
Design and Architecture of the jMetalSP Framework
Antonio J. Nebro
University of Málaga

E.T.S. de Ingenierı́a Informática,
Campus de Teatinos
Málaga, Spain 29071
antonio@lcc.uma.es

Cristóbal Barba-González
University of Málaga

E.T.S. de Ingenierı́a Informática,
Campus de Teatinos
Málaga, Spain 29071
cbarba@lcc.uma.es

José Garcı́a Nieto
University of Málaga

E.T.S. de Ingenierı́a Informática,
Campus de Teatinos
Málaga, Spain 29071
jnieto@lcc.uma.es

José A. Cordero
European Organization for Nuclear

Research (CERN)
CERN 31/3-028

Geneve, Switzerland 1211
j.cordero@cern.ch

José F. Aldana Montes
University of Málaga

E.T.S. de Ingenierı́a Informática,
Campus de Teatinos
Málaga, Spain 29071

jfam@lcc.uma.es

ABSTRACT
jMetalSP is a framework for dynamic multi-objective Big Data op-
timization. It combines the jMetal multi-objective framework with
the Apache Spark cluster computing system to allow the solving of
dynamic optimization problems from a number of external stream-
ing data sources in Big Data contexts. In this paper, we describe
the current status of the jMetalSP project, focusing mainly in its
design and internal architecture, with the aim of o�ering a compre-
hensive view of its main features to interested researchers. Among
the covered features, we describe the main components of a jMet-
alSP application, including dynamic problems, dynamic algorithms,
streaming data sources, and data consumers. For practical purposes,
we describe two test cases to illustrate how to address dynamic
combinatorial and dynamic continuous optimization problems by
using the proposed framework.

CCS CONCEPTS
•So�ware and its engineering→ So�ware libraries and repos-
itories; •Computing methodologies → Heuristic function con-
struction;

KEYWORDS
Optimization Framework; Dynamic Multi-Objective Optimization;
Multi-Objective Metaheurstics; Open Source

ACM Reference format:
Antonio J. Nebro, Cristóbal Barba-González, José Garcı́a Nieto, José A.
Cordero, and José F. Aldana Montes. 2017. Design and Architecture of
the jMetalSP Framework. In Proceedings of GECCO ’17 Companion, Berlin,
Germany, July 15-19, 2017, � pages.
DOI: h�p://dx.doi.org/10.1145/3067695.3082466

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’17 Companion, Berlin, Germany
© 2017 ACM. 978-1-4503-4939-0/17/07. . .$15.00
DOI: h�p://dx.doi.org/10.1145/3067695.3082466

1 INTRODUCTION
�e optimization of problems composed of two or more con�icting
objectives has received a lot of a�ention since the beginning of year
2000. During this time, solving these multi-objective optimization
problems with metaheuristic algorithms has become a very popular
approach, leading to a large amount of research in the �eld. As a
consequence, a plethora of algorithms and techniques have been
proposed. Most of these research have been focused in static prob-
lems, in the sense that they do not change during the optimization
process. However, less a�ention has been paid to solve dynamic
multi-objective optimization problems [?], even though it is still
an up-to-date challenge.

Currently, the growing interest in Big Data applications [?],
where many of them require to process large amounts of data
coming at great speed from di�erent streaming data sources, brings
new opportunities to apply dynamic multi-objective optimization.
�e rationale is that both, Big Data and multi-objective optimization
are found in many disciplines, such as transportation, economics,
mobility, and medicine; so it is foreseeable that they converge
in a near future leading to multi-objective Big Data optimization
problems.

Our experience with the jMetal multi-objective optimization
framework [?][?] and the Apache Spark cluster computing sys-
tem [?] has motivated us to start the jMetalSP project from the
starting idea of combining these two tools. jMetal is a widely used
so�ware in the �eld of multi-objective optimization and Spark is
becoming one of the dominant technologies in Big Data, so using
them in jMetalSP results in a framework that combines the features
of the former (�exible and extensible architecture, lot of represen-
tative multi-objective metaheuristics and problems) and the la�er
(streaming processing, high level parallel model). �erefore, this
approach allows to develop applications that can run on Hadoop [?
], the de facto standard Big Data platform. jMetalSP is an open
source that is hosted in GitHub1.

In this paper, our goal is to describe the design and architecture
of the current development version of jMetalSP. We focus in pre-
senting the main components of the framework and the facilities
it provides. As in jMetal, an important goal is to try to simplify as
1jMetalSP project site: h�ps://github.com/jMetal/jMetalSP

1239

https://github.com/jMetal/jMetalSP

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany A.J. Nebro et. al.

much as possible the development of applications. In particular,
issues such as adding streaming data sources and connecting them
to algorithms that solve dynamic problems, must be done in a clean
way. �is is achieved by using an object-oriented architecture and
an implementation based on solid so�ware engineering principles.
A�er describing jMetalSP, we illustrate how it can be used by means
of two tests cases involving combinatorial and continuous problem
representations, with dynamic versions of NSGA-II [?], SMPSO [?
] and MOCell [?] algorithms.

�e rest of the paper is structured as follows. �e next section
presents the architecture of jMetalSP describing so�ware compo-
nents and dynamic methods. In Section �, details a real-world
test case for validation based on a dynamic combinatorial prob-
lem. Section � describes a benchmarking test case based on a
dynamic continuous optimization problem. �e current status of
the project is commented in Section �. Finally, Section � outlines
some concluding remarks and suggest the future work.

2 ARQUITECTURE OF JMETALSP
jMetalSP is designed according to an object-oriented architecture,
which is depicted in Fig. �. It is developed on top of jMetal, so all
the components of this framework (algorithms, problems, encod-
ings, operators, quality indicators, etc.) are available. jMetalSP is
implemented in the Java programming language.

�e current development version of jMetalSP (1.1-SNAPSHOT)
relies on the Observer pa�ern [?]. On the one hand, there are a
number of StreamingDataSource elements (observables), each of
them capable of receiving data continuously from external sources
and analyze them, which can lead to updates in theDynamicProblem
that is being optimized (observer). On the other hand, a DynamicAl-
gorithm (observable) is continuously optimizing the problem and
generating results (e.g., Pareto front approximations) that, when
are produced, are noti�ed to a number of AlgorithmDataConsumer
entities (observers). �e interfaces that observers and observables
have to implement are shown in Figure �.

�e observable components produce instances of ObservedData
subclasses, which are sent to the observers in the noti�cation mes-
sages. �ey constitute key components because they determine
which observers can be bound to an observable.

�e StreamingRuntime class encapsulates the underlying stream-
ing engine, which currently can be Spark or plain Java (based on
threads).

All the jMetaSP applications share the code template depicted
in Figure �. We can observe how di�erent data consumers and
streaming data sources can be incorporated into an application. All
the classes and interfaces on jMetalSP are generic, which means
they are parametrized over types, then assuring that all the classes
are compatible before the execution (during compilation time).

�e main architecture components are described in the next
subsections.

2.1 Dynamic Problems
Dynamic multi-objective optimization problems are characterized
by the fact that their objectives or their search space can vary over
time, which may a�ect their Pareto set, their Pareto front or both
of them [?]. In the context of jMetalSP, changes in the problems

will be originated by the results of the processing and analysis of
one or more streaming data sources.

As we can see in Figure �, the DynamicProblem class inherits
from jMetal’s Problem class, so it contains two basic methods: eval-
uate() and evaluateConstraints(). Both methods receive a Solution;
the �rst method evaluates it, and the second one determines the
overall constraint violation degree.

Additionally, the DynamicProblem class has its own methods:

• is�eProblemModi�ed(). Indicates whether the data prob-
lem has been modi�ed or not.

• reset(). Resets the state of the problem to unmodi�ed.

All these methods (including evaluate() and evaluateConstraints())
must be tagged as synchronized to ensure mutual exclusion between
the clients of the problem, i.e., the algorithm and the streaming
data sources.

As dynamic problems implement the Observer interface, they
must de�ne the update() method and they have to register them-
selves into the streaming data sources they want to observe.

2.2 Dynamic Algorithms
A dynamic algorithm in jMetalSP is a conventional metaheuristic
that should consider two main issues: �rst, the problem can change
during the algorithm execution, so the state of the problem should
be checked somehow and, in case of detecting a change, a re-starting
procedure must be applied; second, when the stopping condition is
reached, the algorithm, instead of just terminating, starts again. As
can be seen in Figure �, a dynamic algorithm has to implement a
restart() method.

jMetalSP is based on jMetal 5 [?], which includes, among other
features, algorithm templates. For example, there is an AbstractEvo-
lutionaryAlgorithm class that contains the run() method shown
in Figure �, which mimics closely the pseudo-code of a generic
evolutionary algorithm (similar templates are available for particle
swarm optimization and sca�er search algorithms). An advantage
of using this template is that those algorithms implementing it
(most of evolutionary algorithms in jMetal use it) can be easily
extended by overriding only some methods. �is is particularly
useful to develop dynamic versions of existing algorithms. In this
case, at least the isStoppingConditionReached() method should be
rede�ned, because instead of stopping, the algorithm should start
again.

A dynamic problem is considered as an observable entity, so
when a new Pareto front approximation is produced, it is noti�ed
to the registered AlgorithmDataConsumer observer objects. In our
version of dynamic NSGA-II, the number of produced fronts are
also provided to its observers (see Section �).

2.3 Streaming Data Sources
�e role of a streaming data source in jMetalSP is twofold: it must
capture the new incoming data, which will be then analyzed. �e
results of this analysis may produce an instance of theObservedData
class to be noti�ed to a registered observed (i.e, a dynamic prob-
lem). �is is particularly interesting in the case of using Apache
Spark, because its streaming features allows to make the analysis
in parallel, taking advantage of Hadoop clusters.

1240

Design and Architecture of the jMetalSP Framework GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

Figure 1: Overall class diagram of the jMetalSP architecture.

public in te r face Observer {
void update (Observab le <?> o b s e r v a b l e , O b j e c t d a t a) ;

}

public in te r face Observab le <Data> {

void r e g i s t e r (Observer o b s e r v e r) ;
void u n r e g i s t e r (Observer o b s e r v e r) ;

void n o t i f y O b s e r v e r s (Data d a t a) ;
in t n u m b e r O f R e g i s t e r e d O b s e r v e r s () ;
void setChanged () ;
boolean hasChanged () ;
void c l ea rChanged () ;
S t r i n g getName () ;

}

Figure 2: Observer and Observable interfaces.

�e StreamingDataSource interface contains only a run() method.
In the default plain Java implementation, a new thread is started
and the run() method is invoked. An example is included in Fig-
ure �, which shows the code of a simple streaming data source
that continuously produces the value of a counter. �e observers
are noti�ed by the value of the counter a�er a delay (no analysis is
carried out here).

In the case of using Spark, we assume that an external process
is generating the counter values and writes them in �les that are
stored in a directory. A Spark class named SimpleSparkStream-
ingCounterDataSource that reads the �les of that directory in a
streaming fashion is included in Figure �. We can observe that the
code is composed of two steps: assuming that each �le contains a
line with the generated value, the �rst sentence of the run() method

public c l a s s J M e t a l S P A p p l i c a t i o n T e m p l a t e {

public s t a t i c void main (S t r i n g [] a r g s) {
J M e t a l S P A p p l i c a t i o n <

ObservedDataFromStreamingSources ,
ObservedDataFromAlgori thm ,
DynamicProblem ,
DynamicAlgorithm ,
S t reamingDataSource ,
AlgorithmDataConsumer> a p p l i c a t i o n ;

a p p l i c a t i o n = new J M e t a l S P A p p l i c a t i o n < > ();

a p p l i c a t i o n
. s e t S t r e a m i n g R u n t i m e (new SparkRunt ime ())
. s e t P r o b l e m (new DynamicProblem ())
. s e t A l g o r i t h m (new DynamicAlgorithm ())
. addS t reamingDataSource (new S t r e a m i n g D a t a S o u r c e 1 ())
. addS t reamingDataSource (new S t r e a m i n g D a t a S o u r c e 2 ())
. addAlgori thmDataConsumer (new DataConsumer1 ())
. addAlgori thmDataConsumer (new DataConsumer2 ())
. run () ;

}

}

Figure 3: Template of a jMetalSP application.

reads all the lines in the �les in the directory and transforms them
into integer values; then, in the second step, the observers are no-
ti�ed. Compared with the former example, we can see here that
there is no an implicit loop because the Spark streaming engine is
executing theses sentences iteratively. �e same engine takes care
of reading only the new �les stored in the directory since the last
iteration. �is two-step scheme is the same for all the streaming
data sources supported by Spark (socket, directory, Ka�a, etc.).

1241

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany A.J. Nebro et. al.

@Override public void run () {
L i s t <S> o f f s p r i n g P o p ;
L i s t <S> matingPop ;

p o p u l a t i o n = c r e a t e I n i t i a l P o p u l a t i o n () ;
p o p u l a t i o n = e v a l u a t e P o p u l a t i o n (p o p u l a t i o n) ;
i n i t P r o g r e s s () ;
while (! i s S t o p p i n g C o n d i t i o n R e a c h e d ()) {

matingPop = s e l e c t i o n (p o p u l a t i o n) ;
o f f s p r i n g P o p = r e p r o d u c t i o n (matingPop) ;
o f f s p r i n g P o p = e v a l u a t e P o p (o f f s p r i n g P o p) ;
p o p u l a t i o n = r e p l a c e m e n t (p o p u l a t i o n , o f f s p r i n g P o p) ;
u p d a t e P r o g r e s s () ;

}

}

Figure 4: run()method of class AbstractEvolutionaryAlgorithm.

public c l a s s S i m p l e S t r e a m i n g C o u n t e r D a t a S o u r c e {

@Override
public void run () {

in t c o u n t e r = 0 ;
while (true)

Thread . s l e e p (DELAY) ;

obse rvedData . se tChanged () ;
obse rvedData . n o t i f y O b s e r v e r s (new S impleObservedData (c o u n t e r)) ;
c o u n t e r ++ ;

}

}

}

Figure 5: Example of a simple streaming counter data source
(plain Java).

public c l a s s S i m p l e S p a r k S t r e a m i n g C o u n t e r D a t a S o u r c e {

@Override
public void run () {

JavaDStream<I n t e g e r > v a l u e s = s t r e a m i n g C o n t e x t
. t e x t F i l e S t r e a m (d i rec toryName)
. map (l i n e −> I n t e g e r . p a r s e I n t (l i n e)) ;

v a l u e s . foreachRDD (numbers −> {

L i s t <I n t e g e r > numberL i s t = numbers . c o l l e c t () ;
for (I n t e g e r v a l u e : numberL i s t) {

updateData . se tChanged () ;
updateData . n o t i f y O b s e r v e r s (new S impleObservedData (v a l u e)) ;

}

}) ;
}

}

Figure 6: Example of a simple streaming counter data source
(Spark).

�e issue to note here is that the processing of the map() function
can be executed in parallel in a cluster, which would be advanta-
geous if there are many lines to process and their analysis are
complex procedures. In the case of complex data, their analysis
would be carried out with Spark operations as this map() and many
others, including �ltering, sampling, etc.

2.4 Observed Data
�is class is intended to represent the type of data the observable
entities produce, so they determine which observers can register in
a given observable.

�e data produced by the streaming data sources can be very
varied, while in the case of the algorithms we provide a concrete
class called AlgorithmObservedData, which is used to bound algo-
rithms and data consumers. �is class contains the Pareto front
approximation obtained and the value of a generated fronts counter,
but it can be easily extended to include more algorithm’s related
data (e.g., the computing time of the last execution, the value of a
quality indicator, etc.).

2.5 Algorithm Data Consumers
A dynamic algorithm is supposed to run forever to produce at
least Pareto front approximations periodically, so any component
interested in ge�ing those fronts cannot wait for the completion of
the algorithm, as in the case of techniques solving static problems.

Algorithm data consumers register into algorithms to be noti�ed
from the la�er when new information (ie., an AlgorithmObserved-
Data, as commented in the previous section) is generated. jMetalSP
includes two consumer components: one that stores the fronts into
a directory and another one that prints information about the fronts
(number of generated fronts, number of solutions of the last front).

2.6 Streaming Runtime
�e last component in the jMetalSP architecture is StreamingRun-
time, which represents the underlying streaming system. Two
classes implementing this interface are included:

• A default plain-Java based runtime (Spark is not required),
which starts each streaming data source in a dedicated
thread.

• An Spark-based runtime, which sets the parameters of
Spark and initialize the so-called streaming context. �e
streaming model of Spark is based on micro-batches, so the
runtime receives the batch interval (see the Spark stream-
ing programming guide for further information2) as a pa-
rameter.

In former versions of jMetalSP only a Spark-based runtime were
available, although we have now uncoupled it and generalized the
streaming runtime into an interface (i. e., applying the dependence
inversion principle). �ere are three main reasons to adopt this
approach. First, Spark has a new experimental streaming imple-
mentation, called structured streaming, that currently is in Alpha,
so we would like to easily change from the current one to the new
one when available; second, some users could be interested in us-
ing jMetalSP for dynamic optimization but without Spark, so an
only-Java version would be easier to them; �nally, there are other
streaming engines, such as Apache Flink3, that could be incorpo-
rated to jMetalSP in a future release.

2h�p://spark.apache.org/docs/latest/streaming-programming-guide.html
3Apache Flink Web Site: h�ps://�ink.apache.org

1242

http://spark.apache.org/docs/latest/streaming-programming-guide.html

Design and Architecture of the jMetalSP Framework GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

Figure 7: Pareto front approximations obtained when solv-
ing the dynamic bi-objective TSP of New York with a dy-
namic NSGA-II algorithm.

3 TEST CASE: DYNAMIC COMBINATORIAL
PROBLEM

In this section, we describe a jMetalSP test case comprising a dy-
namic combinatorial optimization problem. �e optimization algo-
rithm used is NSGA-II and the target problem is a bi-objective TSP
(Traveling Salesman Problem). �is test case was developed in [?
], and was motivated by the availability of real-time Tra�c speed
open data of the city of New York4.

�e dynamic TSP tackled here has two objectives: minimizing
the total distance and minimizing the travel time, so it contains
two data matrices: distance and travel time. �e encoding is a
permutation of integer values to represent the tours, which will be
manipulated with a swap mutation operator and a partial-mapped
(PMX) crossover operators. �e update of data consists on a code
to indicate the distance or the time matrix, the coordinates (row
and column) to change, and the new value.

We have considered three di�erent streaming data sources. �e
�rst one is a directory where an external process will be writing
periodically �les with data obtained from the tra�c open data Web
service. �e tra�c data is updated with a frequency of two/three
times per minute, so it cannot be considered as pure real-time
stream. For these reason, and to transform this problem into a
Big Data optimization one, the other two data sources have been
included. On the one hand, Apache Ka�a [?] is used to simulate
tra�c data obtained from GPS sensors of the cars and, on the other
hand, Twi�er is queried to get tweets about tra�c in New York.

As the purpose of this work is to validate the jMetalSP architec-
ture, we are not particularly interested in the quality of the results.
For this reason, the analyses of the Ka�a and Twi�er data sources
are replaced by an idle loop that can be con�gured to consume
a given amount of CPU time, and the update data are randomly
produced. �is way, we can adjust the analysis processing time
and assess the performance of the jMetalSP application in di�erent
contexts.

To implement a dynamic version of NSGA-II, a DynamicNSGAII
class extending the jMetal class implementing this algorithm was
developed. �is class has the following di�erences from the original
algorithm:

• It is an observable entity.

4h�ps://data.cityofnewyork.us/Transportation/Real-Time-Tra�c-Speed-Data/
xsat-x5sa

• �e isStoppingConditionReached() method pushes the cur-
rent population to registered observers and carries out a
restart operation a�er a full iteration. We have used simple
restart strategy consisting in generating a new full pop-
ulation �lled with random solutions, but more complex
strategies can be applied.

• �e updateProgress() method checks whether the problem
has been changed; if so, a restart is done.

�e rest of the NSGA-II code remains unchanged, which is an
advantage of the object-oriented architectures of both, jMetal and
jMetalSP.

�e last components of the application are the two data con-
sumers commented in Section �. Figure � shows the Pareto front
approximations generated by NSGA-II throughout the optimization
process a�er 10, 50, and 100 operations of problem data update.
We can observe that the shape of the fronts vary with time, which
is the expected behavior when solving a dynamic problem. �e
changes in the fronts are slight, because unless an important event
occurs (e.g., a car accident producing a tra�c jam), usually there
are not drastic variations in the tra�c during consecutive periods
of time.

4 TEST CASE: DYNAMIC CONTINUOUS
PROBLEM

�is second test case is not intended to be an example of Big Data
optimization application, but to show that jMetalSP can be a useful
tool for solving conventional dynamic problems. Concretely, we
focus here in dynamic continuous optimization, so we have selected
SMPSO [?], a multi-objective particle swarm optimization (PSO)
algorithm, to develop a dynamic version of it to solve the FDA
benchmark [?].

As commented in Section �, jMetal provides a number of generic
metaheuristic templates, including one for PSO algorithms, which is
followed by SMPSO. �e run() method of this template is included
in Figure �. We can observe that this method incorporates the
initialization of the PSO data (swarm, particles velocity, particles
memory, leaders) and the main loop performs the steps to update
those data.

As in the case of NSGA-II, the dynamic version of SMPSO is
implemented by following a similar strategy: the original algorithm
is an observable entity and the isStoppingConditionReached() and
updateProgress() methods are rede�ned in a similar way.

�e FDA benchmark [?] consists in �ve dynamic problems with
di�erent features depending on whether their Pareto-optimal front
(POF) and/or Pareto-optimal solutions (POS) change over time:

• FDA1 has a constant convex POF and linear change in POS.
• FDA2’s POF changes from convex to non-convex and its

POS does not change.
• FDA3’s POF changes but all convex and also linear change

in POS.
• FDA4 has a constant non-convex POF and linear change

in POS, which has a three dimensional space.
• FDA5’s POF changes but all convex and linear change in

POS, which is also a three dimensional.

1243

https://data.cityofnewyork.us/Transportation/Real-Time-Traffic-Speed-Data/xsat-x5sa
https://data.cityofnewyork.us/Transportation/Real-Time-Traffic-Speed-Data/xsat-x5sa

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany A.J. Nebro et. al.

@Override
public void run () {

swarm = c r e a t e I n i t i a l S w a r m () ;
swarm = evaluateSwarm (swarm) ;
i n i t i a l i z e V e l o c i t y (swarm) ;
i n i t i a l i z e P a r t i c l e s M e m o r y (swarm) ;
i n i t i a l i z e L e a d e r (swarm) ;
i n i t P r o g r e s s () ;

while (! i s S t o p p i n g C o n d i t i o n R e a c h e d ()) {

u p d a t e V e l o c i t y (swarm) ;
u p d a t e P o s i t i o n (swarm) ;
p e r t u r b a t i o n (swarm) ;
swarm = evaluateSwarm (swarm) ;
u p d a t e L e a d e r s (swarm) ;
u p d a t e P a r t i c l e s M e m o r y (swarm) ;
u p d a t e P r o g r e s s () ;

}

}

Figure 8: run()method of class AbstractParticleSwarmOptimiza-
tion.

Table 1: Parameter settings and operators used for the dy-
namic SMPSO, dynamic NSGA-II and dynamic MOCell (L =
Individual length).

Parameterization used in dynamic SMPSO [?]
Archive Size 100 particles
C1 ,C2 1.5
w 0.9
Mutation polynomial
Mutation probability 1/L
Mutation distribution index ηm 20
Selection method Rounds
Maximum number of evaluations 50,000

Parameterization used in dynamic NSGA-II [?]
Population Size 100 individuals
Selection of Parents binary tournament + binary tournament
Recombination simulated binary
Recombination probability 0.9
Mutation polynomial,
Mutation probability 1/L
Maximum number of evaluations 50,000

Parameterization used in dynamic MOCell [?]
Population Size 100 individuals
Neighborhood 1-hop neighbours (8 surrounding solutions)
Selection of Parents binary tournament + binary tournament
Recombination simulated binary
Recombination probability 0.9
Mutation polynomial
Mutation probability 1/L
Mutation distribution index ηm 20
Archive Size 100 individuals
Maximum number of evaluations 50,000

Each FDA problem de�nes its own multi-objective functions, al-
though all of them have a time dependence. �ey de�ne the time
in the same way, according to Equation �:

t =
1
nt

⌊
τ

τT

⌋
(1)

where τ is the generation counter, τT is the number of generation
for which t remains �xed, and nt is the number of distinct steps in
t. �e authors of [?] recommend τT = 5 and nT = 10 values, and
31 variables with xI = x1 |xI I | = |xI I I | = 15.

As this case study is intended to illustrate the use of jMetalSP to
solve a benchmark of dynamic continuous optimization problems,
we include two di�erent approaches in the framework to manage
time that follow the examples of streaming data sources commented
in Figures � and �. In the case of the la�er, an external process

Figure 9: Pareto front for FDA2 obtained by the SMPSO al-
gorithm.

Figure 10: Pareto front for FDA2 obtained by the NSGA-II
algorithm.

Figure 11: Pareto front for FDA2 obtained by the MOCell
algorithm.

is executed in parallel to produce the �les containing the data, as
mentioned in Section �.

To illustrate the behavior of the dynamic SMPSO, we show in
Figure � the di�erent front approximations obtained when solving
the FDA2 problem for 20 time steps. We can observe how the shapes
of the Pareto front approximations change over time due to the
updating counter (τ). In the FDA2 problem, the Pareto front swings
from a convex to a non-convex shape.

1244

Design and Architecture of the jMetalSP Framework GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

Although the objective of this paper is not to carry out a rigor-
ous comparative study of dynamic multi-objective metaheuristics,
we have considered interesting to solve the FDA2 problem also
with the dynamic NSGA-II algorithm and with another algorithm.
Concretely, we have developed a dynamic version of MOCell [?],
a multi-objective cellular evolutionary algorithm. �e parameter
se�ings of these algorithms and SMPSO are included in Table �.

�e fronts obtained by NSGA-II and MOCell are depicted in Fig-
ures � and �, respectively. A visual comparison with Figure �
shows that SMPSO clearly outperforms the other two algorithms
concerning the diversity of the obtained Pareto front approxima-
tions; with regards to convergence, the results are similar in the
three cases.

5 CURRENT STATUS AND
IMPLEMENTATION DETAILS

jMetalSP is a project that is in continuous development. In its cur-
rent status it is fully usable, although it is sure that new features will
be added in the near feature and some changes in the architecture
will be foreseeable from the experiences we gain when using it and
from the feedback of interested users.

�e version described in this paper (1-1.SNAPSHOT) has been
developed with the following tools:

• Java JDK 1.8.0 101.
• Spark 2.0.
• Maven 3.3.9.
• jMetal 5.2.

�e project is structured in nine Maven sub-modules as shown
in Figure �. �e jmetal-core module contains the interfaces and
classes of the architecture, the Observer and Observable interfaces,
and two classes providing default implementations of the runtime
and observable (plain Java) interfaces. More information about
the jMetalSP internals can be found in the project GitHub page in
h�ps://github.com/jMetal/jMetalSP.

6 CONCLUSIONS
We have described the architecture of the jMetalSP framework for
dynamic multi-objective optimization with metaheuristics, which is
based on combining jMetal and Apache Spark. Concretely, we have
presented the main components constituting jMetalSP, including
the problems, algorithms, streaming data sources, data consumers,
observed data, and streaming runtime.

To illustrate the features of jMetalSP we have detailed two test
studies: �e �rst one involves an NSGA-II to solve a combinatorial
problem from the �eld of transportation consisting in a bi-objective
TSP that incorporates real as well as simulated tra�c data sources;
�e second test study is about solving dynamic continuous bench-
marking problems with a multi-objective PSO (SMPSO), NSGA-II,
and a multi-objective cellular evolutionary algorithm (MOCell).
�ese two test studies are used as practical examples to show that
jMetalSP is easy to use and adapt, and it incorporates reliable algo-
rithmic implementations able to obtain successful results in di�er-
ent problem domains and representations.

As lines of future work, we plan to incorporate multiobjective
algorithms speci�cally designed to solve dynamic problems and the
application of jMetalSP to deal with real-world problems. We also

Figure 12: Structure of the jMetalSP project.

plan to enrich the framework with advanced restarting strategies to
deal with dynamic problem updates. From the development point
of view, including unit and integration tests is also a pending work.

ACKNOWLEDGMENTS
�is work has been partially funded by Grants TIN2014-58304-
R (Spanish Ministry of Education and Science) and P11-TIC-7529
(Innovation, Science and Enterprise Ministry of the regional govern-
ment of the Junta de Andalucı́a) and P12-TIC-1519 (Plan Andaluz de
Investigación, Desarrollo e Innovación). Cristóbal Barba-González
is supported by Grant BES-2015-072209 (Spanish Ministry of Econ-
omy and Competitiveness). José Garcı́a-Nieto is the recipient of a
Post-Doctoral fellowship of “Captación de Talento para la Investi-
gación” Plan Propio at Universidad de Málaga.

REFERENCES
[] J.A. Cordero, A.J. Nebro, J.J. Durillo, J. Garcı́a-Nieto, C. Barba-González, I. Navas,

and J.F. Aldana-Montes. 2016. Dynamic Multi-Objective Optimization with
jMetal and Spark: a Case Study. In Machine Learning, Optimization, and Big
Data: Second International Workshop, MOD 2016, Volterra, Italy, August 26-29,
2016, Revised Selected Papers (Lecture Notes in Computer Science), Vol. 10122.

[] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. 2002. A Fast and Elitist Mul-
tiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary
Computation 6, 2 (2002), 182–197.

[] J.J. Durillo and A.J. Nebro. 2011. jMetal: A Java framework for multi-objective
optimization. Advances in Engineering So�ware 42, 10 (2011), 760 – 771.

1245

 https://github.com/jMetal/jMetalSP

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany A.J. Nebro et. al.

[] M. Farina, K. Deb, and P. Amato. 2004. Dynamic multiobjective optimization
problems: test cases, approximations, and applications. IEEE Trans. on Evol.
Comp. 8, 5 (Oct 2004), 425–442.

[] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. 1995. Design Pa�erns: Elements
of Reusable Object-oriented So�ware. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA.

[] J. Kreps, N. Narkhede, and J. Rao. 2011. Ka�a: A distributed messaging system
for log processing. In Proceedings of 6th International Workshop on Networking
Meets Databases (NetDB), Athens, Greece.

[] A.J. Nebro, J.J. Durillo, F. Luna amd B., Dorronsoro, and E. Alba. 2009. MOCell: A
cellular genetic algorithm for multiobjective optimization. International Journal
of Intelligent Systems 24, 7 (2009), 726–746. DOI:h�p://dx.doi.org/10.1002/int.
20358

[] A.J. Nebro, J.J. Durillo, J. Garcı́a-Nieto, C.A. Coello Coello, F. Luna, and E. Alba.
2009. SMPSO: A New PSO-based Metaheuristic for Multi-objective Optimization.
In IEEE Symposium on Computational Intelligence in Multicriteria Decision-Making
(MCDM 2009). IEEE Press, 66–73.

[] A.J. Nebro, Juan J. Durillo, and M. Vergne. 2015. Redesigning the jMetal Multi-
Objective Optimization Framework. In Proceedings of the Companion Publication
of the 2015 Annual Conference on Genetic and Evolutionary Computation (GECCO
Companion ’15). ACM, New York, NY, USA, 1093–1100.

[] Antonio J. Nebro, Juan J. Durillo, Francisco Luna, Bernabé Dorronsoro, and
Enrique Alba. 2007. Design Issues in a Multiobjective Cellular Genetic Algorithm.
Springer Berlin Heidelberg, Berlin, Heidelberg, 126–140. DOI:h�p://dx.doi.org/
10.1007/978-3-540-70928-2 13

[] T. White. 2009. Hadoop: �e De�nitive Guide (1st ed.). O’Reilly Media, Inc.
[] M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, and I. Stoica. 2010. Spark:

Cluster Computing with Working Sets. In Proceedings of the 2Nd USENIX Con-
ference on Hot Topics in Cloud Computing (HotCloud’10). USENIX Association,
Berkeley, CA, USA, 10–10.

[] Z. H. Zhou, N. V. Chawla, Y. Jin, and G. J. Williams. 2014. Big Data Opportuni-
ties and Challenges: Discussions from Data Analytics Perspectives [Discussion
Forum]. IEEE Computational Intelligence Magazine 9, 4 (Nov 2014), 62–74.

1246

http://dx.doi.org/10.1002/int.20358
http://dx.doi.org/10.1002/int.20358
http://dx.doi.org/10.1007/978-3-540-70928-2_13
http://dx.doi.org/10.1007/978-3-540-70928-2_13

