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ABSTRACT
A major drawback of surrogate-assisted evolutionary algorithms

is their limited ability to perform in high-dimensional scenarios.

�is paper describes a possible meta-algorithm scheme for the ap-

plication of surrogate models to high-dimensional optimization

problems. �e main assumption of the proposed method is that

for some of these expensive problems the nonlinear interactions

between variables are sparse. If these interactions can be repre-

sented as a band matrix, they can be exploited by applying low-

dimensional heuristic solvers in a sliding window fashion to the

high-dimensional problem. A special type of composite test func-

tion is presented and the proposed meta-algorithm is compared

against standard evolutionary algorithms.
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1 INTRODUCTION
In traditional heuristic optimization applications like the travelling
salesmanor the knapsack problem , evaluation of solution candi-

dates can be performed e�ciently. In the case of simulation-based
optimization, where the evaluation function is itself a potentially

costly computer simulation, the number of evaluations required for

most heuristic algorithms to converge is o�en exceeding a feasible

computational budget. �e use of surrogate models to facilitate the

search by reducing the number of required evaluations is therefore

a quite sensible method. Some simulation-optimization combina-

tions like microscopic tra�c simulation [3] paired with the goal to

optimize routes or departure times carry not only the burden of

an expensive evaluation function but a high dimensional search

space (hundreds up to a a few thousand parameters) as well. As

the performance of surrogate assisted algorithms diminishes with

such high dimensionality, new techniques are required to solve

these problems. For the planning of individual vehicle routes it

is a reasonable assumption, that vehicles starting at similar times

are more likely to interact with each other than vehicles starting

at very di�erent points in time. Or in general, many time-based

simulations might have late e�ects, that are not or hardly in�u-

enced by early e�ects. �e proposed meta-algorithm tries to exploit

such structures by optimizing a sorted parameter vector in a sliding

window fashion.

�e remainder of this paper is structured as follows: Section 2

gives a brief overview about the main surrogate assisted optimiza-

tion approaches in scienti�c literature and enumerates some reasons

why high dimensionality is detrimental there. Section 3 explains

the concept of variable interaction or epistasis and how to detect it.

Section 4 describes the proposed algorithm and in Section 5 some

computational results on well known and newly introduced test

functions are presented. Conclusions and closing remarks can be

found in Section 6.

2 SURROGATE ASSISTED OPTIMIZATION
�e use of surrogate models to approximate expensive black-box

functions with the goal to enable gradient-free optimization is a

well-established technique. Several types of models have been

proposed to act as a response surface model emulating the real



function and therefore allowing the search to continue without

having to perform an expensive evaluation. �e most prominent

ones are polynomial regression [22], Radial Basis Functions (RBFs)

[30], Gaussian process models also called kriging models [14, 17],

support vector machines and arti�cial neural networks [25, 39].

2.1 Literature Review
�e proposed methods for using surrogates in heuristic optimiza-

tion are manifold and can not be exhaustively described here. Wang

et al. [35] found three major categories of surrogate modeling tech-

niques:

• �e sequential approach where only a single model is built

using almost all the available computational budget, the

resulting model is then explored with heuristic or exact

optimization and the obtained optimum is then evaluated

with the expensive black-box to prove its quality. �e most

notable approach of this category is the response surface
methodology by Montgomery and Myers [22].

• �e adaptive approach is mainly the iterative application

of model building, selecting one or multiple points based

on the model, and evaluating these points with the goal

to adaptively sample towards the optimum. One of the

most-used surrogate-based optimization algorithms of this

category is the e�cient global optimization (EGO) proposed

by Jones et al. [14], which uses the expected improvement
measure as an in�ll criterion to select the next sample

point. Many variations of this algorithm using di�erent

in�ll criteria or parallelizations have since been presented

[7, 37]. A number of such criteria designed for noisy black-

boxes can be found in [26].

• �e third approach described by Wang was the direct sam-
pling approach that transforms the model directly into a

probability density function instead of applying an opti-

mizer to the model. However, to the best of our knowledge,

this approach has not found broader a�ention in published

literature.

A very well researched variant of surrogate-based optimization is

enhancement of evolutionary algorithms with surrogate models

by replacing some of the evaluations made by the algorithm with

cheaper model predictions. In [19] a surrogate enhanced version of

the well known covariance matrix adaption evolution strategy is

described using a generation-based scheme where some generations

are evaluated on the real �tness function and most others on the

surrogate model. Contrasting generation based uses of surrogates

are individual-based strategies [5] where in each generation only

the most promising solutions undergo exact evaluation. Closely

related to individual-based approaches is the idea of pre-selection

by means of surrogates in evolutionary strategies [34].

More in depth classi�cations, surveys and literature reviews

of surrogate-assited optimization techniques are available aplenty

[10, 13, 31, 35]

2.2 Challenges of High Dimensionality
A well known Achilles heel of many optimization techniques em-

ploying surrogate models is their limited performance in high-

dimensional search spaces which can be a�ributed to a number of

factors [10].

• Some surrogate models like polynomial regression models

require a minimum number of sample points to build which

scales quadratically or worse with the dimensionality of

the search space [36]

• Interpolation methods like Gaussian processes or radial

basis function models may perform adequately when es-

timating �tness values between sample points (hence the

term ”interpolation”) but loose a lot of their predictive

power when estimating outside the convex hull of samples.

With increasing dimensionality, the probability that any

surrogate-assisted algorithm samples within such a convex

hull diminishes.

• Even if enough sample points could be obtained to create

reliable predictions, most models require the inversion of a

covariance matrix which not only introduces the problem

of numerical instability but scales worse than quadrati-

cally with the number of sample points used in terms of

computation time [15].

• One can easily argue that optimization problems of high di-

mensionality are inherently more di�cult to optimize than

their low dimensional counterparts due to the exponential

increase in search space size.

• Lastly, the construction of the surrogate model itself may

not be cheap a�er all, since the o�en used Gaussian process

models require a training e�ort that scales cubically with

the number of evaluated sample points [28].

It is therefore imperative to develop new frameworks and approaches

to allow optimization in budgeted high-dimensional scenarios.

3 EPISTASIS OF OBJECTIVE FUNCTIONS
Many non-surrogate-assisted optimization algorithms for high-

dimensional real-valued problems like CCVIL [6] or DECC-2 [38]

are based around the idea of separable �tness functions for which

groups of variables exist that can be optimized separately and in

the best case the size of all such groups is one. Such a function is

called fully separable, satis�es Equation 1 and can be optimized

dimension by dimension.

arg minf (®x) =
(arg minf (x1, · · · ), . . . , arg minf (· · · ,xN ))

(1)

In the context of genetic algorithms interactions between variables

are equivalent to interactions between genes and can therefore be

labeled with the biological term of epistasis [23, 29] which will be

used for the remainder of this paper. �e implication of such inter-

actions is that the algorithm may need to optimize these variables

together.



3.1 Detecting Variable Interactions
�e established techniques to detect interaction between variables

xi and x j are based on replacing exactly those variables with per-

turbed values x ′i and x ′j while keeping the rest of the candidate vec-

tor �xed and checking equations concerned with either monotony

or linear separability [24, 33].

�e monotony check in Equation 2 employs the idea that compar-

ative relationships between points at xi and x ′i may not change

when both points are moved the same distance along the j-axis if

xi and x j belong to two di�erent groups. �e Linkage Identi�cation
by Nonlinearity Check (LINC-R) (Equations 3 - 6) entertains the

idea that the changes in xi and x j should additively accumulate if

separability between both variables exists.

f (. . . ,xi , . . . ,x j , . . . , ) < f (. . . ,x ′i , . . . ,x j , . . .) ∧
f (. . . ,xi , . . . ,x ′j , . . . , ) > f (. . . ,x ′i , . . . ,x

′
j , . . .)

(2)

ϵ < |∆fi j − (∆fi + ∆fj )| (3)

∆fi j = f (. . . ,x ′i , . . . ,x
′
j , . . .) − f (. . . ,xi , . . . ,x j , . . .) (4)

∆fi = f (. . . ,x ′i , . . . ,x j , . . .) − f (. . . ,xi , . . . ,x j , . . .) (5)

∆fj = f (. . . ,xi , . . . ,x ′j , . . .) − f (. . . ,xi , . . . ,x j , . . .) (6)

It should be noted, that both separability checks assume determinis-

tic noiseless �tness functions and random e�ects can easily disturb

monotony or linearity assumptions. An alternative to the afore-

mentioned approaches is used in [21] where a high-dimensional

model representation comprised of second-order radial basis func-

tions (RBF-HDMR) is constructed in a learning phase and the model

coe�cients are then used to identify linkage structures.

3.2 E�ective Bandwidth
In the frame of cooperative co-evolution [27] problems are decom-

posed by any conceivable strategy and only a subset of variables

is perturbed for a certain number of iterations. In the CCVIL al-

gorithm [6], these variable groups are sets of variables previously

determined in a learning stage via monotony interaction learning.

A function with an interaction matrix as depicted in Figure 1 would

therefore be separated in seven such subgroups (one group of size

three, one of size two and �ve groups containing only a single

variable). �e size of the largest group de�nes the degree of separa-

bility of a function. Functions with interaction matrices similar to

Figure 2 are treated as fully non-separable problems since there is

no possibility to separate the variables into non-interacting groups

and no information of the variable interaction learning step can be

used. Nonetheless, it is apparent that some form of structure exists

within the variable interactions in Figure 2. �e variables are sorted

in such a way that the variable interactions form a symmetric band

matrix of band width one.

We hereby propose the notion of an epistasis bandwidth that

is de�ned as the minimum bandwidth of the variable interaction

matrix of a problem over all possible permutations of the problem’s

variables.

bw(f (®x)) = min

p∈PN
bw(V IM(f (p(®x))) (7)

V IM(f ) is the Variable Interaction Matrix of a speci�c function f
bw(A) : Rnxn → N is the bandwidth of a symmetric nxn matrix A

Figure 1: Variable interaction matrix of a 3-separable func-
tion

Figure 2: Variable interaction matrix of a non-separable
function (bandwidth = 1)

PN is the set of all permutations of length N . �e authors of this

paper assume that structures with bandwidth considerably smaller

than N appear in many real world optimization tasks, especially

simulation-based optimization scenarios where a natural ordering

for a large number of variables exists e.g. time.

4 THEWINDOWED OPTIMIZATION
APPROACH

�e proposed (meta-)algorithm is using a sliding window approach

to reduce the complexity of the optimization problem and continu-

ously re�ne a single solution vector ®m. In every iteration, a window

of size w is placed on a random starting position 0 ≤ p ≤ N −w
and moved forward and backwards by a step size s < w in an alter-

nating motion as depicted in Figure 3. For every window a reduced

problem given in Equation 8 is solved by a sub-solver that hopefully

pro�ts from the reduced dimensionality. Surrogate assisted opti-

mization approaches are amongst the most promising solvers to be

used here as they have been proven to be quite powerful in lower



Figure 3: Movement of a sliding windowwithw = 3 and s = 2

on a 16-dimensional vector

dimensional spaces but scale poorly to high dimensional spaces.

ˆfp (®xw ) = f ( ®m1:p−1, ®xw , ®mp+w :N ) (8)

Here ®xw denotes a partial solution vector of size w . While every

potential optimization algorithm, be it surrogate assisted or not,

could be used to solve the reduced problem, we use the well known

”E�cient Global Optimization” (EGO) algorithm developed by Jones

and colleagues [14] and the ”Covariance Matrix Adaption Evolution

Strategy” (CMA-ES) from Hansen and colleagues [11] as examples.

Both algorithms face signi�cant performance hits when confronted

with high-dimensional problems and should therefore pro�t from

solving only low-dimensional subproblems. A�er solving a reduced

problem, the best found solution is used to update ®m by replacement.

Since w is assumed to be considerably smaller than N a linkage

detection strategy can be used on the reduced problem without

running into a minimal sampling e�ort ofO(N 2). �e samples used

to perform linkage detection can also be used as part of the initial

sample population for the surrogate-assisted sub-solver.

A�er the iteration has ended (the movement of the window

has reached both the end and the beginning of ®m), one can use

the obtained information about variable interactions to reduce

the bandwidth of the variable interaction matrix by reordering

the variables of f . While �nding a reordering that minimizes the

bandwidth of a sparse matrix is an NP-hard problem, we �nd that

the Cuthill-McKee-algorithm [8] performs adequately.

�e interaction matrixA can additionally be used to dynamically

updatew . While one could set the new window size to bw(A), using

a sightly larger window might be bene�cial since it increases the

chance of detecting new variable interactions and takes more e�ects

into account even if they are not detected. We propose updating w
by Equation 9 since it al.

w ′ = bw(A) · 2 − 1 (9)

Algorithms 1 and 2 summarize the proposed method. Algo-

rithm 1 describes the movement of the window along a solution

vector, while Algorithm 2 performs epistasis detection, optimization

of the current window and updates on the solution.

5 COMPUTATIONAL EXPERIMENTS
In order to create band-like epistasis structures, the strategy of

overlapping lower-dimensional test functions was employed. In

Figure 4 such a composite �ve-dimensional function comprising

the well-known Ackley function with d = 3 and the Hartmann3

function [16] as components is schematically depicted . �e Ackley

Algorithm 1: SlidingWindowOptimization

Data: Step size s , Window Size w , Problem f
initialize sparse variable interaction matrix for f

sample ®m uniformly random in each dimension

evaluate ®m
while computational budget not exhausted do

sample p uniformly random in [1,N −w]
i=0

while feasible windows possible do
if p − s · i > 0 then

OptimizeWindow at position p − s ∗ i
if p + s · i ≤ N −w then

OptimizeWindow at position p + s ∗ i
i++;

if p%s , 0 then
OptimizeWindow at position 0

if (N − p −w)%s , 0 then
OptimizeWindow at position N −w

Optional:
construct Cuthill-McKee-Ordering

reorder f and ®m by Cuthill-McKee-Ordering

update w

Algorithm 2: OptimizeWindow

Data: Window position p, Window Size w , Problem f , Vector

®m, initial sampling size si , adaptive sampling size sa
construct

ˆf from f and ®m
®s = ®mp :p+w−1

for each Pair (i, j) with i , j in window do
if epistasis already determined then

continue

Determine epistasis by perturbing ®s in dimensions i, j and

evaluating the resulting vectors as described in LINC-R

Sample remaining points in initial sampling size according to

preferred scheme (eg. Latin Hypercube)

Run preferred sub solver (eg. EGO) with sa as computational

budget

Update ®m by replacement if an improvement has been

achieved.

Figure 4: Overlapping test functions



Table 1: Test functions used as components in the compos-
ite test functions. All test functions are implemented as de-
scribed in [2].

Function Linear separable Bounds

Ackley no [−32.768, 32.768]
Griewank no [−600, 600]

Levy yes [−10, 10]
Rastrigin yes [−5.12, 5.12]

Schwefel (Sine root) yes [-500,500]

function is applied to the �rst three parameters of the solution

candidate and the Hartmann3 function to the last three parameters.

Both functions’ values are then summed to achieve one objective

value.

In the experiments presented in this paper the �ve scalable test

functions given in Table 1 have been used to construct three com-

posite test functions (ctf2, ctf3, ctf5) for the proposed sliding window

strategy.

�e �ve component functions given in Table 1 were used with

d = 2, 3, 5 in repeating alphabetical order. All of these test func-

tions are multi-modal and scalable and allow for the individual

components to have di�erent characteristics. �ese composite test

functions are themselves scalable and were tested with dimensions

100, 500 and 1000.

A number of transformations were applied to the individual

component functions:

• Scaling: All of the test functions given below were linearly

scaled to [0, 1]d in order to counteract the widely di�erent

bounding boxes.

• Rotation: In order to create components with epistasis

from separable functions, random rotation matrices were

created for each component by uniform sampling as de-

scribed in [18].

• Overlap Similar to the schematic depiction in Figure 4,

components were chosen to overlap at one parameter each

time to create fully non-separable functions.

�e optimal objective value for all component functions is zero

but this is not the case for the composite function due to two e�ects.

Firstly, while the Ackley, Griewank and Rastrigin functions have

their optimum at the origin, the Levy function as well as the Schwe-

fel (sine root) function have optimal function values at (1, 1, 1, . . .)
and (420.9687, 420.9687, . . .) respectively, which creates a mixture

of con�icting and non-con�icting components when overlapped.

By creating con�icting components the optimal solution for each

individual component can not be achieved simultaneously. Sec-

ondly by shi�ing and rotating the components, function values

outside the usual bounding boxes can be achieved, which is mainly

relevant for the Schwefel function which has several minima with

function values less than zero outside its original bounding box.

To also analyze the performance of the proposed approach also

on more common functions, the well known Rastrigin and sphere

functions were used as examples for separable scenarios and the

Rosenbrock function given in Equation 10 as a special case of a

non-separable function with an epistasis band width of two which

is caused by the term (xi+1 − x2

i )
2
.

y(®x) =
d−1∑
i=1

(
100(xi+1 − x2

i )
2 + (1 − xi )2

)
(10)

�e windowed optimization approach was compared against a

evolution strategy (ES) with multiple mutation and recombination

operators [4], a genetic algorithm extension using an age layered

population structure (ALPS) [12] and the Self Adaptive Segregative

Genetic Algorithm with Simulated Annealing Aspects (SASEGASA)

[1] as these three algorithms were the best performing ones on the

newly introduced composite test functions. For the sub solver in

the windowed approach the afore mentioned CMAES and EGO

algorithms were used (WO-CMAES and WO-EGO). While a direct

comparison of the windowed and original versions of the surrogate-

assisted algorithms would be of interest, directly applying EGO on

a problem with even a few dozen parameters and several thousand

evaluations would have been infeasible.

As an initial window size for the WO-CMAES and WO-EGO

algorithms wWO−CMAES = 10 and wWO−EGO = 5 with a a bud-

get of sa,WO−CMAES = 2000 and sa,WO−EGO = 80 evaluations

for each window have been chosen in preliminary experiments as

trade o�s between wasting too many evaluations on a single win-

dow and preemptively stopping a sub-solver before convergence.

EGO’s 80 evaluations were spent on 50 samples for initial sampling

and epistasis detection and 30 iterations maximizing the expected

improvement with a single evaluation each.

�e total number of evaluations for each algorithm was de�ned

as k = 1000 · d when comparing conventional algorithms similar

to [20] and other papers where surrogate assisted algorithms were

compared. However we feel that such a big multiplication factor

is rarely feasible with large values of d therefore k = 100 ∗ d for

comparisons with the surrogate assisted algorithm. A question-

able feature of some optimization algorithms is their convergence

towards the middle of the feasible bounding box even if no infor-

mation to guide the search to this region exists. To alleviate an

unfair advantage stemming from the fact that most test functions

have their global optimum at or in the vicinity of this center, all test

problems were shi�ed by a random vector as it is common practice

in the CEC competition for large scale optimization and similar

evolutionary competitions [32]. Each combination of algorithm

and problem was evaluated 10 times with the same shi� vector and

rotation matrix.

Algorithm 3: DisturbOrdering
Data: Problem f
®s = ®mp :p+w−1

for int i in 2. . . n do
u = randomUniform(0, 1)
if u < 0.5 then

swap parameters i and i − 1 of f

Figure 5 depicts the box-and-whiskers-plots of achieved objective

values for the 500-dimensional variants of the test problems for all

tested algorithms that do not use surrogate modeling. As can be

seen, the windowed CMAES (WO-CMAES) is almost on par with the
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Figure 5: Performance of non-surrogate algorithms on 500
dimensions.

regular ES on problems with low or no epistasis and outperforms

both GA-based approaches, at least for this selected set of problems.

�e di�erences between the WO-CMAES variants with and without

linkage detection (WO-CMAES-LD) can be a�ributed to the fact

that all problems are perfectly sorted in terms of epistasis and

therefore the -LD variant is e�ectively wasting evaluations. For the

sake of visibility the GA-based algorithms ALPS and SASEGASA

are not displayed in the remaining �gures.

�e direct comparison between ES and WO-CMAES over prob-

lems of di�erent dimensionality given in Figure 6 displays an inter-

esting trend. While for the problems with low or no epistasis the

di�erence in performance between both algorithms scales linearly

with the dimension of the problem regardless of which algorithm

actually performs be�er, the di�erence in performance changes

nonlinearly for problems with more epistasis (ctf5) in favor of
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Figure 6: Di�erence in performance of ES and WO-CMAES

WO-CMAES. A possible explanation would be that the chance for

ES-operators, that update multiple parameters at the same time,

to randomly choose parameters belonging to the same component

decreases with dimensionality in these scenarios. �e downward

trend of the composite test functions is an e�ect of including the

Schwefel sine-root function as a component, as it contains several

optima with objective values below zero that can be reached due

to the rotation of the component. As more Schwefel components

are present in the higher dimensional composite test functions the

minimal achievable value decreases.

In order to simulate an imperfect and a wrongly chosen initial

sorting order for the optimization parameters, the test functions ctf2,

ctf3 and ctf5 are subjected to two types of reordering. To simulate

sorting order completely unrelated to their interaction a random

permutation is used (e.g. Shu�ed ctf2). For simulating a sup-par

ordering of the problems, Algorithm 3 is used to create a slightly

disturbed permutation (e.g. Disturbed ctf2). As can be seen in Figure

7 where the results of the WO-CMAES are compared with all three

types of shu�ing on the 500 dimensional composite test functions,

having a viable initial ordering is pivotal in a positive and negative

sense for the success of the windowed optimization approach. On
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Figure 7: Di�erence in performance of WO-CMAES on dif-
ferent degrees of shu�ling

some occasions the shu�ed versions of a problem allow for be�er

�tness values than their perfectly aligned counterparts. �is is an

indication that problems can be constructed in a way that misleads

the search and optimizing one component can prevent the algorithm

to detect the deceptiveness of another component. In the shu�ed

cases such a misleading behavior is avoided, since components are

distributed along the parameter vector. It could also be argued

that such a misleading behavior is less likely the larger the ratio

between window size and component size is.

In Figure 8 the performance of the WO-EGO algorithm is com-

pared with all other algorithms on the 100 dimensional versions

of the test functions. As expected the surrogate algorithm easily

outperforms the conventional algorithms. �e weak performance

of WO-CMAES in this scenario can be a�ributed to the fact that

with the low number of function evaluations allowed, the sliding

window was not moved along the whole solution candidate so that

some parameters remained completely untouched a�er their initial

random generation.
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Figure 8: Performance ofWindowed EGO algorithms on 100
dimensions compared to the best non-surrogate contenders

6 CONCLUSIONS
In the submi�ed work a fairly simple but new scheme for dividing

high-dimensional problems with some structure in their variable

interactions has been presented. �e proposed sliding window

approach seems to be especially well-suited for surrogate assisted

optimization and allows the reuse of existing surrogate-assisted

heuristic solvers.

Future work on this approach needs to incorporate a more

elaborate strategy on how to distribute the computational bud-

get amongst the solution parameters as for most problems some

parameters will have signi�cantly more relevance in terms of qual-

ity than others. Additionally, a balance needs to bee struck between

spending more evaluations on optimizing a speci�c window and

trying to do multiple passes along the solution vector.

It is certainly imaginable that problems with an apparent band

matrix structure exist, that are not susceptible to the proposed

deconstruction scheme. However, as already stated in [9], real

world problems o�en have some structure that can (and should) be

exploited. When applied to time-based simulation scenarios like

tra�c simulation, the main strength of the proposed technique com-

pared with other divide and conquer algorithms like cooperative



co-evolution is the possibility to further reduce the time required

for optimization by snapsho�ing or simulating only parts of the

whole problem. A reduction that is nearly impossible with the

random parameter groups created by cooperative co-evolution.

Lastly, it is noteworthy to mention that information about vari-

able interactions and potential separations into independent sub-

problems might have additional merit, because they allow a glimpse

of deeper understanding the problem and might even carry semantic

importance. Overall, the use of problem decomposition in combina-

tion with surrogate-assisted optimization appears to be a promising

combination as it alleviates some of the challenges surrogate mod-

els face with increasing dimensionality without having to construct

specialized types of models or training methods.
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