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ABSTRACT
�e general recommendation for the mutation rate in standard-bit
mutation is 1/n, which gives asymptotically optimal expected opti-
mization times for several simple test problems. Recently, Doerr
et al. have shown that such mutation rate is not ideal, and is far
from optimal for multimodal problems. �ey proposed the heavy-
tailed mutation operator fmutβ which signi�cantly improves per-
formance of the (1+1) evolutionary algorithm on Jump problem and
yields similar speed-ups for the vertex cover problem in bipartite
graphs and the matching problem in general graphs.

We evaluate the fmutβ mutation operator on the problem of
hard test generation for the maximum �ow algorithms. Experi-
ments show that the fmutβ mutation operator greatly increases
performance of the (1+1) evolutionary algorithm. It also achieves
performance improvement, although less drastic, on a simple pop-
ulation based algorithm, but hinders performance of a crossover
based genetic algorithm.
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1 INTRODUCTION
Mutation is one of the most basic variation operators in evolution-
ary algorithms. In general it means a mild modi�cation of a single
parent individual. �e classic example of a mutation operator called
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standard-bit mutation is used with a bit-string individual represen-
tation. Standard-bit mutation �ips each bit of a parent bit-string
independently with a certain mutation rate pn . �e general recom-
mendation for genetic algorithms using a bit-string representation
of length n is to take 1/n as the mutation rate. �is maximizes
the probability that the Hamming distance between parent and
child is one and gives asymptotically optimal expected optimiza-
tion times for several simple evolutionary algorithms on classic test
problems [3, 14].

In the recent paper [7] Doerr et al. show that the general 1/n
recommendation may be over-��ed to these test problems. Authors
of the paper suggest that this traditional choice of the mutation rate
is not ideal and one should rather choose mutation rate which max-
imizes rate of the largest required long-distance jump in the search
space. From evaluating the Jumpm,n function authors conclude
that no one-size-�ts-all mutation rate exists, while �nding a good
mutation rate requires a deep knowledge of the �tness landscape.

In order to solve this problem Doerr et al. propose a new muta-
tion operator called fmutβ . It uses a dynamic mutation rate chosen
according to a heavy-tailed distribution. �e fmutβ mutation oper-
ator chooses a number α according to a power-law distribution D

β
n

with (negative) exponent β > 1 and creates o�spring via standard-
bit mutation with a mutation rate of α/n. �is operator optimizes
any Jump function in a time di�erent from optimum in only a small
polynomial factor, and yields similar speed-ups for the vertex cover
problem in bipartite graphs and the matching problem in general
graphs. In particular runtimes for the (1+1) evolutionary algorithms
employing the fmutβ mutation operator are be�er than ones of the
classic (1+1) evolutionary algorithm by a factor of 2000.

�e authors of the fmutβ mutation operator suggested to further
evaluate it on more practical problems. In this paper, we evaluate
the fmutβ mutation operator on the problem of hard test generation
for the maximum �ow algorithms, as we have successfully applied
evolutionary algorithms to this problem before [4, 12, 13]. We
slightly modify the fmutβ mutation operator to work with �ow
network representation, and evaluate its impact on performance of
the (1+1) evolutionary algorithm and the population based genetic
algorithm.

Results of our experiments support the claim that the fmutβ
mutation operator improves performance of the (1+1) evolution-
ary algorithm. Moreover, it achieves performance improvement,
although less drastic, even for the population based algorithms
that do not use crossover. Finally, our results show that fmutβ
mutation operator con�icts with crossover operator (speci�cally –
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uniform crossover), and actually hinders performance of the genetic
algorithm when using both.

2 PROBLEM DESCRIPTION
�e maximum �ow problem is a well-known problem in the graph
theory [5]. It is formulated as follows: given an oriented graph
G = (V ,E) with integer capacities ci for each edge and two speci�c
vertices designated as the source s and the sink t one has to �nd a
maximum �ow, de�ned as a set of numbers fi such that:

• for all edges, fi is a non-negative integer less than or equal
to the capacity of that edge ci ,

• for each vertex except s and t , the sum of fi for the outgoing
edges is equal to the sum of fi of incoming edges,

• for the vertex s the sum of fi for the outgoing edges minus
the sum of fi for incoming edges is maximum possible.

Maximum �ow problem solutions’ performance is highly input
sensitive, thus it is typically hard to �nd hard tests for them. �ere
are several ways to construct such tests via more conventional
means [1, 11, 15], but they rely heavily on the knowledge of the
tested algorithm. �e optimization problem we consider is the
generation of hard problem instances (or hard tests for short) for
the maximum �ow algorithms. A hard problem instance maximizes
the running time of an solution algorithm.

�ere are many solution algorithms for the maximum �ow prob-
lem described in the literature. Most of these algorithms are able to
solve randomly generated problem instances quite quickly, but the
best known upper bounds suggest that for these algorithms hard
problem instances exist.

Some of the most known algorithms are:

• the Ford-Fulkerson algorithm [9], with running time O(V ·
E ·Cmax), whereCmax is the maximum capacity of an edge;

• the Edmonds-Karp algorithm [8], with running time O(V ·
E2);

• the Dinic algorithm [6] with running timeO(V 2 · E) which
can be re�ned to O(E ·min(E1/2,V 2/3)) for unit capacities;

• the improved shortest path algorithm [2], with running
time O(V 2 · E);

• the push-relabel algorithm [10], with running time O(V 2 ·
E).

From these algorithms, we consider only two: the Dinic algo-
rithm and the improved shortest path algorithm (ISP). �ese two
algorithms have been used previously [4, 12, 13], as they are e�-
cient and have di�erent behavior on similar problem instances.

A maximum �ow problem instance, which is also an individual of
an evolutionary algorithm, is a graph represented as the adjacency
matrixM : a square |V |2 matrix, where each elementMi, j represents
the capacity of an edge connecting vertex i to vertex j . Our previous
experiments suggest that acyclic graphs are harder [4], thus for
every edge it holds that i < j and M is an upper triangular matrix.

�e �tness function is the number of edges visited during the
�nding of the maximum �ow by the solution algorithm. Such func-
tion is roughly proportional to the running time of the maximum
�ow algorithm, and was shown to be one of the most e�cient in
terms of �xed budget optimization results [4].

3 ALGORITHMS
�e long standing recommendation for the mutation rate in a simple
evolutionary algorithm for discrete optimization problem is 1/n,
where n is the length of individual. For the (1+1) evolutionary
algorithm the standard-bit mutation with mutation rate of 1/n was
shown to be the unique best mutation for the class of all pseudo-
Boolean linear functions [14].

For the maximum �ow problem instance represented as the
adjacency matrix M as a standard mutation operator we previously
used something similar to the common standard-bit mutation. With
probability 1/n, where n = |E |, the number of cells in M , it replaces
each value Mi, j in the upper triangular matrix with a random value
bounded by the capacity limit C .

Unfortunately, as shown in the paper [7], the recommended
mutation rate of 1/n is not the optimal one for Jumpm,n function,
or multimodal �tness landscapes in general. One of the ways to
solve this problem would be to use a problem speci�c mutation
rate, e.g. authors show that for Jumpm,n the best mutation rate is
m/n. However, in this case the number of �ipped bits is heavily
concentrated aroundm, and even a small deviation from the optimal
mutation rate leads to signi�cant increase in runtime.

Algorithm 1: �e heavy-tailed mutation operator fmutβ for
bounded integer values.
1 Input: x ∈ [0,C − 1] |E |
2 Output: y ∈ [0,C − 1] |E | obtained from applying standard

mutation to x with mutation rate α/|E |, where α is chosen
randomly according to D

β
|E |/2

3 y ← x ;
4 Choose α ∈ [1..|E |/2] randomly according to D

β
|E |/2;

5 for j = 1 to |E | do
6 if random([0, 1]) · |E | ≤ α then
7 yj ← random([0,C − 1]);
8 return y

�e fmutβ mutation operator proposed in [7] is designed to over-
come the negative e�ect of strong concentration of the binomial
distribution, while being structurally close to established way of
performing mutation. We slightly modify it to work on the ad-
jacency matrix representation of the graph instead of bit-strings.
Our modi�ed version of the fmutβ mutation operator uses standard
mutation with a mutation rate α/|E |, where α ∈ [1..|E |/2] is chosen
randomly on each iteration according to the power-law distribution
with (negative) exponent β > 1, denoted as Dβ

|E |/2. �us, it replaces
each value Mi, j in the upper triangular matrix with a random value
bounded by the capacity limit C with probability of α/|E |. �e
pseudocode for this operator is given in Algorithm 1.

We evaluate performance of the fmutβ mutation operator on
two optimization algorithms: the (1+1) evolutionary algorithm and
the population based genetic algorithm.

�e (1+1) evolutionary algorithm is the most simple evolutionary
algorithm. It starts with a random search point and on each itera-
tion creates an o�spring from the parent via mutation, replacing
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Figure 1: Comparison of (1 + 1) EA and (1 + 1) FEAβ , Dinic
�tness function

the parent unless the child has inferior �tness. We compare two
variants of the (1+1) evolutionary algorithm. First variant uses stan-
dard mutation with probability 1/|E |, we denote it as the (1+ 1) EA.
�e other variant uses the fmutβ mutation operator. We denote
it as the (1 + 1) FEAβ , similarly to the original notation from the
paper [7].

�e genetic algorithm is similar to the one from [4]. It is a rather
standard genetic algorithm which uses tournament selection to
choose individuals for reproduction, then applies crossover and mu-
tation to the selected individuals, and forms new generation using
elitist selection. We test two di�erent combinations of operators
for the genetic algorithm in this paper to evaluate performance of
fmutβ mutation operator. First, we introduce the fmutβ mutation
operator into the genetic algorithm without applying crossover.
�is allows to understand how fmutβ mutation operator in�uences
the performance of a simple population based genetic algorithm.
We denote this pair as GA and FGAβ . Secondly, we introduce the
fmutβ mutation operator into the original version of the genetic
algorithm, which uses uniform crossover. �is brought up inter-
esting results, as results show that the fmutβ mutation operator
con�icts with uniform crossover and actually hinders performance
of the algorithm. We denote this pair of algorithms asGA+UF and
FGAβ +UF .

4 EXPERIMENTS AND RESULTS
In our experimental setup, as in previous papers [12, 13], the maxi-
mum number of vertices is set to 100 and the number of edges is set
to 4950. Maximum capacity of an edge C is set to 8192, to keep in
line with previous experiments. Generation sizes for the population
based genetic algorithm is 100 individuals, with 70 child individu-
als generated on each iteration. For the fmutβ mutation operator
β is set to 1.5 and the power-law distribution implementation is
taken from Apache Commons Math library. Initial population for
each algorithm consists of the randomly generated upper triangular
matrices, with values from range [0,C − 1]. For each tested combi-
nation of an optimization algorithms and maximum �ow algorithm,
at least 50 runs were performed with the computational budget of
500 000 evaluations.

Our �rst experimental run considered the (1+ 1) EA and the (1+
1) FEAβ algorithms. �e minimum, maximum, average and median

0 1 · 105 2 · 105 3 · 105 4 · 105 5 · 105

2 · 105

4 · 105

6 · 105

Fitness evaluations

Fi
tn
es
sv

al
ue

(1+1) EA
(1 + 1) FEAβ

Figure 2: Comparison of (1+1) EA and (1+1) FEAβ , ISP �tness
function

Table 1: Performance of the (1+1) EA and (1+1) FEAβ , Dinic
and ISP based �tness values, measured in 105 visited edges

Dinic ISP
(1+1) EA (1+1) FEAβ (1+1) EA (1+1) FEAβ

MIN 0.90 2.38 2.11 3.88
MED 2.46 4.10 5.24 7.27
AVG 2.62 4.15 5.39 7.19
MAX 5.72 7.44 9.01 9.36

Table 2: Performance of the population based algorithms,
Dinic based �tness values, measured in 105 visited edges

GA FGAβ GA+UF FGAβ+UF
MIN 1.34 1.87 3.50 2.68
MED 3.54 4.24 6.00 4.26
AVG 3.46 4.21 5.78 4.22
MAX 6.72 6.48 7.73 5.28

Table 3: Performance of the population based algorithms,
ISP based �tness values, measured in 105 visited edges

GA FGAβ GA+UF FGAβ+UF
MIN 3.92 4.24 6.68 5.98
MED 5.69 6.26 7.98 7.23
AVG 5.74 6.25 7.92 7.18
MAX 8.22 8.66 9.02 8.11

�tness values are presented in Table 1 for both Dinic and improved
shortest path algorithms. As can be seen from results, the (1 +
1) FEAβ signi�cantly outperforms the (1+1) EA on both maximum
�ow solution algorithms. Plots for median runs in Figure 1 and
Figure 2 show that the (1 + 1) FEAβ is faster and is less prone to
stagnation.

In our second experimental run we tried to apply the fmutβ
operator to the population based genetic algorithm. �e minimum,
maximum, average and median �tness values rounded to the near-
est integer are presented in Table 2 for the Dinic algorithm and
Table 3 for the improved shortest path algorithm. �e impact of
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Figure 3: Comparison of genetic algorithms, Dinic �tness
function
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Table 4: Performance change summary

Solution Algorithm Average Performance Change

Dinic
(1+1) EA +58.31%

GA w/o crossover +21.79%
GA w/ crossover −26.97%

ISP
(1+1) EA +33.39%

GA w/o crossover +8.89%
GA w/ crossover −9.33%

the fmutβ operator one the population algorithms is quite interest-
ing. As can be seen from the results for algorithms that do not use
crossover (GA and FGAβ ) – the fmutβ operator does improve per-
formance of the simple population based algorithm, although less
signi�cantly than in case of (1+1) evolutionary algorithm. On the
other hand, the fmutβ mutation operator actually hinders perfor-
mance of the algorithm when employed together with the uniform
crossover operator – see results forGA+UF and FGAβ +UF . Plots
for median runs in Figure 3 and Figure 4 show that the FGAβ algo-
rithm has almost no performance improvement from application of
the uniform crossover, while the genetic algorithm with standard
mutation and uniform crossover signi�cantly outperforms other
combinations of operators.

Summary of the impact of the fmutβ mutation operator on the
average performance of an optimization algorithm is presented in

Table 4. For each pair ”standard algorithm - fmutβ counterpart”
represented in the table the Wilcoxon rank sum test implemented
in R programming language was performed. For all pairs the p
value is signi�cantly less than 0.05.

5 CONCLUSION
We presented an experimental evaluation of the heavy-tailed muta-
tion operator fmutβ on the maximum �ow test generation problem.

�e experimental results augmented with basic statistical analy-
sis show that the fmutβ mutation operator improves performance
of the (1+1) evolutionary algorithm and the simple population based
genetic algorithm compared to their standard mutation counter-
parts. Unfortunately, the fmutβ mutation operator seems to con-
�ict with the uniform crossover operator, hindering performance
of the genetic algorithm. Future work may be aimed to explain this
phenomenon, as well as to further evaluate the fmutβ mutation
operator not only on other optimization problems, but with other
algorithms as well as evolutionary operators.

�e source code for experiments is published at GitHub1. �is
work was �nancially supported by the Government of Russian
Federation, Grant 074-U01.
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