or more approaches together. �e approach proposed in this

paper is one way to ful�ll this suggestion, as it allows the execution

of di�erent approaches together. For instance, the performed ex-

periments combine an aggregation approach MOEA/D-STM, with

a hybrid (aggregation and Pareto) NSGA-III. In the case of using

aggregation based approaches the decision maker preferences can

be introduced a priori by placing the reference vectors on the pre-

ferred regions of the space. A two-layer weight vector generation

method [15] can be used to generate a limited number of reference

points, spread in the objective space and with intermediate points

for many-objective problems.

Compared to other hybrid algorithms the COMOEA presents

some di�erences and similarities. �e Two Arch2 [17], and PMEA

[18], and HEA-DP [21] achieves good results by storing di�erent

archives (or populations) �ltered by various selection approaches.

�ose works [17, 18, 21] demonstrates that the cooperation of dif-

ferent approaches can improve the MOEAs performance. �ey

share with the proposed framework the characteristic of combining

di�erent strategies. One major di�erence of the COMOEA is that

our objective is to combine entire MOEAs, while the works men-

tioned above only combine di�erent environment selection. �e

COMOEA splits a single population, of size N , into k smaller pop-

ulations of size N /k , each one executing a di�erent MOEA. Each

MOEA applying its parent selection, recombination strategy and

environment selection approach. Besides the proposed framework

is a general approach that could be implemented to combine any

MOEAs. For instance, the proposed framework could be used to

combine the Two Arch2, PMEA and HEA-DP cooperatively.

According to the taxonomy proposed by Gong et. al. [11], the

COMOEA uses the population distributed model. More speci�cally

it can be seen as an island model, as it divides the global population

into several subpopulations. Besides, the COMOEA is heteroge-

neous, as the algorithmic se�ings vary for each subpopulation.

Compared to the AsAMP-dDE [10], the COMOEA also explores the

multi-population characteristics. However, it is proposed to solve

many-objective problems. Similarly to AsAMP-dDE, the COMOEA

shares the information between the subpopulations. One di�er-

ence is that, on COMOEA, each subpopulation executes a di�erent

MOEAs, sharing the information learned from various approaches.

3 THE PROPOSED FRAMEWORK
�is section describes the proposed distributed framework for coop-

eration of Many-objective Evolutionary Algorithms. �e objective

is to use the di�erent characteristics of the algorithms to explore

the search space. An algorithm may improve in some areas of the

space where others may stagnate. Besides, the cooperation may

increase diversity, creating solutions based on di�erent approaches.

We use the distributed population island model. �e advantage

of using the island model is that it improves the search ability of EAs,

avoiding premature convergence [11]. �e framework instantiates

several islands, each island with a small population size. Each

island executes a di�erent MOEA on the same problem instance

independently. Each MOEA applies its rules for the parent selection,

recombination, and environmental selection. A�er a certain time,

the MOEA shares some information with its neighbors. When an

MOEA receives some information from a neighbor, it somehow

introduces this information into its search.

�e general framework proposed can be implemented in several

ways, as each design choice leads to a di�erent implementation. We

identi�ed four design choices about how to perform the distribution:

(1) Which information to exchange?

(2) When to perform the information exchange?

(3) How exchange the information?

(4) What to do with this information?

Also, we identi�ed two design choices related to the MOEAs

selected for cooperation:

(1) Which MOEAs select to cooperate?
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(2) How to decompose the problem?

In this work we implemented the proposed framework as follows:

�e communication occurs when some individuals migrate from

one island to the other. In COMOEA, each island (population) send

all generated solutions to the others. �en each one �lters which

received solutions to accept and which solutions from its popu-

lation to discard to keep the population size. �e COMOEA uses

a complete graph topology, as it shares the information between

all populations. �e framework was implemented synchronously,

as the migration only occurs a�er all populations have �nished

generating the o�spring.

Figure 1 depicts the implementation of the proposed framework

used in this work. First, the framework initializes the problem

instance, the maximum number of �tness evaluations and the pool

of algorithms that are going to cooperate. �e general structure

required, for this approach, of an evolutionary algorithm is:

(1) Initialize MOEA: A method for initialization of the algo-

rithm. Such as, create the initial population, initialize met-

rics and set the initial values for variables.

(2) Generate O�spring: Uses the algorithm population to select

and reproduce generating an o�spring set. In this step,

the generated o�spring set is evaluated on the problem

instance and returned to the framework.

(3) Update Population: Receives a solution set and update the

algorithm population based on the algorithm replacement

rules.

A�er the initialization of the framework, the MOEAs from the

pool are initialized, using the methodology of each MOEA. �e

stop condition is evaluated based on a maximum number of �tness

evaluations (or the max number of generations times the population

size). While is not met the stop criterion, the framework operates

as follow: First, the MOEAs generate their o�spring, each one using

its population and methodology. �en, the produced solutions of

all algorithms are joint on a single set. Finally, the MOEA updates

its population using the o�spring set of all MOEAs, based on the

MOEA rules of replacement. �e cooperation is when the o�spring

generated by all algorithms are joint. On the update population step,

the MOEA may select solutions from any algorithm to compose its

current population.

When the framework meets the stop criterion, it is joined all

populations from all MOEAs, and the output is the non-dominated

set of solutions. When cooperating between algorithms that use a

set of reference vectors to guide the search the set of vectors may be

split between the MOEAs to guide them towards di�erent regions

of the search space. It is proposed to intercalate the vectors among

the MOEAs, combining the algorithms.

4 MAOEAS SELECTED FOR COOPERATION
To evaluate the proposed framework two state-of-the-art MOEAs

were chosen, NSGA-III [6] and MOEA/D-STM [16]. �e algorithms

were adapted to be applied cooperatively, with methods to ini-

tialization, generating the o�spring and update the population.

�e Sections 4.1 and 4.2 presents a description about the selected

MOEAs. Both algorithms of the pool use reference vectors to guide

the search. In this work, the objective space was decomposed using

a reference set of points, split between the algorithms, alternating

Figure 1: Implementation of the proposed framework

between one and the other. �e COMOEA could also use algo-

rithms that do not use reference vectors, cooperating with them

or even with algorithms that use reference vectors. �e proposed

framework uses, as total population size, the population size of the

algorithms executed alone, to perform a fair comparison. So, the

population size of each subpopulation is the total population size

divided by the number of MOEAs cooperating.

4.1 NSGA-III
�e main characteristic of the NSGA-III [6] is the diversity main-

tenance by a supplied and adaptively updated set of well-spread

reference points. �e remaining of the algorithm is similar to the

original NSGA-II [7]. First, it is applied recombination and mu-

tation over the solutions; then the population (P of size N ) and

o�spring (Q of size N ) are merged, constituting a solution set R of

size 2N . A�er, the individuals are sorted using the non-dominated

sort approach. �en, each non-dominated level is added to a set S
until the size of S exceeds N . If there is no room for all solutions

of the last non-dominated level (Fl ) to be included in S , a diversity

maintenance approach is applied.

At the diversity maintenance the NSGA-II and NSGA-III di�ers,

one applies the Crowding Distance for diversity, while the other

uses a reference point set. �e �rst phase of the NSGA-III diver-

sity approach is the adaptive normalization of the population. �e

normalization translates the solutions by subtracting the minimum
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value of each objective. �en the extreme point of each axis is iden-

ti�ed. �e extreme point is used to constitute a multi-dimensional

hyperplane. �en it is computed the intersection of the hyperplane

and the axis (ai intercept a of i-th objective). Finally, it calculates

the normalization as presented by Equation 1:

f ni (x) =
fi (x) − zmin

i

ai − z
min
i

(1)

�e normalization is performed every iteration and adaptively main-

tains the diversity. �is normalization enables the application of

NSGA-III to problems with di�erent objective scales.

A�er the normalization, the algorithm associates each solu-

tion in S with the closest reference line (using perpendicular dis-

tance). �en, it counts the number of solutions from Pt+1 (where

Pt+1 = St \Fl ) associated with each reference point and identi�es

the reference line (ωj ) with the minimum associated solutions. If

the reference line has no solutions from Pt+1 associated, and there

are one or more members of Fl associated with the reference line,

then the solution from Fl with the shortest perpendicular distance

to the reference line is added to Pt+1. If the reference line has one

or more solutions from Pt+1 associated, then a solution from Fl ,
associated with ωj , is randomly chosen. In any case that, there is

no solution from Fl associated with ωj the reference line does not

receive a new solution. �is process is repeated iteratively until the

population size is full (|Pt+1 | = N ).

Initially, the reference points are generated using the Das and

Dennis [5] approach, but any set of points could be used to rep-

resent the preferences direction of the user. Equation 2 gives the

number of reference points, wherem is the number of objectives

and p is the number of divisions per objective. With a uniform

spacing of δ = 1/p, as illustrated in the Figure 2. �e value of p
should be p ≥ m to have intermediate points. However, with the

increasing of the number of objectives, the number of reference

points increases largely, a�ecting the computational cost. We used

a two-layer method when m ≥ 8 to overcome this di�culty, as

presented by [6] and [15] and illustrated in the Figure 3. First, it cre-

ates a boundary layer; then another layer is produced and shrunk

by a transformation to cover the inside regions of the objective

space [15].

H =

(
m + p − 1

p

)
(2)

Figure 2: Reference points generation example, p = 4,m = 3

and H = 15. Figure adapted from [15].

Figure 3: Two-layer reference points generation example,
pboundary = 2, pinside = 1,m = 3 and H = 9. Figure adapted
from [15].

4.2 MOEA/D-STM
�e MOEA/D-STM [16] proposes a new environment selection for

MOEA/D. �e MOEA/D-STM uses the Stable Matching (STM) based

selection model derived from the Stable Marriage Problem (SMP).

�e SMP matches two sets of agents A and B. It is considered an

unstable marriage when two agents, one from A and one B, are

married but both prefers to be married to other agents from B and

A respectively. �e objective is to match the agents from A and B
without generating unstable marriages. On MOEA/D-STM the aim

is to match the weight vectors with the solutions. �e algorithm

maintains a population P of size N associated with a set of weight

vectors W , also of size N . It also maintains the ideal and nadir

objective vectors z∗ and znad . �e algorithm updates the nadir and

ideal points with the minimal and maximal points for each objective.

Moreover, each weight vector has an associated neighborhood. �e

neighborhood of one weight vector wi
are the T closest weight

vectors to wi
.

�e MOEA/D-STM inherits from MOEA/D-DRA the Dynamic

Resource Allocation. Every iteration a 10-tournament selection is

applied to compose a set of weight vectors to be updated. A utility

function evaluates the quality of the weight vector. �e value of the

utility function is updated every a certain number of iterations. �e

reproduction uses Di�erential Evolution and polynomial mutation.

�e selection is performed randomly from the neighborhood (with

probability δ ) or the whole population (with a probability of 1 − δ ).

�en the algorithm evaluates the generated solution by the �tness

function. �e ideal and nadir points are updated. �e produced

o�spring is merged with the parent population and submi�ed to the

STM environment selection. �e Stable Matching (STM) selection

works as follow: First, all subproblems and solutions are set to be

free. �en, iteratively until there is no subproblems free do: select

subproblem, that does not have an associated solution, randomly.

�en �nds the solution that minimizes the aggregation subproblem

function, to which the subproblem has not proposed yet, and o�er

to pair. If the solution is free, it accepts to pair. If it is not free, the

solution compares its current pair with the subproblem and selects

the closest. �en it pairs with the closest one, and the other is free.
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5 EXPERIMENTAL SETUP
�is section presents the experimental setup used in this paper.

�e objective is: empirically evaluate if, the proposed approach for

cooperation, improves the performance of the MOEAs regarding

convergence and diversity. On the experimental analysis, we will

compare three algorithms. 1) �e cooperation between NSGA-III

and MOEA/D-STM, using the proposed approach (COMOEA); 2)

�e NSGA-III and; 3) the MOEA/D-STM. For that comparison, six

benchmark problems will be used, with di�erent values of objec-

tives. �e methodology employed for the experiments is based

on [6]. �e number of iterations used for di�erent test instances

variates according to the problem and number of objectives and

it is presented by Table 1. We selected the benchmark problems

used in this experiments from DTLZ [8] and WFG [12] families of

problems, as illustrated by Table 2. We set the number of decision

variables according to the values proposed by the benchmark au-

thors and varying according to the number of objectives [8, 12].

�e experiments were performed using 3 to 15 objectives (m). �e

selected benchmark problems represent di�erent characteristics

of MOPs (Multi-Objective Problems), such as linear and concave

shapes, multi-modality and separability. For instance, the DTLZ1

and DTLZ3 are hard-to-converge multi-modal problems, WFG6

is a non-separable reduced problem, and WFG7 is separable, uni-

modal [17].

Table 1: Number of iterations for di�erent test instances.

Number of objectives (m)

Problem 3 5 8 10 15

DTLZ1 400 600 750 1000 1500

DTLZ2 250 350 500 750 1000

DTLZ3 1000 1000 1000 1500 2000

DTLZ4 600 1000 1250 2000 3000

WFG6 400 750 1500 2000 3000

WFG7 400 750 1500 2000 3000

Table 2: Characteristics and number of decision variables of
the problems used.

Problem Characteristics Decision Variables Number

DTLZ1 linear, multi-modal m + k − 1, k = 5

DTLZ2 concave m + k − 1, k = 10

DTLZ3 concave, multi-modal m + k − 1, k = 10

DTLZ4 concave, biased m + k − 1, k = 10

WFG6 concave, non-separable k + l , k = 2 × (m − 1), l = 20

WFG7 concave, biased k + l , k = 2 × (m − 1), l = 20

�e proposed framework was evaluated using two state-of-art

Multi-Objective Evolutionary Algorithms: MOEA/D-STM [16] and

NSGA-III [6] (described in Section 4). �ey share the characteristic

of using a reference set of points to guide the search. However, they

use di�erent quality measures for parent and replacement selec-

tions. �e reference set of points was split between the algorithms,

alternating between one and the other. We con�gure the population

size of each cooperative party according to the number of reference

points associated with it. Table 3 presents the population size (and

the number of reference points) associated with each algorithm.

�e reference points and the population size are based on [6].

Table 3: Population size (and corresponding reference
points) used by the NSGA-III and MOEA/D-STM for cooper-
ation, and NSGA-III and MOEA/D-STM alone.

m
COMOEA

NSGA-III MOEA/D

NSGA-III MOEA/D total

3 48 (46) 45 (45) 93 (91) 92 (91) 91 (91)

5 108 (105) 105 (105) 213 (210) 210 (210) 210 (210)

8 80 (78) 78 (78) 158 (156) 156 (156) 156 (156)

10 140 (138) 137 (137) 277 (275) 276 (275) 275 (275)

15 68 (68) 67 (67) 135 (135) 136 (135) 135 (135)

In this table, MOEA/D means MOEA/D-STM.

m is the number of objectives.

To create the reference points set it we used the Das and Dennis’s

approach [5, 6]. �e NSGA-III parameter con�guration employed

in this paper is based on [6]. �e crossover operator is the SBX,

with probability pc = 1.0, and polynomial mutation with proba-

bility pm = 1/n, where n is the number of decision variables. �e

crossover distribution index is set to ηc = 30, and the mutation dis-

tribution index is ηm = 20. For the MOEA/D-STM, the parameter

con�guration is the same as the MOEA/D-STM paper [16]. �e

reproduction is performed using di�erential evolution (DE) and

polynomial mutation. �e mutation probability is pm = 1/n and

the distribution index is ηm = 20. �e DE parametersCR and F are

set to CR = 1.0 and F = 0.5. �e neighborhood size T was set to 20

with a probability to select in the neighborhood of δ = 0.9.

To evaluate the performance of the framework, versus the MOEAs,

executed alone, we used two quality indicators, IGD and Hypervol-

ume [15]:

• �e Inverted Generational Distance (IGD) comprises both

convergence and diversity in a single scalar, with a low

computational cost. Given a Pareto approximation set

A obtained by one execution of an MOEA, the IGD was

computed as presented in Equation 3. WhereZ is a discrete

set of points representing the Pareto front, and dist (a,b) is

the Euclidean distance. It is possible to understand the IGD

as the average distance, from every point of the true Pareto

front to the closest point in the approximation set. As near

to the Pareto front is the approximation set, smaller is the

IGD value [6], [16].

IGD (A,Z ) =

∑ |Z |
i=1

min
|A |
j=1

dist (zi ,aj )

|Z |
(3)

• �e Hypervolume (HV) measures the multidimensional

volume of the objective space dominated by a solution

set, bounded by a reference point (or nadir point) z [15].

�e Equation 4 illustrates the HV computation. Where

VOL(·) is the Lebesgue measure; In this paper, we set the

nadir point according to each problem instance, and any

solution worse than the nadir point, in any objective, was

not considered for the hypervolume computation [15]. �e
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nadir point for DTLZ1 was set to (1.0, . . . , 1.0), for DTLZ2

to DTLZ4 to (2.0, . . . , 2.0), and for WFG6 and WFG7 to

(3.0, . . . , 2.0 ×m + 1.0) [15].

HV (S ) = VOL
*
,

⋃
x∈S

[f1 (x), z1] × . . . [fm (x), zm]
+
-

(4)

�e hypervolume is the only metric strictly monotonic;

i.e., if a Pareto setA dominates another Pareto setB then the

hypervolume value of A will be larger (be�er) than B. �e

main disadvantage of hypervolume is its computational

cost and the bias towards the knee regions of the Pareto

front [2].

6 EXPERIMENTAL RESULTS
�is section presents the comparison among the con�gured CO-

MOEA (using NSGA-III and MOEA/D-STM), versus NSGA-III and

MOEA/D-STM alone. �e Tables 4 and 5 presents the mean of the

quality indicator (and standard deviation) results for Hypervolume

and IGD. For each problem, the boldface represents the best result.

�e gray background represents if the result is di�erent from the

others. �e di�erence is evaluated statistically with pairwise com-

parisons, a�er Kruskal-Wallis rank sum test with 95% signi�cance.

�e pairwise comparison is performed using Tukey and Kramer

(Nemenyi) test with Tukey-Dist approximation for independent

samples.

�e COMOEA achieved the best results in most problems for

Hypervolume (Table 4), 26 best averages, 22 of them with statistical

di�erence (for 30 evaluated problems). It also achieved the best

result in most of the problem instances, 26 of 30, for IGD (Table 5),

with a statistical di�erence in 21 problems. �e MOEA/D-STM

(without cooperation) achieved the best average in 4 problem in-

stances for hypervolume and 3 instances for IGD, with statistical

signi�cance on the DTLZ1 with 15 objectives for the Hypervolume

�e NSGA-III achieved only 1 best averages for IGD, without a

statistical di�erence to the other evaluated algorithms.

Due to the di�erences between the quality indicators they do

not agree in all problem cases. Although, it is possible to observe

that, in general, the COMOEA obtained the best results in most

problem instances, with signi�cance in many cases, for both quality

indicators. �e pairwise comparison supports this conclusion. �e

pairwise comparison compares all algorithms against each other

with the Nemenyi test with 99% signi�cance. �e data used is the

indicator mean for each problem. Critical di�erence plots, proposed

by [9], present the results for each quality indicator. �e plot con-

nects the group name with its average ranking, and a bold line

connects the groups that are statistically equivalent.

In a general comparison, the cooperation between the MOEAs

obtained the best average ranking, with statistical signi�cance, in

all evaluated quality indicators, Hypervolume (Figure 4) and IGD

(Figure 5). Followed by MOEA/D-STM, and then the NSGA-III.

Although, there was statistically equivalence between the NSGA-III

and MOEA/D-STM for IGD.

�is section presented the experimental results. In most prob-

lems, the cooperation between the algorithms was capable of achiev-

ing best results or equivalent than the evaluated MOEAs applied

alone. It was possible to observe a statistical signi�cance in the

Table 4: �emean (and standard deviation) of Hypervolume.
�e best results are in boldface and a statistical di�erence in
a gray background.

Obj. problem COMOEA MOEADSTM NSGAIII

3

DTLZ1 9.7E-1(4.92E-4) 9.67E-1(5.64E-4) 9.16E-1(3.43E-2)

DTLZ2 7.38E0(3.91E-3) 7.37E0(3.06E-3) 6.68E0(2.75E-1)

DTLZ3 7.38E0(4.23E-3) 7.35E0(1.2E-2) 6.2E0(7.17E-1)

DTLZ4 7.33E0(2.18E-1) 7.36E0(3.25E-2) 6.82E0(8.05E-1)

WFG6 6.75E1(4.41E-1) 6.71E1(1.28E-1) 5.35E1(4.05E0)

WFG7 7.21E1(5.59E-1) 7.12E1(6.03E-1) 4.39E1(4.83E0)

5

DTLZ1 9.98E-1(4.27E-5) 9.54E-1(1.01E-1) 9.57E-1(5.26E-2)

DTLZ2 3.16E1(3.7E-3) 3.15E1(8.48E-3) 2.96E1(1.05E0)

DTLZ3 3.16E1(5.49E-3) 1.97E1(1.25E1) 2.49E1(1.12E1)

DTLZ4 3.16E1(9.68E-3) 3.15E1(2.41E-2) 3.07E1(5.63E-1)

WFG6 7.81E3(9.17E1) 7.18E3(1.57E2) 4.17E3(4.1E2)

WFG7 8.6E3(1.32E2) 7.66E3(2.04E2) 4.36E3(6.74E2)

8

DTLZ1 9.95E-1(1.09E-3) 9.95E-1(1.11E-3) 6.26E-1(3.64E-1)

DTLZ2 2.41E2(2.58E0) 2.37E2(2.47E0) 2.02E2(2.04E1)

DTLZ3 2.4E2(2.7E0) 2.35E2(3.09E0) 0E0(0E0)

DTLZ4 2.53E2(1.16E0) 2.42E2(1.42E0) 2.2E2(1.57E1)

WFG6 2.24E7(9.08E5) 2.21E7(1.07E6) 5.65E6(1.17E6)

WFG7 2.32E7(8.84E5) 2.11E7(9.02E5) 6.05E6(8.79E5)

10

DTLZ1 9.97E-1(6.07E-4) 9.97E-1(2.43E-4) 6.53E-1(3.1E-1)

DTLZ2 9.62E2(8.73E0) 9.39E2(8.04E0) 8.75E2(5.25E1)

DTLZ3 9.57E2(7.48E0) 9.27E2(9.49E0) 0E0(0E0)

DTLZ4 1.02E3(3.36E0) 9.49E2(1.06E1) 8.22E2(4.16E1)

WFG6 9.43E9(6.88E8) 8.78E9(7.41E8) 2.1E9(3.57E8)

WFG7 9.91E9(3.78E8) 8.79E9(4.42E8) 2.72E9(4.77E8)

15

DTLZ1 9.78E-1(6.1E-3) 9.85E-1(1.55E-3) 6.15E-1(2.93E-1)

DTLZ2 2.54E4(8.39E2) 2.47E4(5.66E2) 2.35E4(2.05E3)

DTLZ3 2.56E4(1.22E3) 2.42E4(7.13E2) 0E0(0E0)

DTLZ4 3.13E4(4.11E2) 2.57E4(7.74E2) 2.68E4(2.59E3)

WFG6 9.56E16(9.53E15) 9.03E16(1.03E16) 1.96E16(5.5E15)

WFG7 8.11E16(6.07E15) 6.52E16(8.32E15) 2.27E16(6.1E15)

Table 5: �e mean (and standard deviation) of IGD. �e best
results are in boldface and a statistical di�erence in a gray
background.

Obj. problem COMOEA MOEADSTM NSGAIII

3

DTLZ1 7.17E-3(3.18E-4) 8.15E-3(9.89E-5) 2.25E-2(1.02E-2)

DTLZ2 8.98E-3(2.7E-4) 8.97E-3(7.91E-5) 1.95E-2(5.45E-3)

DTLZ3 9E-3(4.71E-4) 9.17E-3(1.31E-4) 3.5E-2(1.64E-2)

DTLZ4 1.23E-2(1.39E-2) 1.49E-2(1.05E-2) 3.67E-2(3.38E-2)

WFG6 1.09E-2(5.81E-4) 1.2E-2(4.15E-4) 2.37E-2(5.49E-3)

WFG7 9.6E-3(6.65E-4) 1.03E-2(2.92E-4) 3.83E-2(7.96E-3)

5

DTLZ1 1.07E-2(2.59E-4) 2.19E-2(6.49E-3) 2.12E-2(1.04E-2)

DTLZ2 1.57E-2(2.92E-4) 2.21E-2(1.64E-4) 2.11E-2(3.18E-3)

DTLZ3 1.59E-2(4.45E-4) 1.51E-1(2.59E-1) 5.92E-2(7.08E-2)

DTLZ4 1.88E-2(4.04E-4) 2.38E-2(1.44E-3) 3.48E-2(9.51E-3)

WFG6 1.68E-2(9.97E-4) 2.38E-2(1.18E-3) 3.07E-2(3.22E-3)

WFG7 2.1E-2(2.6E-3) 3.31E-2(2E-3) 3.54E-2(7.03E-3)

8

DTLZ1 2.88E-2(9.39E-4) 3.26E-2(5.95E-4) 8.73E-2(5.16E-2)

DTLZ2 4.57E-2(1.56E-3) 5.39E-2(9.97E-4) 5.76E-2(7.54E-3)

DTLZ3 4.66E-2(1.72E-3) 5.6E-2(3.71E-3) 5.37E0(2.17E0)

DTLZ4 4.49E-2(5.16E-3) 5.96E-2(4.43E-3) 8.34E-2(6.35E-3)

WFG6 4.1E-2(4.43E-3) 4.44E-2(3.83E-3) 6.35E-2(5.43E-3)

WFG7 6.13E-2(5.98E-3) 5.87E-2(6.62E-3) 7.8E-2(9.51E-3)

10

DTLZ1 2.36E-2(5.59E-4) 2.72E-2(3.02E-4) 6.84E-2(3.27E-2)

DTLZ2 3.95E-2(7.38E-4) 4.58E-2(5.36E-4) 4.55E-2(4.64E-3)

DTLZ3 4.03E-2(1.3E-3) 4.71E-2(1.13E-3) 4.66E0(2.26E0)

DTLZ4 3.71E-2(2.66E-3) 4.87E-2(2.36E-3) 7.04E-2(2.22E-3)

WFG6 3.87E-2(4E-3) 4.63E-2(2.79E-3) 4.97E-2(3.8E-3)

WFG7 6.57E-2(7.46E-3) 6.79E-2(1.3E-2) 7.62E-2(9.92E-3)

15

DTLZ1 5.17E-2(1.78E-3) 5.41E-2(5.41E-4) 1.04E-1(5.24E-2)

DTLZ2 8.34E-2(3.79E-3) 8.72E-2(1.92E-3) 9.82E-2(3E-3)

DTLZ3 8.32E-2(4.1E-3) 8.92E-2(2.46E-3) 4.56E0(3.18E0)

DTLZ4 7.38E-2(2.39E-3) 8.92E-2(3.31E-3) 1.07E-1(4.35E-3)

WFG6 1.46E-1(7.2E-2) 1.27E-1(1.6E-2) 1.19E-1(8.84E-3)
WFG7 1.24E-1(8.52E-3) 1.2E-1(1.15E-2) 2.09E-1(3.35E-2)
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Figure 4: Critical di�erence plot for Hypervolume indicator.
�e algorithms that are not joined by a bold line can be re-
garded as di�erent.

1 2 3

CD
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Figure 5: Critical di�erence plot for IGD indicator. �e algo-
rithms that are not joined by a bold line can be regarded as
di�erent.

quality improvement. �e empirical results obtained in this ex-

periments indicates that the cooperation between Multi-Objective

Evolutionary Algorithms is capable of improving the quality of

them for Multi-Objective Optimization.

7 CONCLUSION
In this work, we presented a distributed framework for cooperation

of Many-objective Evolutionary Algorithms. �e objective was

to propose a way to combine the algorithms strengths, executing

di�erent sub-populations and migrating solutions from them. To

do so, each MOEA generates an o�spring, based on its rules and

using its subpopulation. �en the o�spring from all MOEAs are

joined in the same solution set. �is solution set is then sent to

the MOEAs to update their population using each one its environ-

mental selection rules. To evaluate the framework a pool of two

state-of-the-art MOEAs were composed: MOEA/D-STM and NSGA-

III. �e cooperation between this two algorithms was compared

with them executed alone and the results evaluated by IGD and

hypervolume quality indicators. �e collaboration between the

algorithms was capable of improving the convergence and diversity

of the algorithms in most problem instances for both evaluated qual-

ity indicators. �e results obtained in this paper indicates that the

cooperation between MOEAs may improve the convergence and

diversity of the algorithms. �ose results motivate the investiga-

tion of future works, such as: increasing the number of algorithms

(MOEAs to cooperate); the study of o�ine selection approaches to

compose the pool or online selection to chose a�er a certain time

which MOEA to execute for each subpopulation.

REFERENCES
[1] Enrique Alba, Gabriel Luque, and Sergio Nesmachnow. 2013. Parallel metaheuris-

tics: recent advances and new trends. International Transactions in Operational Re-
search 20, 1 (2013), 1–48. DOI:h�p://dx.doi.org/10.1111/j.1475-3995.2012.00862.x

[2] Dimo Brockho�, Tobias Wagner, and Heike Trautmann. 2012. On the Properties

of the R2 Indicator. In Proceedings of the 14th Annual Conference on Genetic and
Evolutionary Computation (GECCO ’12). ACM, New York, NY, USA, 465–472.

DOI:h�p://dx.doi.org/10.1145/2330163.2330230

[3] Carlos A. Coello Coello, Gary B. Lamont, and David A. Van Veldhuizen. 2006.

Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolu-
tionary Computation). Springer-Verlag New York, Inc., Secaucus, NJ, USA.

[4] Teodor Gabriel Crainic and Michel Toulouse. 2003. Parallel Strategies for Meta-
Heuristics. Springer US, Boston, MA, 475–513. DOI:h�p://dx.doi.org/10.1007/

0-306-48056-5 17

[5] Indraneel Das and J. E. Dennis. 1998. Normal-Boundary Intersection: A New

Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimiza-

tion Problems. SIAM Journal on Optimization 8, 3 (March 1998), 631–657.

[6] K. Deb and H. Jain. 2014. An Evolutionary Many-Objective Optimization Al-

gorithm Using Reference-Point-Based Nondominated Sorting Approach, Part

I: Solving Problems With Box Constraints. IEEE Transactions on Evolutionary
Computation 18, 4 (Aug 2014), 577–601. DOI:h�p://dx.doi.org/10.1109/TEVC.

2013.2281535

[7] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. 2002. A fast and elitist multiob-

jective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computa-
tion 6, 2 (Apr 2002), 182–197. DOI:h�p://dx.doi.org/10.1109/4235.996017

[8] K. Deb, L. �iele, M. Laumanns, and E. Zitzler. 2002. Scalable multi-objective

optimization test problems. In IEEE Congress on Evolutionary Computation, Vol. 1.

825–830.
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