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ABSTRACT

�e notion of unbiased black-box complexity plays an important
role in theory of randomized search heuristics. A black-box al-
gorithm is usually de�ned as an algorithm which uses unbiased
variation operations. In all known papers, the analysed variation
operators take k arguments and produce one o�spring. On the
other hand, many practitioners use crossovers which produce two
o�spring, and in many living organisms a diploid cell produces two
distinct haploid genotypes.

We investigate how the binary-to-binary, or (2→ 2), unbiased
variation operators look like, and how they can be used to improve
randomized search heuristics. We show that the (2→ 2) unbiased
black-box complexity of Needle coincides with its unrestricted
black-box complexity. We also show that it can be used to put
strong worst-case guarantees for solving OneMax.
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1 INTRODUCTION

Evolutionary algorithms, as well as most other randomized search
heuristics (RSHs), are generally seen as problem-agnostic solvers
which gain information about the problem by the sole means of
querying the so-called �tness function. In theoretical research, the
number of calls to the �tness function is a primary performance
measure of a randomized search heuristic. A huge body of research
is dedicated to runtime analysis of various algorithms on various
problem classes, which produces statements such as “the running
time of a (1+ 1) evolutionary algorithm on the OneMax problem is
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Θ(n logn), where n is the problem size” [1]. A counterpart to this
is measuring the complexity of a problem with respect to a family
of algorithms: the black-box complexity of a problem is, loosely
speaking, the expected running time of a best possible algorithm
on this problem [5].

As RSHs are problem-agnostic, they shall not prefer one instance
of a problem to another one. �is means that a “good” general-
purpose RSH, speaking in terms of genetic algorithms, shall treat
equally two di�erent genes or two alleles of the same gene. In a
sense, if such an algorithm is invariant under certain transforma-
tions of the problem search space, we can prove its properties for
the entire problem, or even a class of problems, by analysing a single
problem instance. However, this does not come for free, as special-
ized problem solvers, even those which receive information about
the problem just by using the �tness function, may make use of the
problem properties which are known for them, and this gives them
an advantage over RSHs. �is, in particular, results in ridiculuously
small black-box complexities of certain problems [5]. Together,
this gave rise to the notion of the unbiased black-box complexity,
where the analysed algorithms are only allowed to operate in such
ways which remain symmetric under certain transformations of
the search space [7].

Lehre and Wi� [7] introduced the notion of a unbiased varia-

tion operator for pseudo-Boolean problems (which have the search
space consisting of all bit strings of a �xed length n). An unbi-
ased variation operator is invariant with respect to changing of
meanings of the particular bit values (that is, if all its arguments
undergo a bitwise exclusive-or operation with a certain bit string
x , then its result also undergoes the same transformation), and also
with respect to changing bit positions (that is, if a certain permu-
tation π is applied to all arguments, then the result also changes
accordingly). Most o�en, the mutation-only, or unary, unbiased
black-box complexity is studied, due to its simplicity. However, it
was shown that using more than one argument can provably yield
be�er algorithms [4], which is, in a sense, a motivation for using
crossovers, as whether crossovers are needed was a long-standing
issue in evolutionary computation [6]. In fact, even for the simple
problems, such as OneMax, crossover was shown to speed up opti-
mization by a constant factor [8], and, very recently, an algorithm
was proposed which yields an asymptotic speed-up [2, 3].

However, in the entire body of theoretical analysis of the RSHs,
only the operators which take K ≥ 1 search points as arguments
and return one new search point were considered. In the case of
K = 2, this contradicts with the common usage of crossovers in the
practice of evolutionary computation, when both o�sping, resulting
in swapping several genes between the parents, are evaluated and
participate in the selection. In a sense, it contradicts with what we
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see in real life, where meiosis results in two haploid cells, which
both subsequently participate in reproduction.

One possible reason for such a di�erence may be seen as follows:
when considering the OneMax problem, where �tness is measured
as the number of bits equal to 1, and keeping in mind the conven-
tional crossovers, which only exchange genes, the second o�spring
can be seen as an unnecessary waste of the �tness query budget, as
if the OneMax values of the parents were A and B, and the value
of the �rst o�spring is C , then the value of the second o�spring is
A + B −C , that is, no query is needed to �nd its �tness.

In this paper, we suggest the scienti�c community to revisit
this area. In particular, we performed some initial explorations of
what we call (2→ 2)-ary unbiased operators and �nd that (2→ 2)
unbiased operators make it possible to solve Needle in optimal
time, and they also can derandomize a binary unbiased algorithm
to solve OneMax in at most 2n queries.

2 UNARY AND BINARY OPERATORS

In the following, we consider search spaces consisting of bit strings
of length n, that is, {0, 1}n . By [1..n] we denote a set of integers
from 1 to n inclusively.

A k-ary variation operator X produces a search point y from the
givenk search points x1, . . . ,xk with probability PX(y | x1, . . . ,xk ).
�e operator X is unbiased if the following relations hold for all
search points x1, . . . ,xk ,y, z and all permutations π over [1..n]:

PX(y | x1, . . . ,xk ) = PX(y ⊕ z | x1 ⊕ z, . . . ,xk ⊕ z), (1)
PX(y | x1, . . . ,xk ) = PX(π (y) | π (x1), . . . ,π (xk )), (2)

where a ⊕ b is the bitwise exclusive-or operation applied to two
bit strings a and b of the same length, and π (a) is an application
of permutation π to a bit string a. In simple words, Eq. 1 declares
that X is invariant under �ipping the i-th bits, for any i , in both
arguments and the result, and Eq. 2 declares that X is invariant
under permuting bits in the same way in arguments and the result.

�e single-bit-�ip mutation operator and the standard bit muta-
tion operator, with any bit �ipping probability, are certainly unary
unbiased operators. An example of a binary unbiased operator is a
homogeneous crossover operator, with any bit swapping probabil-
ity, which returns either of the o�spring.

All unary unbiased operators can be characterized as follows.

Theorem 2.1. �e following statements are equivalent for an

unary operator y = X(x) de�ned on bit strings of length n:

(1a) X is unbiased.

(1b) X can be represented using the following algorithm:

– �rst, a mutation sizem is chosen in an arbitrary way

from {0} ∪ [1..n];
– second, a subset S ⊆ [1..n] with sizem is chosen uni-

formly at random, and y is obtained from x by �ipping

bits with indices from S .

Proof. (1a)→(1b): As proven in [7, Proposition 1], every un-
biased unary operator is Hamming-invariant, that is, for every
d ∈ {0} ∪ [1..n] it samples all points at the Hamming distance
d from the argument with equal probability pd . �us, X can be
expressed as (1b) by choosingm with probability pd ·

(n
d
)
.

(1b)→(1a): First, (1b) either leaves a bit intact or �ips it, thus it
is invariant under �ipping. Second, all subsets of a certain size are
chosen equiprobably, thus (1b) is invariant under permutations. �

Description of all binary unbiased operators is slightly more
complicated. We are unaware of any such description available
in the literature, although it may belong to the common sense.
Nevertheless we give and prove it.

Theorem 2.2. �e following statements are equivalent for a binary

operator y = X(x1,x2) de�ned on bit strings of length n:

(2a) X is unbiased.

(2b) X can be represented using the following algorithm:

– �rst, the subsetQ ∈ [1..n] is determined such that i ∈ Q
if and only if the i-th bits in x1 and x2 coincide;

– second, based on |Q | and n only, two integers s and d
are chosen, such that 0 ≤ s ≤ |Q |, 0 ≤ d ≤ n − |Q |;

– third, a subset S ⊆ Q with size s , and a subset D ⊆
[1..n] \Q with size d , are chosen uniformly at random,

and y is obtained from x1 by �ipping bits with indices

from S ∪ D.

Proof. In simple words, we need to prove that a binary operator
is unbiased if and only if it decides how many coinciding bits, and
how many di�ering bits, need to be �ipped in the �rst argument,
and then chooses these bits at random and �ips them.

(2b)→(2a): For any given strings x1 and x2, the subsetQ does not
change if they are replaced with x1 ⊕ z and x2 ⊕ z correspondingly,
for any bit string z. �us the probability of any subset of bit indices
to be �ipped simultaneously does not change. �is means that
exactly the same bits of the new result y′, which are di�erent from
y, are di�erent in x1 and x1 ⊕ z, thus y′ = y ⊕ (x1 ⊕ (x1 ⊕ z)) = y ⊕ z
and X is invariant under �ipping.

If a permutation π is applied to both x1 and x2, then the new
same-bits subsetQ ′will be π (Q) as well. As |π (Q)| = |Q |, the choice
of s and d is not a�ected. �e probability of any subset S ⊆ Q to
be �ipped in x1 is thus equal to the probability of π (S) ⊆ π (Q) to
be �ipped in x1, the similar statement is true for any subset D ⊆
[1..n] \Q , which means that the probability of sampling y′ = π (y)
a�er applying the permutation is the same as the probability of
sampling y in the original setup.

(2a)→(2b): Assume x1 and x2 have at least t equal bits, and T is
the set of indices of such bits. We need to show that, for any two
subsets T1 ⊆ T and T2 ⊆ T , both of size t , y = X(x1,x2) has the
same probability of:

• being y1: di�erent from x1 in bits from T1 and coincide
with it in bits from T \T1;
• being y2: di�erent from x1 in bits from T2 and coincide

with it in bits from T \T2.
As |T1 = T2 |, one can construct a permutation π such thatT2 \T1 =
π (T1 \T2) and T1 \T2 = π (T2 \T1) where set equality is assumed,
while all other indices are not changed. Let also z = x1 ⊕ π (x1).
�e composition of these two transformations z ◦ π transforms x1
into x1, as well as x2 into x2, and y1 into y2. �is means that, as X
is unbiased, the probabilities of achieving y1 and y2 are equal. As
a result, processing equal bits is Hamming-based, similarly to the
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unary case, thus can be expressed in terms of (2b). Proving the case
for di�ering bits is symmetric, thus completing the proof. �

3 EXTENDED UNBIASED OPERATORS

�e notion of k-ary unbiased variation operators is easily extensible
to operators which result in producing more than one o�spring.

3.1 (k →m)-ary Operators and Complexities

We call a (k →m)-ary variation operator X, de�ned on bit strings
of length n, a function, probably a non-deterministic one, which
takes k bit strings as arguments and producesm bit strings as a
result. �e order of the resulting bit strings ma�ers, as well as the
order of the arguments.

An (k →m)-ary variation operator is unbiased if the following
relations hold for all search points x1, . . . ,xk ,y1, . . . ,ym , z and all
permutations π over [1..n]:

PX(y1, . . . ,ym | x1, . . . ,xk )
= PX(y1 ⊕ z, . . . ,ym ⊕ z | x1 ⊕ z, . . . ,xk ⊕ z), (3)

PX(y1, . . . ,ym | x1, . . . ,xk )
= PX(π (y1), . . . ,π (ym ) | π (x1), . . . ,π (xk )). (4)

We de�ne the (k → m)-ary unbiased black-box complexity of
a problem as the in�mum of the expected runtime for all unbi-
ased black-box algorithms which use only (α → β)-ary variation
operators such that 0 ≤ α ≤ k and 1 ≤ β ≤ m.

�e previously existing unbiased operators and complexity mea-
sures �t well into this extended notation. Namely a k-ary (unbiased)
variation operator is (k → 1)-ary (unbiased) variation operator,
and the k-ary unbiased black-box complexity is the same as the
(k → 1)-ary unbiased black-box complexity.

3.2 (2→ 2)-ary Unbiased Operators

In this paper we concentrate primarily on (2 → 2)-ary unbiased
variation operators. A simple example of a (2→ 2)-ary unbiased
operator is the uniform crossover, which produces o�spring by
�ipping the bits of the parents, residing at the same indices, with
a probability p, which is the same for all bits, and returns both
o�spring as a result. Note that, when p , 0.5, the order of the
o�spring ma�ers.

A notable fact is that (2→ 2)-ary operators need not to be sym-
metric, that is, they are not limited to uniform crossovers, even if
they are allowed to make distinction between equal and di�ering
bits of the parents. For example, such an operator is able to control,
while remaining unbiased, whether to �ip or not to �ip a bit, com-
pared to the �rst argument x1, in the �rst and the second o�spring
separately, thus having four, not two, groups of bits with di�erent
behavior within each sets of bits (equal or di�ering in parents)
which binary unbiased operators are allowed to distinguish. �is
enables six degrees of freedom in (2→ 2)-ary unbiased operators,
compared to only two degrees of freedom in the conventional bi-
nary unbiased operators, which we may denote as (2 → 1)-ary
operators.

Similarly to �eorem 2.2, we state a theorem for the (2→ 2)-ary
operators. It is proven in precisely the same manner as�eorem 2.2,
but we omit the proof for the sake of brevity.

Theorem 3.1. �e following statements are equivalent for a (2→
2)-ary operator (y1,y2) = X(x1,x2) de�ned on bit strings of length n:

(3a) X is unbiased.

(3b) X can be represented using the following algorithm:

– �rst, the subsetQ ∈ [1..n] is determined such that i ∈ Q
if and only if the i-th bits in x1 and x2 coincide;

– second, based on |Q | and n only, six non-negative in-

tegers s10, s01, s11, d10, d01, d11 are chosen, such that

0 ≤ s10 +s01 +s11 ≤ |Q |, 0 ≤ d10 +d01 +d11 ≤ n− |Q |;
– third, six non-intersecting subsets S10, S01, S11,D10,D01,

D11 are chosen uniformly, such that |S10 | = s10, |S01 | =
s01, |S11 | = s11, |D10 | = d10, |D01 | = d01, |D11 | = d11,
S10 ∪ S01 ∪ S11 ⊆ Q , D10 ∪ D01 ∪ D11 ⊆ [1..n] \Q ;

– fourth,y1 is created by �ipping in x1 bits at indices from
the set S10∪S11∪D10∪D11, andy2 is created by �ipping
in x1 bits at indices from the set S01 ∪ S11 ∪D01 ∪D11.

Informally speaking, every (2→ 2)-ary unbiased operator is free
to split the bit indices where the parents x1 and x2 have equal bits,
into four non-intersecting groups corresponding to whether the
�rst parent’s bit will be �ipped in each o�spring, and do the same
with the remaining bit indices (where x1 and x2 di�er) as well.

If one extends the idea of �eorem 2.2 to ternary unbiased opera-
tors (in the new terminology, the (3→ 1)-ary unbiased operators),
one can see that ternary operators, like the (2→ 2)-ary, also have
eight blocks of bits with di�erent decisions. It is also not di�cult to
see that every (2→ 2)-ary unbiased operator can be simulated with
a system of one (2→ 1)-ary and one (3→ 1)-ary unbiased operator
with no additional cost. �is results in the following corollary.

Corollary 3.2. For every problem, its (2 → 2)-ary unbiased

black-box complexity is at least as high as its (3→ 1)-ary unbiased

black-box complexity.

4 (2→ 2)-ARY UNBIASED BBC OF NEEDLE

�e needle-in-the-haystack problem, or simply Needle, is one of
the hardest black-box optimization problems. It provides no guid-
ance towards the optimum through answers to queries, as all these
answers are equal to zero in all points except for the optimum
itself [5]. More formally, Needlen is the set of problem instances
Needlen,z de�ned on bit strings of length n as follows:

Needlen,z : {0, 1}n → Z;x 7→ 1 if x = z, 0, otherwise,
where z ∈ {0, 1}n is the optimum.

�e query complexity of Needle is (2n+1)/2, which corresponds
to shu�ing all search points, without repetitions, in a random
order and querying them in this order [5]. On the other hand, just
querying random search points brings the expected runtime of 2n ,
which is only a factor of 2 apart from the best possible algorithm.

Typical evolutionary algorithms are even worse: for instance, for
a constant 0 < η < n/2 there exists a constant c > 0 such that with
probability 1 − 2−Ω(n) the (1 + 1) evolutionary algorithm creates
search points with the distance to the optimum at least ηn in 2cn
steps [1, �eorem 2.13].

We prove that (2 → 2)-ary unbiased operators are powerful
enough to reach the best possible performance on Needle.

Theorem 4.1. �e (2→ 2)-ary unbiased black-box complexity of

Needle is (2n + 1)/2.
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Algorithm 1�e (2→ 2)-ary unbiased algorithm for Needle
procedure Traverse(x1, x2, n, `)

if ` + 1 < n then

(y1,y2) ← SwapOneWhereDifferent(x1, x2)
�ery(y1)
�ery(y2)
Traverse(x1, y2, n, ` + 1)
Traverse(y1, x2, n, ` + 1)

end if

end procedure

procedureMain(n)
x1 ← UniformRandom({0, 1}n )
x2 ← Inverse(x1)
�ery(x1)
�ery(x2)
Traverse(x1, x2, n, 0)

end procedure

Proof. We will use the algorithm outlined as Algorithm 1. It
uses one unary unbiased variation operator called Inverse, which
performs inversion of the argument, and one (2→ 2)-ary unbiased
variation operator, SwapOneWhereDifferent, which chooses one
random bit index among the indices of bits which are di�erent in
parents and swaps the bits on this index to achieve two o�spring.

To prove the theorem, it is enough to prove that this algorithm
queries every search point exactly once, as the random �rst query
will also randomize the position of the optimum in the list of queries.

�e procedure Traverse(x1, x2, n, `) is called on two search
points x1 and x2 which have exactly ` equal bits. We prove that this
procedure will query all search points, which have the same ` bits
equal to the ones in x1 and x2, except x1 and x2 themselves. As the
Main procedure calls Traverse with ` = 0 on the complementary
x1 and x2, which are already queried by that time, this will prove
the entire theorem.

We use induction by `. �e base case, ` + 1 = n, is obvious: the
search points x1 and x2 di�er in exactly one bit, so no more queries
are needed, and Traverse indeed does not do anything. Consider
any ` such that 0 ≤ ` < n−1. �e newly produced points,y1 andy2,
share the same bit index, in which y1 di�ers from x1 and y2 di�ers
from x2. �is means that the remaining points to be queried agree
either with y1, in which case they will be queried in the recursive
call Traverse(y1, x2, n, ` + 1) by induction, or with y2, which is
covered by Traverse(x1, y2, n, ` + 1). �

Note that this theorem does not work when two independent
(2 → 1)-ary operators are used to create y1 and y2, since these
operators cannot guarantee that y1 and y2 will di�er from their
corresponding parents in the same bit, and thus they cannot split
the search space into the necessary halves.

5 DERANDOMIZATION OF ONEMAX

A simple binary unbiased algorithm for solving OneMax was pro-
posed in [4, Algorithm 4]with the expected running time of 2n+o(n)
and the following runtime guarantee: the running time exceeds
2n(1 + ε) with probability at most exp(−ε2n/2(1 + ε)).

Algorithm 2 �e (2→ 2)-ary unbiased algorithm for OneMax
procedureMain(n, f ∈ OneMax)

x1 ← UniformRandom({0, 1}n )
x2 ← Inverse(x1)
�ery(x1)
�ery(x2)
for i ∈ [1..n] do
(y1,y2) ← SwapOneWhereDifferent(x1, x2)
�ery(y1)
�ery(y2)
if f (y1) > f (x1) then

x1 ← y1
else

x2 ← y2
end if

end for

end procedure

We show that using a (2→ 2)-ary unbiased variation operator
yields a stronger, “more deterministic”, runtime guarantee of 2n
with probability one. �e corresponding algorithm is outlined as
Algorithm 2. As in [4, Algorithm 4], the invariant of the algorithm
is as follows: the bits coinciding in x1 and x2 are guessed correctly.
Every pair of queries in the for-loop puts the right value for the bit
residing at the index chosen for swapping by the SwapOneWhereD-
ifferent operator in both x1 and x2, thus a�er 2n queries x1 and x2
will agree in n − 1 bits which are set correctly. In this case, exactly
one of them is the optimum.

6 CONCLUSION

We introduced an extension of k-ary unbiased variation operators,
the (k →m)-ary unbiased variation operators which take k argu-
ments and producem o�spring. Our initial explorations showed
that even (2 → 2)-ary operators can be quite powerful. By this
research, we hope to show one more dimension to the hierarchy of
black-box complexities, which may in turn produce one more way
towards be�er algorithms.
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