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1 INTRODUCTION

The behavior of a robot depends on its environment. Evolutionary

approaches can be adapted to look for controllers that are robust to

changing conditions [4, 10], but it is hard to guarantee that a single

behavior will adapt to any new situation. An alternative approach

consists in building a repertoire of behaviors in which to look for

behaviors adapted to the context [1, 2]. Having a large set of behav-

iors instead of a single one further allows for extracting informa-

tion about the robot, the environment and the task, thus opening

the way to a self-built understanding of what makes sense for the

robot [3] and to the acquisition of higher level representations that

can solve new tasks faster and more e�ciently [14].

QualityDiversity search algorithms (QD) are well suited to build

such repertoires of behaviors [5–8, 11, 13]. Instead of looking for a

single solution that is optimal with respect to a user de�ned func-

tion describing a task, QD aims at building a set of high-performing

solutions that is as large as possible. Conceptually, QD is based on

the novelty search algorithm [5, 12] and Novelty Search with Lo-

cal Competition (NSLC), its extension that takes into account per-

formance [6]. This is a multi-objective approach in which a local

performance score balances a novelty objective. It generates many

di�erent good quality solutions, introducing the concept of qual-

ity and diversity. MAP-Elites is another QD algorithm [7, 13]. The

multi-dimensional behavior space is discretized into a set of bins (a

behavioral map). The algorithm aims at �lling the bins with high

quality behaviors. These QD algorithms are all based on the same

principles: they look for novel solutions, in terms of the behavior

they exhibit, and take into account the performance only at a local

scale: an individual succeeds if it is novel or else if it is close to

other behaviors, but more �t.
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Figure 1: The diverse robot throwing motions, the arm

(black) and object trajectory (blue) that are acquired from

the QD search algorithm.

The process of the QD algorithm used here follows the princi-

ples of NSLC [6]. After an initial random generation, the parents

are selected proportionally to their novelty and local quality score.

The o�-springs (individuals) are populated from the selected par-

ents. Each individual is evaluated by observing the corresponding

behavior in simulation and computing the corresponding quality

and diversity scores. If the diversity score of an individual is larger

than a threshold, the individual is stored in the archive. Otherwise,

its quality is compared with one of the most similar individuals in

the archive. If the quality score is larger than the one in the archive,

the individual in the archive is replaced with the new one.

In this work, we present an application of QD algorithms to ro-

botics. The proposed experiment consists in learning trajectories

that make the robot launch a ball in a basket. The diverse set of so-

lutions found is aimed to be used in a selection process that could

discard solutions that do not cross the reality gap [9] or adapt to

a new situation. This work focuses on the generation of the reper-

toire of trajectories. Exploitation of the repertoire is left to future

work.
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Figure 2: Selected robot motions, trajectory A (up) and B (bottom) are shown on the right side.

2 EXPERIMENT

The goal of the presented application is to �nd diverse and feasible

robot arm trajectories for throwing an object into a given basket.

The experiment relies on the Baxter robot. The robot has two arms

with 7 degrees of freedom and a gripper is attached at the end of

each arm. In order to plan the robot throwing trajectory, we use

3rd order polynomials, because of their computational simplicity

and smooth trajectory planning capacity. The parameters of the

planner are the joint positions of the arm (7-DOF) and their veloc-

ities at the releasing time as well as the duration of the motion.

These 15 parameters constitute the genotype of a solution.

The behaviour associated to a trajectory is evaluated in theDART

physical engine. The evaluation of a genotype starts with a cube

placed in the robot gripper. The robot moves its right arm from

a pre-de�ned starting joint con�guration to the target joint po-

sitions with the target joint velocities contained in the genotype.

When it reaches the target joint con�guration, the robot releases

the cube. The simulation runs until the cube falls on the ground or

reaches the basket. The arm trajectories and the cube trajectories

are recorded to evaluate the throwing behaviors.

The behavior descriptor bd (x ) associated to a genotype x is

the arm trajectory of the robot in the Cartesian space, described

by �ve equally distributed intermediate points of the trajectory

(bd (x ) ∈ R15). The local quality of a behavior is the minimum dis-

tance between the thrown object trajectory and the basket position.

Hence, the QD algorithm �nds diverse robot arm trajectories that

launch the cube as close as possible to the target.

Overall 5000 generations of QD algorithms are performed. In

each generation, 200 parent individuals are selected from the archive

with a probability proportional to their Pareto rank. Crossover (crossover

rate: 0.15) and mutation (mutation rate: 0.15) operators are applied,

and the same number of independent o�springs are generated and

simulated.

3 RESULT AND DISCUSSION

After 5000 generations, the archive contains 3430 throwing behav-

iors. Among them, 98 are able to throw the cube into the basket.

Half of the obtained throwing behaviors are shown in Figure 1.

Two of them are highlighted with some snapshots from the simu-

lation in Figure 2. As can be seen on the �gure, the QD algorithm

has found diverse throwing behaviors that can throw the cube into

the basket.

The next step is to use these trajectories to design primitive be-

haviours for a real Baxter robot. When the robot faces a new sit-

uation (e.g. an obstacle is presented in the environment), through

trial and error, its controller can select an appropriate behavior that

avoids it [1], thus simultaneously �nding out how to face the new

situation and crossing the reality gap [9].
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