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ABSTRACT
Among the many applications of �tness landscape analysis a promi-

nent example is algorithm selection. �e no-free-lunch (NFL) theo-

rem has put a limit on the general applicability of heuristic search

methods. Improved methods can only be found by specialization

to certain problem characteristics which limits their application

to other problems. �is creates a very interesting and dynamic

�eld for algorithm development. However, this also leads to the

de�nition of a large range of di�erent algorithms that are hard

to compare exhaustively. An additional challenge is posed by the

fact that algorithms have parameters and thus to each algorithm

there may be a large number of instances. In this work the applica-

tion of algorithm selection to problem instances of the quadratic

assignment problem (QAP) is discussed.
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1 INTRODUCTION
�e algorithm selection problem (ASP) [13, 20] is concerned with

the choice of an e�cient algorithm for a set of problems. In heuris-

tic optimization, this problem is complicated due to the vast number

of di�erent algorithms. In a strict interpretation every complete

parametrization would need to be considered as a separate algo-

rithm. In this work we speak of a complete parametrization as

an algorithm instance. In the performance comparison we must

further detail these instances by their implementations. Only the

implementation can be tested and compared with each other.

A further di�culty is the high amount of di�erent problem in-

stances. Similar to the algorithms, each new parametrization of

a problem introduces a new instance which in turn needs to be

considered as a problem of its own. Rice describes the possibility of

using features to approximate the problem space [20] and perform

the ASP on the features instead of on the original space of problems.

Extracting useful features is however a di�cult task and potentially

has to be done for each problem anew.

1.1 Fitness Landscape Analysis
In this regard, �tness landscape analysis (FLA) is a promising

method as a more generalizable approach to feature extraction.

�e features obtained by FLA may be used for the characterization

of landscapes. A �tness landscape is given by the triple

(S,N , f )

where S denotes the set of points s ∈ S in the landscape, N : S →
Sn denotes the neighborhood function and f : S → R denotes the

�tness evaluation of each point. �ere are two potential approaches

to characterizing such landscapes:

(1) Exact landscape analysis

(2) Exploratory landscape analysis

In the area of exact analysis a certain neighborhood and �tness

function is �xed and studied mathematically. For instance, Chicano

et al. show that the autocorrelation coe�cient of the swap neigh-

borhood may be computed in polynomial time for instances of the

quadratic assignment problem (QAP) [4].

In the area of exploratory analysis samples of the landscape

are analyzed. For instance, Pitzer et al. describe three sampling
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strategies and corresponding measures for characterization [19].

Merz and Freisleben describe FLA analysis for the QAP, but use

problem speci�c measures only [16]. Mersmann et al. describe

algorithm selection for real-valued problems [15].

�e goal of such a characterization is to obtain a feature vector

that represents a certain problem instance. Ideally, these feature

vectors describe properties that are relevant to optimization meth-

ods such that their performance is a dependent variable on the

degree that a certain feature is observed. �e rationale behind this

approach is that the various metaheuristics exploit di�erent shapes

of �tness landscapes. For instance, iterated local search is e�cient

when local optima are not much worse than the global optimum.

Further work in �tness landscape analysis concerns the structure

and connection between local optima such as the study of so called

local optima networks [18]. Closely related to algorithm selection

is also the topic of performance prediction [14].

2 FEATURE EXTRACTION
In previous publications [19] a number of sampling strategies have

been introduced in the form of walks. �ese use the neighborhood

relationship N of the de�ned �tness landscape to move from one

solution to another which in turn results in a trail through the

�tness landscape. To each solution there is an associated �tness or

quality value which thus gives the quality trail. �ey mainly di�er

in the selection strategy that is used to pick the succeeding solution

from the set of neighboring solutions.

• Random walks pick a random solution from the neighbor-

hood

• n-Adaptive walks pick the best out of a random sample of

n solutions from the neighborhood

• n-Up/down walks similar to n-adaptive walks, but when no

be�er (or worse) solution is found in the randomly chosen

sample the search direction is inverted

• n-Neutral walks choose that solution out of a randomly

chosen neighborhood sample of size n that is most similar

in quality

�ese sampling strategies are then run for a number of iterations

and the resulting quality trail is then used to calculate a number of

di�erent features:

• Autocorrelation(1)

• Correlation length

• Information content

• Partial information content

• Density basin information

• Information stability

• Diversity

• Regularity

• Total entropy

• Peak information content

• Peak density basin information

• Down walk length (Up/down walks only)

• Up walk length (Up/down walks only)

• Up walk length variance (Up/down walks only)

• Down walk length variance (Up/down walks only)

• Upper variance (Up/down walks only)

• Lower variance (Up/down walks only)

Algorithm 1 Directed walk

1: procedure DirectedWalk(↓ f it(), ↓ dist(), ↓ N (), ↓ s0, ↓ st )

2: s ← s0

3: while dist(s, st ) > 0 do
4: trail .Add(s , f it(s))
5: . Calculate the restricted neighborhood N r

6: N r ← {s ′ ∈ N (s) | dist(s ′, st ) < dist(s, st )}
7: . Choose the neighboring solution with best �tness

8: s ← arg mins∗∈N r f it(s∗)
9: end while

10: trail .Add(st , f it(st ))
11: return trail
12: end procedure

�e downside of this approach is that quite a large number of

function evaluations have to be spent for analyzing the �tness

landscape rather than for optimization. In addition, as the sample

strategies are mutually exclusive due to the di�erent strategies for

selection all these walks have to be performed in parallel and then

obtain quite a large vector of characteristic information.

Additionally, there are problem speci�c characteristics that can

be computed without sampling given the problem speci�c data,

i.e. the weight and distance matrix of the given QAP instance.

Characteristics such as �ow dominance have been analyzed in past

publications [21], but more may be de�ned [16]. Here we consider

three di�erent characteristics:

• Dominance

• Sparsity

• Asymmetry

�ese can be applied to both the weight and the distance matrix

and results in a total of 6 characteristics. Dominance is basically

the coe�cient of variation of the matrix’ values. Sparsity is the

relative number of cells ai j == 0 to the total number of cells n · n
and asymmetry is the relative number of pairs ai j , aji to the total

number of pairs n · (n − 1)/2.

2.1 Exploratory Analysis Based on Path
Relinking

In path relinking (PR) a trajectory is created that links two solutions

in the search space [8], for instance by making a greedy choice in

each step. It was evaluated to complement or even replace above

mentioned walks with a sampling strategy based on PR [2]. It was

observed that given two randomly chosen solutions these trajecto-

ries typically follow a “U-shaped” pa�ern (assuming minimization

of the �tness value) and that di�erences in these curves may be

a�ributed to di�erences of the problem instances. �us we can

introduce a new exploratory landscape walk as directed walk with

the algorithmic description given in Algorithm 1.

Given solution s and a target solution st path relinking considers

a restricted neighborhood N r (s) that consists only of solutions that

are more similar to st than s is to st . Naturally, this neighborhood

becomes smaller and smaller the closer s is to st already. �e trails

observed as the result of directed walks combine landscape proper-

ties that can be observed in up/down, adaptive and neutral walks.

For instance, in the �rst phase where the restricted neighborhood
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N r (s) is still comparatively large an improving solution may be

present with higher probability and a behavior similar to a down-

walk can be observed. In the middle phase of the directed walk

N r (s) consists of fewer solutions, but of comparable quality. If the

landscape features plateaus and regions with high neutrality, o�en

it may be observed that the �tness of the solutions remains the

same in this phase. In the late phase as s continues to become more

and more similar to st an upwalk behavior can be observed as the

�tness also nears that of st (if both the initial s as well as st are

chosen randomly).

Further advantages of exploratory walks such as the one de-

scribed here are the possibility for an integration within metaheuris-

tic algorithms [2]. An informed metaheuristic may be created that

performs PR as part of its search and analyzes the trajectories to de-

tect a similarity with previously seen problem instances where such

an information is already available. �ree features are proposed to

describe these trails:

• Sharpness

• Bumpiness

• Flatness

Sharpness is the average absolute “gradient” in the quality trail,

i.e. the ratio of the absolute quality di�erence and the distance

between two succeeding solutions in the trail.

Bumpiness is the relative number of in�ection points to the points

visited, i.e. where the “gradient” changes sign, but is not equal to 0.

Flatness is the relative number of undulation points to the points

visited, i.e. the gradient itself as well as its “derivative” are both

0. �ese three simple features describe di�erent aspects of the

observed curves and thus of the underlying problem instances.

3 ALGORITHM INSTANCES
�e algorithm instances that we applied to the set of problem in-

stances are

(1) Robust Taboo Search (3 instances)

(2) Standard Tabu Search (1 instance)

(3) Variable Neighborhood Search (1 instance)

(4) Iterated Genetic Algorithm (1 instance)

(5) Memetic Algorithms (2 instances)

(6) Multi-start Local Search (1 instance)

(7) Random Search (1 instance)

Some of these instances are dependent on the problem dimension.

For instance, the aspiration condition in robust taboo search was

seen as a factor of dimension. O�en human experts, use such

simple information to parameterize an algorithm and thus such a

parameterization strategy can also be seen as an algorithm instance

of its own.

Other instances were applied in an iterated way. In general,

genetic algorithms are o�en observed to converge a�er a certain

number of generations and even if it is continued to run the prob-

ability of achieving a be�er quality is small as only mutation is

able to identify new improvements. In several experiments on the

quadratic assignment problem converge can be observed with a

few hundred generations. An iterated genetic algorithm is simply

restarted several times anew and the best of the restarts is consid-

ered as output of the algorithm. �is simple strategy also enables

to compare algorithm instances over the course of an equal number

of solution evaluations.

In the following the algorithm instances shall be explained a

li�le more, though it would be outside the scope of this paper to

describe them in all their details.

3.1 Robust Taboo Search
Robust taboo search (RTS) was introduced by Glover to avoid e�ects

where tabu search would be trapped in a cycle visiting the same

solutions over and over [22]. In RTS the length of the tabu tenure is
a random variable and each time a move is made a new tenure is

drawn from the probability distribution. In addition an alternative

aspiration condition was introduced that would greatly diversify

the search. A�er a certain number of iterations moves that have not

been performed in a long time would be considered instead of only

the best moves. It has been observed that the distribution parameter

of the tabu tenure has less of an e�ect on the performance of RTS

and given some prior experimentation the distribution parameter

of the tabu tenure was set to 200. However, the amount of iterations

for the alternative aspiration condition to come into e�ect has a

greater in�uence on the performance. �us, three instances of this

algorithm were tested:

(1) RTS-NOASP where the alternative aspiration condition was

not used

(2) RTS-20D where the iterations parameter a�ecting the al-

ternative aspiration condition was set to 20 times the di-

mension

(3) RTS-100D where the iterations parameter a�ecting the al-

ternative aspiration condition was set to 100 times the

dimension

3.2 Standard Tabu Search
In contrast to RTS standard tabu search uses a �xed tabu tenure

which was set to 3 times the dimension. A simple aspiration crite-

rion was used that allows reverting a move when the quality would

be be�er than the quality at which the move entered the tabu list.

3.3 Variable Neighborhood Search
Variable neighborhood search (VNS) combines a local search heuris-

tic with a perturbation strategy to escape local optima [17]. It uses

various neighborhoods in the perturbation phase and tries to start

from a neighborhood that a�empts a small change to a neighbor-

hood that performs bigger changes to the solution. VNS is elitistic

in that it bases its search always on the best solution found so

far. In this study an exhaustive local search based on the swap2
neighborhood was used. �e perturbation applies k-swap neigh-

borhoods with an increasing value of k which is limited by the

problem dimension halved.

3.4 Iterated Genetic Algorithm
�e genetic algorithm (GA) was con�gured to use 1-elitism, a popu-

lation size of 500, 15% mutation rate using the swap2 mutation, the

partially matched crossover (PMX) [7] and tournament selection

with a group size of 3. It runs for 200 generations a�er which it is

restarted until it reaches the total number of evaluated solutions

required during the test setup.
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3.5 Memetic Algorithm
�e memetic algorithm (MA) introduced in [16] is here described as

“Genetic Local Search (GLS)” describes a closer interplay between

local search and the crossover heuristic. In this algorithm the local

search manipulates only those parts of the permutation that were

not identical in the parents. It is con�gured to use a population size

of 100 and performs 50 crossovers and 20 mutations per generation.

�e mutations are performed according to a 2-opt change. �e

local search uses the swap2 neighborhood in the reduced sub-space

given by the two parents.

3.6 Iterated Memetic Algorithm
�is is another variant of a memetic algorithm that is closer to the

iterated genetic algorithm described above, but uses local search

during mutation. It does not use elitism, is con�gured with a popu-

lation size of 50 and uses linear rank selection. �e local search as

in the other algorithm instances uses the swap2 neighborhood. It

is restarted when it is converged.

3.7 Multi-start Local Search
Multi-start local search is quickly described as using exhaustive

local search in the swap2 neighborhood from randomly drawn

starting solutions.

3.8 Random Search
Random search basically evaluates a random sample of the solution

space which is drawn with repetition, i.e. no memory is used.

4 BENCHMARK DATA GENERATION
We picked a total of 47 problem instances from the QAPLIB [3],

microarray instances [5], Drezner’s [6], and Taillard’s symmetrical

and structured QAP instances
1

in dimensions from 19 to 343. �e

instances were chosen to include preferably two or more of the

same authors or generators in order to have some prior knowledge

in form of a similar instance present in the database. However

some instances, in particular els19, esc32a, had20, kra32, and nug30
were added without a similar counterpart. �e full set of problem

instances is shown among others in Table 3.

4.1 Performance Modeling
�ere is hardly a single measure that can express the performance

of metaheuristic algorithms. �ere are at least two relevant dimen-

sions when looking at algorithm performance.

(1) Achievable �ality

(2) Required Runtime

And they are both interdependent: �e quality is a function

of the runtime. Typically, algorithm instances are compared by

their achieved quality: An algorithm instance is be�er if it �nds

be�er solutions on average - for fairness purposes the allowed

computational budget is then �xed and equal for all. Nevertheless,

such a ranking could be di�erent if a shorter or longer budget is used

and is di�cult to generalize. On the other hand we can �x a certain

quality that has to be achieved and measure the required runtime to

achieve that quality. �e runtime is then seen as a random variable

1
h�p://mistic.heig-vd.ch/taillard/problemes.dir/qap.dir/qap.html

for which an expectation exists. �is expected runtime (ERT) is

then used to compare algorithms [10]. Nevertheless, for a di�erent

quality targets again the ranking may be di�erent. �us in the

analysis and comparison multiple such targets are used and the

performance of an algorithm instance is described as a vector of ERT.

Overall, several arguments are in favor of a comparison based on

runtime. As Hansen et al [9] note comparing algorithm instances A

and B based on the runtime allows making quantitative statements

such as “A is two times faster than B”. �ey conclude this is more

di�cult to perform when comparing quality as it cannot be argued

in general that a �tness value twice as large (or small) is also twice

as hard to achieve. In Figure 1 the performance of the algorithm

instances described in Section 3 are shown for the 1% target of each

of the problem instances.

5 RECOMMENDATION ALGORITHMS
For recommending algorithm instances we evaluate a k-nearest

neighbor-based approach (k-NN). It simply uses Euclidean distance

between the problem instances based on the features that have

been extracted. All features are normalized to a standard normal

distribution N (0, 1). Normalization is performed only for the prob-

lem instances that are not used for testing and these normalization

parameters are applied to the new problem instance.

�e k-NN is an instance-based algorithm that does not require

training. It simply uses the available data points and a distance

in feature space. Its performance depends on the one hand on

the hyperparameter k ∈ N and on the other hand by the selected

features that comprise the distance. �e algorithm instances will

be ranked based on the observed rankings of the k closest problem

instances. A new ranking will be created by the average of the

observed ERT values of each algorithm instance. �e smaller the

expected runtime the higher the algorithm instance will be ranked.

Because the target is �xed, we will not consider looking at the

qualities that may be achieved if the algorithm instance may be run

longer. A recommendation targeted for a �xed budget would also

be possible in which case the ranking would have to be computed

given the achieved quality at the �xed budget. While this is also

an interesting use case, in this work we will assume that a certain

target quality should be achieved and the best algorithm instance

is the one that is the fastest to achieve it.

6 EVALUATION
We aim to evaluate the algorithm selection performance on the

group of problem instances given in Table 3 using cross validation.

In the �rst tests we use the full set of problem instances for training

and then testing each problem instance as if it was to be new to

the set. Of course, this means that we have seen the exact same

instance in training already. But due to the stochastic nature of the

exploratory landscape analysis we may not arrive at exactly the

same feature vector. We aim to study the dependency on the time

to spend exploring the landscape and the accuracy of the features

that we observed.

In a second test the training is conducted using leave-one-out

crossvalidation such that the problem instance to test is not part of

the training. In this test we analyzed 200 paths out of the directed

walk described in Section 2.1. �is is closer to the case when the
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system would be employed to work in a real-world environment

making predictions for unknown problem instances.

�e algorithm instances will be clustered into six classes. We

are using an optimal 1-dimensional clustering algorithm [23] to

cluster these algorithm instances by their log
10
(ERT) performance

values [1, 10]. �en we sort the clusters by their centroids and

assign class 1 to 5 to all instances of that cluster in this order. �us

the classes are ranked so that class 1 contains the best performing

algorithm instances. �e ERT is computed with respect to reaching

a solution quality that is within x% to the best-known quality. �e

log transform is bene�cial to separate the algorithm instances by

their performances in orders of magnitude rather than by their

absolute di�erences. Class 6 is specially reserved for algorithm

instances that did not achieve the x% target quality in any of the

observed runs and thus have an ERT of∞. �is class thus contains

all algorithm instances that are unsuitable to achieve the required

target and should not be chosen.

Given this set-up we can evaluate recommender algorithms. We

will choose the best ranked algorithm instance for each problem

instance and lookup in which performance class this algorithm

instance was observed. �e more o�en we recommend an algo-

rithm instance of class 1 the be�er our recommendation algorithm,

the more o�en we recommend an algorithm instance of class 6

the worse. It should also be noted that not all problem instances

are of equal “di�culty”. While for some problem instances many

algorithm instances are in class 1, for other problem instances only

a single algorithm instance stood out as the most suited and many

if not all others could even be ranked class 6.

6.1 Recommendation Performance Measures
We will use the following measures to show the performance of the

proposed recommender:

(1) Normalized Discounted Cumulative Gain (NDCG)

(2) Kendall’s τ

�ese measures are common performance indicators in the do-

main of information retrieval (IR) and learning to rank (LTR) sys-

tems. �e recommendation of algorithm instances share some

properties with IR in that we also compare two rankings with each

other. �e �rst ranking is the one that was observed using actual

benchmark data, while the second ranking was obtained through

the recommendation algorithm.

�e NDCG [11] measure describes the gain of a certain document

(in information retrieval) based on its position. A discount is applied

in that lower ranked documents are not able to provide the same

gain as a higher ranked document. �is DCG measure is then

normalized by the ideal DCG which would rank each document

exactly as it should be ranked. �e NDCG thus results in a number

between 0 and 1 where a higher value indicates a be�er ranking

system than a lower value. In IR the NDCG is o�en applied to only

the �rst n ranked documents which is called then NDCGn measure.

In our case documents are algorithm instances and their rank is

based on their observed performance.

Kendall’s τ [12] is a measure of rank correlation. For all pairs

(xi ,yi ) and (x j ,yj ) in two rankings X and Y it is described as the

ratio of “agreeing” pairs minus the number of “disagreeing” pairs to

the total number of pairs. Two pairs are agreeing in rank if both xi

and yi are both lower or both higher ranked than the respective x j
and yj . �ey are disagreeing if one of them is ranked lower, but the

other is ranked higher. �e value for τ is in the range [−1; 1] where

-1 would indicate that two rankings are exactly opposite to each

other and 1 indicates that two rankings are equal to each other. A 0

indicates that there is no correlation among the rankings. �us, the

closer τ approaches 1 the be�er the correlation between the ranks.

Kendall’s τ is more strict with respect to ge�ing the ranking

exactly right. In our case, if we’re only looking at the top 3 rec-

ommended algorithm instances we don’t care so much whether

the worse algorithm instances are also ranked last. For a system

that would apply all algorithm instances starting from the best-

ranked to the worst-ranked it may be more important to focus on

Kendall’s τ than on NDCG which values more that the top ranked

algorithm instances are among the best ranked.

7 RESULTS
7.1 Accuracy of Instance Detection
As we stated earlier exploratory landscape analysis (ELA) is a sto-

chastic method that will yield di�erent results depending on the

sample that is drawn from the overall landscape. In order to assess

the robustness of this approach we will evaluate the accuracy of

problem instance detection depending on the amount of e�ort that

is spent during ELA. We aim to verify the assumption that more

e�ort also leads to more precise characteristics. As a baseline we

have performed 200 directed walks on each of the landscapes and

obtained the three features: Sharpness, bumpiness, and �atness.

In Table 1 we evaluate the ranking based on this baseline. We

take each problem instance, apply directed walk with an increasing

number of paths and calculate the characteristics. Given these

new characteristics we rank the instances based on the Euclidean

distance to the instance characteristics of the baseline data. If the

same instance was then ranked as �rst we record a rank of 0. In

Table 1 we state the average rank out of �ve repetitions averaged

over all problem instances. An average rank of 0 would be perfect

stating that the instance was always correctly identi�ed.

As can be seen the problem instances can be described rather

well by the exploratory analysis. It is possible to identify the same

instance again with a high probability using 100 paths already. Of

course, even 100 paths may be a lot to compute. However, by using

exploratoy analysis techniques that are based on heuristics the

potential of integrating them into metaheuristic algorithms allows

obtaining these characteristics as a result of the search [2]. It will

be the topic of future work to consider the cost of the landscape

analysis and contrast this with the savings observed as part of the

recommendation.

Table 1: �e average rank over 5 repetitions in identifying
the correct problem instance through exploratory landscape
analysis using Sharpness, Bumpiness, and Flatness as fea-
tures with a varying number of paths.

Paths
5 10 20 50 100 200

Average Rank 8.2 7.3 4.6 2.7 1.9 1.4
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Figure 1: Runtime analysis of di�erent algorithm instances for the 1% target on the benchmark problem set. ©Andreas Beham

7.2 Real-world like Recommendation
�e results given in Table 2 show that an NDCGn value close to 1 can

be achieved. �e table compares the NDCG performance for target

values given as rows and for several di�erent n given as columns.

Also Kendall’s τ values show that there is correlation among the

observed rank to the recommended rank. We observe that problem

speci�c characteristics are among the best suited for algorithm

selection in that we obtain slightly be�er τ values. Nevertheless, an

improvement in NDCGn could not always be observed. �is would

lead to the conclusion, that the overall rank is improved, but not

that the top n choices are so much be�er. Additionally, problem

speci�c properties may not transfer to other problems. �e other

characteristics mentioned are more general and can be computed

for any problem. Given the results, the described FLA characteris-

tics sharpness, bumpiness, and �atness also outperform rankings

obtained using characteristics of a random walk with 10,000 itera-

tions. It can also be observed that a good recommendation for the

0 or 1% target is harder to achieve. In Table 3 we show in more

detail the performance classes for the 5% target of the top 3 ranked

algorithm instances for every problem instance. �e results suggest

that the proposed system is quite well suited to generate a good

recommendation in a real-world system. In such a scenario, 46

problem instances would already be present in the knowledge base

having recorded the performance of all algorithm instances. �e

ranking for the “new” problem instance is then computed according

to the recommendation algorithm based on the observed perfor-

mances on the other similar problem instances. �is is of course

only a snapshot of a real-world situation. In an even more realistic

test the problem instances would have to be added one by one and

the recommendation would have to be performed for a range of

sequences. Again, this topic would be interesting for future studies,

but is beyond the scope of this work.

Looking at Table 3 in more detail we can observe that the recom-

mendation includes at least one of class 1 for almost every problem

instance in the top 3. For three problem instances (had20, tai20b,

and tai100b) we could not include an algorithm instance of class 1

in the top ranked algorithm instances of our recommendation. A

total of 17 recommended algorithm instances were deemed unsuit-

able as they did not once achieve the target quality in 100,000,000

evaluations as observed in the benchmark data set. However, it

has to be taken into account that for some problem instances there

was not more than 1 suitable algorithm instance available. Given

that we always considered the top 3 algorithm instances, 12 out

of 17 recommended instances are inevitably class 6 as less than 3

algorithm instances belonging to classes 1-5 were available. Po-

tentially, recommendation should stop recommending algorithm

instances when the performance on similar problem instances has

been unsatisfying and thus even less than n instances may be rec-

ommended. In our case we always output a full ranking of all

algorithm instances and then take the top n.

8 CONCLUSIONS AND OUTLOOK
In this work we have shown a study in the �eld of algorithm in-

stance selection on several problem instances of the quadratic as-

signment problem. We have introduced several new �tness land-

scape analysis characteristics and motivated their use. We have
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Table 2: �e resulting performancemeasures evaluated for a
varying number of ranked algorithm instances. �e number
n denotes that performancemeasure if only the topn ranked
algorithm instances are taken into account.

Target

NDCGn Kendall’s τ
1 2 3 4 5 6

Sharpness, Bumpiness, Flatness (200 paths)

0% 0.78 0.84 0.87 0.89 0.90 0.90 0.65

1% 0.80 0.80 0.85 0.85 0.86 0.87 0.61

5% 0.86 0.85 0.88 0.90 0.90 0.90 0.65

10% 0.83 0.85 0.89 0.91 0.91 0.91 0.61

20% 0.80 0.81 0.86 0.87 0.88 0.89 0.58

QAP speci�c characteristics

0% 0.77 0.79 0.83 0.86 0.86 0.87 0.67

1% 0.77 0.80 0.83 0.85 0.87 0.88 0.63

5% 0.95 0.94 0.93 0.94 0.94 0.94 0.72

10% 0.93 0.92 0.93 0.93 0.93 0.94 0.70

20% 0.89 0.90 0.92 0.92 0.92 0.92 0.68

Random walk characteristics (10,000 iterations)

0% 0.72 0.77 0.79 0.81 0.82 0.83 0.53

1% 0.69 0.72 0.74 0.76 0.78 0.79 0.52

5% 0.86 0.84 0.84 0.86 0.86 0.87 0.57

10% 0.86 0.85 0.86 0.87 0.89 0.89 0.59

20% 0.83 0.82 0.84 0.85 0.87 0.87 0.56

shown promising results using a simple k-nearest neighbor recom-

mendation algorithm and evaluated its performance using leave

one out crossvalidation measured by NDCG and Kendall’s τ .

While a signi�cant amount of time and energy has been invested

in creating this study, there are still a large number of open ques-

tions. On the one hand we observed that the recommender only

works well when we set k = 1 and thus implicitely depend on the

presence of a very similar problem instance in the knowledge base.

In case such a problem instance is not present the recommender’s

performance deteriorates signi�cantly. Calculating a ranking using

multiple neighbors is also non-trivial. One could calculate an av-

erage rank or recreate a rank based on the sum of the underlying

performance measures such as ERT. We deliberately omi�ed results

regarding the recommender’s performance in predicting the actual

ERT performance. On the one hand because it would go beyond the

scope of the study and on the other hand because the results were

not very satisfying. More elaborate recommendation algorithms

need to be applied in the future in order to improve the results. So

far we can conclude that a nearest neighbor approach with k = 1

seems to work quite well in choosing suitable algorithm instances

given that our knowledge base is large enough and contains a sim-

ilar problem instance. Also in the future the e�ort that has to be

spent in analyzing the landscape has to be taken into account. In

order to be useful and taking into account the cost of ELA the

recommender has to solve the problem instances with less e�ort

than when using a default algorithm instance for all the problem

instances.

We hope to be able to provide the data in an open format in the

near future so that further studies can be performed.

Table 3: Result of the recommendation per problem in-
stance. In each cell the �rst number indicates the amount
of algorithm instances recommended and the second num-
ber indicates the total number of algorithm instances per
performance class. Problem instances are marked in bold if
the recommendation has been very good.

Problem Instance Performance Classes 5%
1 2 3 4 5 6

bur26a 3/4 -/2 -/2 -/1 -/1

bur26d 3/4 -/3 -/1 -/1 -/1

chr20a 2/3 1/2 -/2 -/1 -/1 -/1

chr20b 1/1 1/2 1/2 -/3 -/1 -/1

chr20c 1/3 1/2 -/2 -/1 1/1 -/1

dre24 3/3 -/1 -/1 -/2 -/1 -/2

dre30 2/2 1/1 -/3 -/1 -/1 -/2

dre56 1/1 -/1 -/1 2/7

dre72 1/1 2/9

dre110 1/1 2/9

els19 1/3 1/2 -/1 -/2 1/1 -/1

esc32a 1/1 1/4 -/1 -/1 1/2 -/1

had20 -/4 2/3 -/1 1/1 -/1

kra32 2/2 -/3 1/2 -/1 -/1 -/1

lipa20a 3/4 -/2 -/1 -/2 -/1

lipa20b 1/1 2/3 -/3 -/1 -/1 -/1

lipa50a 2/6 -/1 1/2 -/1

lipa50b 2/3 -/2 -/1 -/1 -/1 1/2

lipa90a 3/6 -/1 -/2 -/1

lipa90b 1/1 2/3 -/1 -/1 -/2 -/2

nug30 1/2 1/2 1/3 -/1 -/1 -/1

RAND-S-6x6-…bl 2/3 -/2 1/2 -/1 -/1 -/1

RAND-S-8x8-…ci 3/4 -/2 -/1 -/1 -/1 -/1

RAND-S-10x10-…bl 1/4 -/1 1/1 -/1 1/1 -/2

RAND-S-12x12-…ci 3/4 -/2 -/1 -/1 -/1 -/1

sko56 3/4 -/2 -/1 -/1 -/1 -/1

sko90 3/4 -/2 -/1 -/1 -/1 -/1

tai20a 3/4 -/2 -/1 -/1 -/1 -/1

tai20b -/1 1/2 1/3 1/3 -/1

tai50a 3/4 -/1 -/2 -/1 -/1 -/1

tai50b 1/3 1/2 1/2 -/1 -/1 -/1

tai100a 3/4 -/2 -/1 -/1 -/1 -/1

tai100b -/2 1/3 1/1 -/1 1/2 -/1

tai27e01 2/2 1/2 -/2 -/1 -/2 -/1

tai27e10 2/2 1/1 -/2 -/1 -/3 -/1

tai45e01 1/1 1/2 1/1 -/1 -/1 -/4

tai45e10 1/1 1/2 1/1 -/1 -/1 -/4

tai75e01 1/1 1/1 -/1 1/1 -/6

tai75e10 1/1 1/1 -/1 1/1 -/6

tai125e01 1/1 1/1 1/8
tai125e10 1/1 -/1 2/8

tai175e01 1/1 1/1 1/8
tai175e10 1/1 2/9
tai343e01 1/1 2/9
tai343e10 1/1 2/9
wil50 3/4 -/2 -/1 -/1 -/1 -/1

wil100 3/4 -/2 -/1 -/1 -/1 -/1

Recommended 80 24 11 4 5 17

Total 119 79 59 45 40 128

1477



ACKNOWLEDGMENTS
�e work described in this paper was done within the COMET

Project #843532 Heuristic Optimization in Production and Logis-

tics (HOPL) funded by the Austrian Research Promotion Agency

(FFG) and the Government of Upper Austria and the COMET Project

#843551 Advanced Engineering Design Automation (AEDA) funded

by the Austrian Research Promotion Agency (FFG) and the Govern-

ment of Vorarlberg.

REFERENCES
[1] A. Auger and N. Hansen. 2005. Performance evaluation of an advanced local

search evolutionary algorithm. In Proceedings of the 2005 IEEE Congress on Evo-
lutionary Computation (CEC), Vol. 2. 1777–1784. DOI:h�p://dx.doi.org/10.1109/

CEC.2005.1554903

[2] Andreas Beham, Erik Pitzer, and Michael A�enzeller. 2017. Integrating Ex-

ploratory Landscape Analysis into Metaheuristic Algorithms. In Proceedings of
the 16th International Conference on Computer Aided Systems �eory (eurocast
2017). 134–135.

[3] Rainer E. Burkard, Stefan E. Karisch, and Franz Rendl. 1997. QAPLIB – A

�adratic Assignment Problem Library. Journal of Global Optimization 10, 4

(June 1997), 391–403. h�p://www.opt.math.tu-graz.ac.at/qaplib/

[4] Francisco Chicano, Gabriel Luque, and Enrique Alba. 2012. Autocorrelation

measures for the quadratic assignment problem. Applied Mathematics Le�ers 25,

4 (2012), 698–705.

[5] Sérgio A. de Carvalho Jr. and Sven Rahmann. 2006. Microarray Layout as

�adratic Assignment Problem. In Proceedings of the German Conference on
Bioinformatics (GCB), volume P-83 of Lecture Notes in Informatics.
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