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Université de Lorraine, Loria, UMR 7503
konstantinos.chatzilygeroudis@inria.fr

ABSTRACT

Simulators in Evolutionary Robotics (ER) are o�en considered as

a “temporary evil” until experiments can be conducted on real

robots. Yet, a�er more than 20 years of ER, most experiments still

happen in simulation and nothing suggests that this situation will

change in the next few years. In this short paper, we describe

the requirements of ER from simulators, what we tried, and how

we successfully crossed the “reality gap” in many experiments.

We argue that future simulators need to be able to estimate their

con�dence when they predict a �tness value, so that behaviors that

are not accurately simulated can be avoided.
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1 INTRODUCTION

Simulators are an integral part of the Evolutionary Robotics’ liter-

ature because they allow researchers to explore their ideas more

easily than evolution in physical systems. Given the importance of

this topic, the community would bene�t from a shared culture of

simulators and from sharing their toolkits. In this short paper, we

describe the requirements of ER from simulators, what we tried,

and how we successfully crossed the “reality gap” [10, 11] in many

experiments.

2 WHAT SIMULATOR DOWE NEED?

Evolutionary robotics imposes speci�c requirements on the simula-

tors:

• Fast: Most ER experiments spend most of their time in the

�tness function, that is, in running the simulator for many

time-steps; it is therefore critical that the simulators are as

fast as possible.
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• Short cold start: �e �tness function will be evaluated

millions of times, therefore starting a new simulation should

take as li�le time as possible.

• Fully re-entrant and thread-safe: A common strategy

to reduce the duration of ER experiment is to parallelize the

�tness evaluations (this strategy makes even more sense

now that most computers have many cores); however, to

do so, the simulators need to be programmed without any

hidden state (e.g. static or global variables) and allow many

instances to run at the same time (ideally in the same

process).

• Stable: Evolution, like other optimization algorithms, tend

to push the simulators to their limits and over-exploit

“bugs” and instability; it is, for example, common in ER

to observe simulated multi-body robots “explode” (break

the joint constraint) because it allows the main body to

travel a high-speed.

• Accurate: more accuracy is always be�er as it reduces

the reality gap (see section 4); however, the level of accu-

racy depends strongly on the type of study (not all argu-

ments/demonstrations need accurate physical simulations).

• Open source: It is critical for reproducibility that (1) other

researchers can con�rm and expand results without need-

ing to buy a license for some closed-source so�ware, (2)

that simulators can be updated to run on new systems

/ operating systems even if the company that made the

original so�ware does not exist anymore, (3) it is possi-

ble to know exactly what computation is performed; for

these reasons, scienti�c work in ER needs to focus on open

source solutions.

• Stable API: As simulators are not the main research focus

of the community, we would like to spend as li�le time as

possible on maintaining them.

�ese requirements are o�en di�erent from those of “classic” robot-

ics [9]. For instance, simulators used in mechanical design do not

need to be thread-safe and can take a long time to start; and they

o�en favor accuracy over speed. On the contrary, simulators for

video-games do not need physical accuracy (only visual accuracy)

and are o�en primarily optimized for speed.

3 WHAT DIDWE TRY?

Over the years, our team implemented several open source sim-

ulators by taking advantage of the available open source physics

libraries; all of them have been interfaced with Sferesv2 [20] (h�p:
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Figure 1: Examples of simulated and real robots we have used in our research. A. Fastsim (fast 2-D kinematic simulator) [16]. B.

E-puck robot in the same maze as in A [16]. C.�adruped robot simulated in RobDyn (Bullet) [14–16, 22]. D. Real quadruped

robot based on Dynamixel actuators (AX-12) [14–16, 22]. E. iCub robot crawling simulated in our new Dart-based simula-

tor [23]. F. Real iCub robot crawling. G. Hexapod robot simulated in RobDyn (ODE) [4–6, 13]. H. Real hexapod robot [3–6, 13].

//github.com/sferes2/sferes2), our framework for evolutionary com-

putation:

• Fastsim: A 2-D kinematic simulator for di�erential-drive

robots that is designed to be fast, simple and �exible; it is

programmed in C++ – h�p://github.com/jbmouret/libfastsim.

• RobDyn: a simple wrapper of the Bullet physics library

(h�p://bulletphysics.org/), that we later transformed to

a wrapper of the ODE physics library (h�p://www.ode.

org); it is designed to simulate the dynamics of legged

robots (e.g. hexapods or quadruped) and common position-

controlled servos (e.g., Dynamixel) – h�p://github.com/

resibots/robdyn.

• Dart-based simulator: awrapper around theDart physics

library (h�ps://github.com/dartsim), which is faster in our

experiments than ODE or Bullet, and which can load URDF

�les (Universal Robotic Description Format, which is the

XML �le format used in ROS to de�ne the kinematic and dy-

namic properties of a robot) – h�ps://github.com/resibots/

robot dart.

We tried 3 physics engines: ODE, Bullet, and Dart. ODE is well-

documented and its API (in C) did not change in many years, but

it does not include recent developments like a GPU-accelerated

pipeline or the Featherstone’s solver for multi-body dynamics [8,

18]. Bullet was not very documented when we tried it and its

API was changing frequently, but it includes more modern ideas.

Dart is a new physics library designed with robots and animation

in mind. It has a modern C++11 API and is faster than ODE in

our experiments; however, it is under intense developments and

changes o�en (it seems that it is close to having a more or less �xed

API and the developers are very responsive).

In addition, we investigated more advanced simulation environ-

ments like Gazebo [12] (h�p://www.gazebosim.org) and V-Rep [26]

(www.coppeliarobotics.com), but they added too much overhead

to be e�ciently used in our experiments (their communication

layer slows the simulation down for simple robots, they can be

di�cult/slow to restart, and they put a lof of constraints on the

interface; it is also not easy to run many instances of Gazebo in

parallel).

4 THE REALITY GAP

In our experiments, no simulator led to any notable boost of accu-

racy and all of them led to reality gap issues. As a consequence,

instead of working on more accurate simulation, we explored many

ideas to overcome or bypass the reality gap.

One of our most promising idea is the transferability approach

[6, 13–16, 22]: instead of a�empting to correct the simulator to

make be�er predictions, a supervised learning algorithm uses tests

on the real robot to learn the limits of the simulator, that is it

learns a mapping between behavior descriptors, extracted from

the simulator, and a prediction of the accuracy (or con�dence)

of the simulation. Intuitively, learning these limits is easier than

correcting the simulator because (1) there are e�ects that cannot

be easily modeled in a simulator (e.g. aerodynamic e�ects in a

simulator that does not implement aerodynamics), , especially with

a few data points (e.g. 20 experiments on the robot), and (2) many

non transferrable (“cheating”) behaviors are easy to dismiss (e.g.

exploding robots that travel at high speed, unrealistic jumps, etc.).

When the evolutionary algorithm knows the limits of the simu-

lation, it can select individuals with good �tness in simulation and

high predicted transferability (e.g., with a multi-objective evolu-

tionary algorithm or a constrained evolutionary algorithm). Put

di�erently, the evolutionary algorithm avoids the parts of the search

space that are not accurately simulated. Using this approach, we
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discovered that current physics engine (e.g. ODE) can be surpris-

ingly accurate for some behaviors. For instance, on a quadruped

robot, we observed a di�erence of �tness of less than 10% for high-

performing behaviors evolved with the transferability approach,

versus a di�erence of more than 100% when we transferred the best

individual obtained in simulation to the real robot.

Using the same intuition but a di�erent process (the MAP-Elites

algorithm [19]), we generated thousands of potential solutions (e.g.

gaits) in simulation, then selected online using a data-e�cient algo-

rithm (here Bayesian optimization [27]) the one that works best on

the physical robot [4]. We performed our experiments with a dam-

aged, 6-legged robot whereas the simulations were performed with

an intact robot. �e reality gap was, therefore very important since

we added the issues of the simulator to the damage; nonetheless,

we were able to �nd high-performing gaits for all the damage condi-

tions that we tested in only a dozen of tests on the real robot [4]. In

this process, the online algorithm (Bayesian optimization) searches

for the solutions that transfer well, that is, that are high-performing

both in simulation and in reality.

Combining the transferability approach with “Novelty Search

with Local Competition” [17] (an illumination [19] or quality-diversity

[24] algorithm), we were able to evolve behavioral repertoires so

that a 6-legged could walk in any direction [7]. Overall, the results

showed that only a few short experiments on the physical robot

were needed by the algorithm in order to generate a repertoire of

controllers that allows the robot to reach every point in its reach-

able space. In more recent work, we exploited the same idea of

repertoire creation (in simulation only with the intact robot) and

combined it with online adaptation (via Gaussian process regres-

sion [25]) and replanning (using Monte Carlo Tree Search [1]) to

achieve fast recovery of a damaged physical 6-legged robot without

any human intervention and while taking the environment into

account [3].

5 THE MYTH OF THE PERFECT SIMULATOR

Overall, we do not think that simulators will ever be both fast

enough for evolution and accurate enough to cross the reality gap

easily. �e alternative would be to propose a new generation of

simulators that can predict a behavior (and therefore a �tness value)

but also estimate their con�dence in this prediction. �is con�dence

measure is what is learned with the transferability approach, but it

could be computed or estimated by the simulator 1: a�er having

simulated a behavior, we could retrieve the �tness value (e.g. the

distance covered by a walking robot) and the con�dence in the

�tness. Typically, the con�dence would be low for highly-dynamic

behaviors or for behaviors that highly rely on some features of the

environment (e.g. the friction coe�cient), and high for more robust,

static behaviors.

Such simulators would allow algorithms to avoid over��ing the

simulator (e.g. using multi-objective evolution) and thus to greatly

increase the transferability of behaviors evolved in simulation. At

least two approaches could be investigated to add con�dence levels

in ER simulators: (1) Monte Carlo estimates, that is, running many

1�is is what we did when we learned a “simulator” (a dynamic model) from scratch
for data-e�cient policy search in robotics [2].

simulations with variations of parameters (e.g. variations of the fric-

tion level) andmeasure themean and variance, or (2) crowd-sourced

estimates, that is, building an online database of experiments with

a simulator and the result on the real robot (provided that there are

enough users of the same simulators).

Last, not all ER experiments need accurate, physical simulators.

For instance, our work on behavioral diversity [21] did not need

such a simulator to make our point (which is, that diversity in

behavior space needs to be encouraged). As a consequence, we do

not always need an accurate simulation; instead, we need �exible

simulators that can be fast or accurate, depending on the experiment

and the stage of the project.
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