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ABSTRACT
We, as well as others, have already shown in previous works that
reproductive isolation and a large population size are critical to
achieve behavioral specialization in embodied evolutionary robotics.
Here, we extend our previous work from [3] by experimentally
demonstrating that �tness-proportionate and rank-based selection
operators largely outperform other selection operators when it
comes to evolving behavioral specialization.
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1 INTRODUCTION
Embodied evolution (EE), as a sub�eld of evolutionary robotics, is
dedicated to the design of distributed on-line learning algorithms
for swarm/collective robotics [2, 4]. One major challenge is posed
by the acquisition of behavioral specialization, i.e. where two (or
more) sub-parts of a group of robots can evolve di�erent decision-
making strategies when required. As shown in previous works, this
is far from trivial and may only be achieved under very speci�c
conditions.

In our own previous work [3], we showed that reproductive
isolation plays a major role to help bootstrap and maintain more
than one genotypic signature in the population.
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In this paper, we extend our previous work to consider propor-
tionate selection operators, either based on absolute �tness values
(i.e. �tness proportionate selection) or relative �tness values (i.e.
rank-based selection). While other selection methods are now gen-
erally preferred by the community, proportionate selection retains
an interesting feature when it comes to embodied evolution: by
design, these selection methods are able to maintain polymorphism
(i.e. population with more than one family of genotypes) by sam-
pling from the whole population rather than from a truncated part.

We claim, and show in the following, that proportionate selec-
tion methods o�er very e�cient o�-the-shelf solutions to achieve
behavioral specialization in embodied evolutionary robotics.

2 METHOD
We use the exact same method we previously described in [3]1. We
provide a short summary here.Khepera-like robots are placed in a
round environment where two resources can be found. Each robot
may forage energy from one particular resource, but both resources
must be foraged to allow the whole population to survive (i.e. each
resource can only feed half the population). Foraging energy from
resources serves two purposes: (1) to compute the �tness value of
the robot and (2) to enable the robot to move (i.e. a robot is removed
from the experiment if its energy level drops to zero).

Each robot is driven by a simple perceptron (hyperbolic tangent
activation function, no hidden layer) that maps sensory inputs to
two motor output neurons (le� and right motor speed). Perceptron’s
weights are evolved, as well as a particular gene, termed дskill , that
de�nes the capacity to synthesize energy from each resource (i.e.
дskill ∈ [−1,+1] , with each extreme value de�ning a particular
ability to synthesize from one of the two resources). �e rationale is
that to forage energy from one resource, a robot must both stand in
the area where the resource is available and to be able to synthesize
energy from it (which depends on the value of дskill ).

�e evolutionary algorithms used are simplistic versions of em-
bodied evolution, with exchange of genetic material occuring in an
on-line, distributed fashion among robots which are close enough
to one another. A comparaison between several selection operators
was performed in our original work, including random selection
(as implemented in mEDEA [1]) and performance-based selection
(tournament and elitist selection operators).

We devise four experimental simulation setups, each de�ned by
the population size considered (either 200 or 500 robots) and the po-
sition of the resources with respect to one another (the SeperateEnv
environment, where resources are found in di�erent areas, and the

1h�p://journal.frontiersin.org/article/10.3389/frobt.2016.00038/full
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more challenging ColocateEnv environment, where resources are
co-located). In all setups, evolutionary adaptation is expected to con-
verge towards an equilibrium between two families of genotypes,
each specialized on one resource, whether reproductive isolation is
possible or not.

In this paper, we implement �tness-proportionate and rank-
based selection operators. To some extent, proportionate selection
operators share with random selection the propensity to sample
from the whole population. �ey also share with other performance-
based selection operators the incentive to bias selection towards
be�er performance w.r.t. the objective function.

3 RESULTS
Table 1 (resp. Table 2) gives results with 200 (resp. 500) robots per
population, for both environments. Each run falls in one of three
categories, whether evolutionary adaptation completely failed (ex-
tinct), succeeded partly (one group, which implies only half the pop-
ulation was able to survive) or succeeded completely (two groups,
meaning the whole population survived, with each group foraging
energy from a particular resource).

# runs
selection environment 2 groups 1 group extinct

random separateEnv 18 32 0
tournament-5 separateEnv 8 37 5
tournament-20 separateEnv 3 35 12
elitist separateEnv 1 31 18
�tness-prop separateEnv 28 22 0
rank-prop separateEnv 13 37 0

random collocateEnv 2 42 6
tournament-5 collocateEnv 1 33 16
tournament-20 collocateEnv 0 16 34
elitist collocateEnv 0 18 32
�tness-prop collocateEnv 1 44 5
rank-prop collocateEnv 4 46 0

Table 1: Classi�cation of the outcome of runs with a popu-
lation of 200 robots. Classes are determined using the value
of the skill’s gene. 50 runs per experiment. Results in bold
are new, other results are taken from [3].

Results clearly show that proportionate selection methods re-
tain the bene�ts of pure environment-driven selection (cf. random
selection) and bene�ts from optimizing a user-de�ned objective
function in even the most di�cult collocateEnv environment.

�is is particularly prominent when the population size is large
as selection pressure (resp. genetic dri�) is weaker (resp. stronger)
in smaller populations. With a large population, proportionate
selection methods outperform other methods by a large margin in
the more di�cult ColocateEnv environment, i.e. when there is no
reproductive isolation to help evolve separate species in separate
locations.

# runs
selection environment 2 groups 1 group extinct

random separateEnv 48 2 0
tournament-5 separateEnv 38 12 0
tournament-20 separateEnv 27 19 4
elitist separateEnv 11 35 4
�tness-prop separateEnv 49 1 0
rank-prop separateEnv 44 6 0

random collocateEnv 1 43 6
tournament-5 collocateEnv 4 35 11
tournament-20 collocateEnv 0 26 24
elitist collocateEnv 0 30 20
�tness-prop collocateEnv 9 37 4
rank-prop collocateEnv 19 31 0

Table 2: Classi�cation of the outcome of runs with a popu-
lation of 500 robots. Classes are determined using the value
of the skill’s gene. 50 runs per experiment. All results are
new.

�e take-home message of this paper is thus the following:
proportionate selection operators are very relevant when it comes
to evolve behavioural specialization, thanks to a population-wide
sampling method and performance-biased selection. �is message,
of course, has to be considered in conjunction with previous re-
sults [3]: reproductive isolation and a large population size still
play important roles in the outcome of evolutionary adaptation.

An open issue is that there is no clear distinction as to what is
best between �tness-proportionate and rank-based selection meth-
ods as each excels in speci�c setups. Given the only di�erence
concerns the weight given to each individual using either absolute
or relative �tness values, there may be an optimal way to distribute
the selection probability over the population, e.g. using a particu-
lar of non-linear rank-based �tness assignement method. But the
shape of this particular function may well depend on the task and
the environment at hand.
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