
Context Nodes in the Operation of a Long Term Memory
Structure for an Evolutionary Cognitive Architecture

Richard J. Duro
GII-Universidade da Coruna

Spain
richard@udc.es

Jose A. Becerra
GII-Universidade da Coruna

Spain
ronin@udc.es

Juan Monroy
GII-Universidade da Coruna

Spain
juan.monroy@udc.es

Luis Calvo
GII-Universidade da Coruna

Spain
luis.calvo@udc.es

ABSTRACT
This paper describes the creation and use of context nodes, or Cn-
odes, as an integral part of the structure of a network based Long
Term Memory that has been constructed within the Multilevel Dar-
winist Brain cognitive architecture. Context nodes are networks
with multiplicative inputs that support the storage of context re-
lated information, that is, a Cnode relates the world the system
is in, as well as the system’s goal and current state, to the most
adequate policy to operate in this context in terms of its previous
experience. These structures provide a simple, yet very effective
way of retrieving (or activating) long term memory or experience
based information when part of a context is detected. A simple
example of the operation of the Long Term Memory using Cnodes
is presented and discussed.

CCS CONCEPTS
• Computing methodologies→ Cognitive robotics;

KEYWORDS
Long term memory; cognition; Multilevel Darwinist Brain; network
memory.
ACM Reference format:
Richard J. Duro, Jose A. Becerra, Juan Monroy, and Luis Calvo. 2017. Context
Nodes in the Operation of a Long Term Memory Structure for an Evolu-
tionary Cognitive Architecture. In Proceedings of Genetic and Evolutionary
Computation Conference, Berlin, Germany, July 2017 (GECCO’17), 5 pages.
https://doi.org/10.1145/3067695.3082465

1 INTRODUCTION
Long termmemory (LTM) is critical for addressing lifelong learning
and cognition [1]. However, in most of the work on cognitive archi-
tectures, the LTM has been taken as a passive storage container for
knowledge, much like a hard disk, to be used by other parts of the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO’17, July 2017, Berlin, Germany
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-4939-0/17/07. . . $15.00
https://doi.org/10.1145/3067695.3082465

architecture. In other words, a computer architecture-like analogy
of the mind has been the predominant paradigm in this regards.

However, authors such as [1] and [2] argue that to achieve the
properties displayed by biological systems, such as adaptability,
flexibility and robustness, memories need to be a distributed and ac-
tive component of cognition situated within the perception-action
cycle of adaptive behavior and not only passive elements that are
addressed by other cognitive structures just to retrieve a piece of
knowledge that is required by some other process [3]. In other
words from this point of view, LTM is central to a cognitive archi-
tecture and the remaining components are there to service it.

Following this line of thought, and taking into account that the
final function of a cognitive architecture is to provide a means for
a motivated system (a system that has goals) to choose actions that
allow those goals to be fulfilled [4], the operation of a cognitive
architecture revolves around the LTM and it is about appropriately
deciding on what actions (or policies) to choose each instant of time.
These decision processes involve two main concepts: prospection
and experience.

Prospection is related to the prediction and evaluation of future
states when actions are performed. This allows the system to select
among the potential actions or policies as a function of the expected
fulfillment of its goals in a deliberative process whereby it performs
prospection of multiple actions and chooses the best evaluated one.
Consequently, prospection requires performing predictions into
the future, and to allow for predictions the system must generate
models (models of the behavior of the world and its elements, of
itself. In general, we will call these models forward models). It also
requires being able to evaluate the goodness of the states it predicts
in terms of expectancy of achieving a goal so that it can decide
on the state it should aim for. These evaluations are carried out
through the use of so called value functions.

Experience, on the other hand, is not about predicting the fu-
ture, but rather, it is about compressing the past into reusable re-
lationships that allow the system to replicate a behavior that was
successful in the past in a context that is similar to the current one.
Thus, it has to do with storing the components that were active
at that time and the relationships the system finds among these
knowledge components (models, policies, perceptual classes, etc.),
that is, its operational context when it is successful at achieving
a goal (or, in some cases, even unsuccessful). These relationships
allow the system to recall an action or policy as a function of the

1172

https://doi.org/10.1145/3067695.3082465
https://doi.org/10.1145/3067695.3082465

GECCO’17, July 2017, Berlin, Germany R. J. Duro et al.

context it is in. Context, in this case, means the world it is operating
in, its goal, its current perception and the policy or action that was
being executed.

Both of these decision making approaches require of a long term
memory where the system can store what it has learnt. In other
words, where it can store knowledge elements such as models,
policies, perceptual classes, value functions, etc. in whatever rep-
resentation it is using (ANNs, rules...). Additionally, to be able to
implement experience basedmechanisms, and as indicated before, it
also needs to store the experience based relationships among these
knowledge elements. It needs to somehow represent the contexts
in which these elements were successfully active.

This paper is concerned with the introduction of the concept of
Context Nodes within the LTM structure of the Multilevel Darwin-
ist Brain cognitive architecture in order to provide a simple and
learnable mechanism that allows for the storage of the relationships
among components in a manner that is stable and generalizable.
We will also present the results of an initial experiment carried
out to demonstrate their effectivity. Thus, section 2 is devoted to
a brief introduction of the Multilevel Darwinist Brain. The basic
LTM structure and the concept of Cnode are described in section
3. An example of the use of Cnodes in a real robot is presented in
section 4. Finally, some conclusions are provided in section 5.

2 MULTILEVEL DARWINIST BRAIN
The Multilevel Darwinist Brain (MDB) is a cognitive architecture
whose operation is fully described in [5]. The MDB is not intended
as a biologically plausible path, but rather, as a computationally
effective way of providing the required functionality in real time
robotics. It follows a developmental approach and it is based on 4
basic types of elements:

• Models: prediction structures in the form of forward mod-
els and satisfaction models (value functions in reinforce-
ment learning terms) that are usually instantiated as Ar-
tificial Neural Networks. They conform the declarative
knowledge acquired through interaction with the world.
MDB relies on evolutionary algorithms for model learning,

• Policy or Behavior: a policy is a decision structure that
needs to be learnt and that provides the action to be applied
in time t+1 from the sensorial input in t.

• Episodes: real world samples that are obtained from the
robot sensors and actuators after applying an action. Typi-
cally, within the MDB these episodes are made up of the
sensorial information plus the applied action in time t and
the sensorial information including sensed rewards or sat-
isfaction derived from the execution of the action in time
t+1. These episodes are used as targets for model learning.

• Memories: two main kinds of memory elements were con-
sidered in the first implementations of the MDB: Short-
Term (STM) and Long-Term (LTM)
– The STM is made up of a model memory, which con-

tains models and behaviors that are relevant to the
current task, and an episodic buffer (EB) that stores
the last episodes experienced by the robot. The EB
has a very limited capacity according to the temporal
nature of the STM.

– The LTM is made up the models that have been con-
solidated due to their significance and reliability, and
the consolidated behaviors.

Additionally, we could consider a fifth element, Perceptual Class.
A perceptual class is really an area of the perceptual space whose
components behave in a similar way under some circumstances (for
instance, they may be the domain of the same policy or forward
model).

In terms of operation, and very briefly as the full details can be
found, for instance in [5], the MDB interacts with its environment
by performing actions, these produce new perceptions and satis-
factions or rewards (when appropriate) which are stored together
in the episodic memory as episodes. The elements in the episodic
memory (the ground truth) are used to determine the fitness of
evolving populations of models by testing them over the episodic
memory instances. These populations are evolved just for a few
generations for every interaction with the environment (we do not
want the models to converge to a particular content of the small
episodic memory, but rather to slowly converge to the series of
episodic memories it is being exposed to). The best current models
are selected and used in order to evaluate possible policies in a sec-
ond evolutionary process. These policies are applied to the forward
model in order to determine their effect and this effect is evaluated
using the current satisfaction model or value function. The best
policy is chosen and is used to select the next action to apply to
the environment. This policy will be active until a new policy that
improves on it is provided by the evolutionary component. Those
models and policies that are successful are copied to LTM for their
preservation and possible reuse.

3 MDB LTM STRUCTURE AND CNODES
The main focus of this paper is on the long term memory structure
of the MDB. This structure, as indicated before, should cover two
needs. On the one hand, it must be used as a storage facility for
the different knowledge elements acquired by the system. These
elements are: Forwardmodels (FMr), goals (G j) and their associated
Value Functions (VFj), Policies (k) and, finally, Perceptual Classes
(St). On the other hand, it must provide for the storage of experience
by establishing context based relationships among the elements in
LTM.

By context we mean under what circumstances something has
occurred or a policy has been applied successfully. Thus, in addition
to remembering a given element of the architecture, such as a policy
or forward model, we would like to remember under what circum-
stances it led to success (in terms of achieving goals or improving
the state of the system), so that when those circumstances arise
again, we know that it could be used. For instance, in terms of a
policy, we would like to know in what world, for what perceptions
and seeking what goal it was useful. Consequently, the context of
policy k is given by the tuple {FMr ,G j , St } and when this tuple
arises during the operation of the system, we can directly infer that
k may be the policy to choose.

A first approach to establishing these context relationships (as
presented in [6]) could be just to create direct links among the ele-
ments that participate in the successful context. As the system finds
itself in different situations, the links that participate in successful

1173

Context Nodes for an Evolutionary Cognitive Architecture GECCO’17, July 2017, Berlin, Germany

contexts are reinforced, and those that lead to unsuccessful results
are debilitated. Basically, in this approach, the level activation of
an elements is given by a function of the sum of the activations of
the elements linked to it weighed by the strength of their links.

This approach is valid in simple scenarios, however, when life-
long learning is addressed, problems start to arise in terms of drift
of the weight values, forgetting relationships, and other artifacts.
Thus, for the very long term we cannot rely only on this type of
connectivity to determine relationships, and a more specific way of
storing these context relationships must be sought. This is where
the concept of Context Node (Cnode) arises.

Cnodes are a new type of element within the LTM structure
which can have the same type of representation as the other types
of elements we have cited before (ANNs, rules sets, functions...)
and whose function is to store a context. Cnodes are product units,
that is, their activation level is given by a function of the product
of their inputs (which are the activations of other elements of the
LTM) and their output is connected to the element whose context
we want to store. For instance, in the case of a Cnode for a policy,
its inputs would correspond to the activations of a forward model
(which determines the world the system is in) a Goal or combina-
tion of Goals (which determine what the system strives for) and
a Perceptual class or a set of Perceptual classes (which determine
in what states the policy has been successful before for this world
and goal) and its output would provide an activation signal to the
policy.

A Cnode is created when a context that needs to be remembered
occurs and there is no previously created Cnode that covers this
situation or that could be made to cover this situation. Things that
need to be remembered can be determined by rewards or emotions.
That is, in the simplest case, when the system obtains a reward, the
context that was active in this situation is a candidate for Cnode
incorporation. Thus, Cnodes permit remembering, in the very long
term, relationships and contexts that led to successful results. Once a
situation or context is correctly represented by a Cnode, whenever
the context occurs again, the appropriate policy can be directly
activated.

4 EXAMPLE
With the objective of showing how the LTM works when consider-
ing Cnodes within its structure, we present a very simple experi-
ment using the Baxter Robot. The images of Figure 1 display the
scenario used for this experiment. A Baxter robot perceives through
its camera a workspace in which we find two boxes, one with a
round hole and one with a square hole. Two objects are available
to the robot, a cube and a cylinder, which fit in both boxes. These
objects have red or blue leds on top of them. The robot’s perceptual
system is not capable of extracting shapes from the camera image
information, it can only detect the color of the objects. Thus, the
only way the Baxter can tell whether an object is a cylinder or a
cube is by means of its color.

With this basic scenario we have run an experiment that con-
sidered two different worlds and two different tasks. The tasks are
given by their goals, that is, in one case reward is obtained when a
hole (the screen in the scene indicates which hole) is full with the
correct shape and in the other case reward is obtained when all of

(a)

(b)

(c)

Figure 1: Three instants of one of the interactions of the ro-
bot with the world.

the holes are empty. With respect to the two worlds, in one world,
cylinders have a red light on top and cubes a blue one. In the other
world, the lights are assigned the other way around (cylinders are
blue and cubes red). As a consequence, depending on what world
the robot is in, it has to pick blue or red objects to fill square hole.
The experiments can start from any initial state, including one of
the holes having the wrong object in it. This situation would imply
taking it out before being able to put the other one in. To be as
realistic as possible with such a simple setup, the world the robot
is in will be switched after a random number of interactions. Also
the goal of the robot will switch after a different random number
of interactions. Consequently, the robot will have to concurrently
learn to achieve maximum reward in four goal-world combinations.

1174

GECCO’17, July 2017, Berlin, Germany R. J. Duro et al.

This simple experiment is very well suited to our purposes as
we can determine in advance all the possible contexts that should
lead to the creation of Cnodes in the different worlds and for the
different goals, that is, all of the relevant events. In terms of goals
and worlds, we have four combinations. For each of these cases,
there are six relevant situations, leading to a total of 24 Cnodes that
should be obtained through interaction with the different worlds
with different goals.

Finally, as we are only interested in showing the operation of
the LTM, we assume that the individual forward models, policies,
perceptual classes and goals (represented here by their associated
value functions) have been previously learnt and stored in the long
term memory when addressing other tasks and in this experiment
we only consider the relationships (Cnodes) that are obtained for
these problems.

A sequence of three views of a run of the robot’s LTM is displayed
in Figure 2. The top view corresponds to the structure of the LTM
at the beginning of the process, where there are no Cnodes (no
relevant events have been detected by the system). The view in the
middles corresponds to the LTM after 70 interactions of the robot
with the different world-goals. Finally, the view at the bottom of
the figure represents the state of the LTMA after 167 interactions.

The sequence starts with an LTM that is blank in terms of Cn-
odes, the robot has not started to interact with the world in order to
be able to detect relevant events and create the corresponding Cn-
odes. It is basically performing a trial and error process. As shown
in the second image, after 70 interactions with the different worlds,
the robot has already learnt some Cnodes, and when the associ-
ated situations arise, the robot chooses the right policy directly.
Exploration is only taking place with regards to the ones it has not
learnt yet. Finally, after 167 interactions, the robot has learnt all of
the possible relevant events in the environment and, thus, when
faced with any state in any of the four world-goal combinations,
it directly chooses the optimal policy. It is very important to note
here that this process was quite efficient and did not take very long.

Figure 3 shows the evolution of the number of Cnodes acquired
by the system in another run as it interacts with the different world-
goal combinations it is faced with. As stated before, there are four
world-goal combinations (fill the hole-cube is red/fill the hole-cube
is blue/empty all holes-cube is red/empty all holes-cube is blue).
They are denoted in the figure with the numbers from 1 to 4. It
is clear in this figure, that initially, the robot explores a little bit
and, after a while it starts discovering situations that provide re-
wards and thus it begins creating Cnodes for them. After about
37 interactions it has learnt all the rewarding contexts in the first
world-goal setting. Then the world-goal combination changes and
it has to learn new contexts for this case, which it does efficiently.
Then the first world-goal combination becomes active again. As
it has already learnt all the rewarding contexts in this setting, the
robot uses the information it has in LTM to perform perfectly, but
it does not create any new Cnode. The process is repeated as new
world-goal combinations arise until it has created the 24 Cnodes
that allow it to perform optimally in the four worlds. Figure 1 shows
three snapshots of one of the interactions of the robot with the
world doing one of the tasks.

(a)

(b)

(c)

Figure 2: State of the LTM at three different points of the
interaction of the system with the world.

1175

Context Nodes for an Evolutionary Cognitive Architecture GECCO’17, July 2017, Berlin, Germany

Figure 3: Evolution of the number of C-nodes acquired by
the system as it interacts with the world. The numbers on
top designate which one of 4 different world-goal combina-
tions is active.

5 CONCLUSIONS
In this brief paper we describe the concept of Cnode or Context
node as one very convenient element to have in the Long Term
Memory structure of a cognitive architecture. This type of element
helps to store relationships among knowledge elements that have
led to successful or relevant results in the past, thus allowing for
easy retrieval of relevant knowledge when the context arises again.
We have presented a simple example to show how this would work
in the framework of the Multilevel Darwinist Brain architecture.

ACKNOWLEDGMENTS
This work has been partially funded by the EU’s H2020 research
programme grant No 640891 (DREAM) as well as by the Xunta
de Galicia and the European Regional Development Funds grant
redTEIC network (ED341D R2016/012).

REFERENCES
[1] Wood, R., Baxter, P., Belpaeme, T.: A review of long-term memory in natural and

synthetic systems. Adaptive Behavior 20–2, 81–103 (2012)
[2] Fuster, J.: Cortex and memory: emergence of a new paradigm. Journal of cognitive

neuroscience, 21âĂŤ11, 2047âĂŤ2072 (2009)
[3] Fuster, J.: Network memory. Trends in neurosciences, 20–10, 451–459 (1997)
[4] Langley, P., Laird, J.E., Rogers, S.: Cognitive architectures: Research issues and

challenges. Cognitive Systems Research. 10, 2, 141âĂŞ-160 (2009)
[5] Bellas, F., Duro, RJ., Faiña, A., Souto, D.: Multilevel Darwinist Brain (MDB): Artifi-

cial evolution in a cognitive architecture for real robots. IEEE Transactions on
autonomous mental development, 2, 340–354(2010)

[6] Duro, RJ., Becerra, JA., Monroy, J., Caamano, P.: Considering Memory Networks
in the LTM Structure of the Multilevel Darwinist Brain. Proceedings of the 2016
on Genetic and Evolutionary Computation Conference Companion,1057–1060
(2016)

1176

	Abstract
	1 Introduction
	2 Multilevel Darwinist Brain
	3 MDB LTM structure and Cnodes
	4 Example
	5 Conclusions
	Acknowledgments
	References

