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ABSTRACT
�e past two decades have witnessed great advances in the com-
putational modeling and systems biology �elds. Soon a�er the
�rst models of metabolism were developed, methods for pheno-
type prediction were put forward, as well as strain optimization
methods, within the �eld of Metabolic Engineering. Evolution-
ary computation has been on the front line, with the proposal of
bilevel metaheuristics, where EC works over phenotype simulation,
selecting the most promising solutions for bioengineering tasks.

Recently, Schuetz and co-workers proposed that the metabo-
lism of bacteria operates close to the Pareto-optimal surface of a
three-dimensional space de�ned by competing objectives. Albeit
multi-objective strain optimization approaches focused on bioengi-
neering objectives have been proposed, none tackles the multiob-
jective nature of the cellular objectives. In this work, we propose
multi-objective evolutionary algorithms for strain optimization,
where objective functions are de�ned based on distinct phenotype
prediction methods, showing that those can lead to more robust
designs, allowing to �nd solutions in more complex scenarios.
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1 INTRODUCTION
�e concept of metabolic pathway manipulation towards desirable
behavior is not new. Early methods relied mostly on the use of
mutagenesis and strain selection [19]. However, with increasingly
demanding industrial requirements, the need to resort to rational
approaches became evident. �e development of genetic engineer-
ing brought ways to more precisely modify speci�c genes/enzymes,
thus paving the way towards the more rational introduction of
direct genetic changes to create desirable strains [11].

Moreover, the recent advances in genome sequencing technolo-
gies which culminated in the development of next generation se-
quencing technologies [16] and semi-automated annotation tech-
niques, made the availability of a large number of fully annotated
microbial genomes a reality. �is also accelerated the development
of genome-scale metabolic models (GSMMs) for a large number of
organisms [5]. �e development of phenotype prediction methods
supporting distinct genetic and environmental conditions, includ-
ing the well-known method of Flux Balance Analysis [7, 14, 15],
combined with GSMMs, brought powerful tools to predict the be-
havior of microbial strains and support rational ME e�orts.

Backed by these e�orts, the development of strain design meth-
ods, where bioengineering objectives could be rationally addressed,
became paramount. In 2003, OptKnock was proposed [3], becoming
the basis for a large number of constraint-based strain design meth-
ods. �ese approaches are able to propose genetic changes based on
computational simulation and optimization methods. While these
approaches have provided good results, they are still limited since
they usually return a single solution to the problem. Among all,
meta-heuristic CSOMs, mainly those based on Evolutionary Com-
putation (EC) [13] provide the most diverse solutions, but typically
those follow similar strategies to maximize the selected objective
function. To overcome these limitations, information from multiple
criteria is o�en included in a single objective function, which can
introduce undesired biases in the sampling process. Multi-objective
(MO) approaches search for optimal trade-o�s of solutions instead
of a single optimal solution, thus providing a valuable tool for ex-
pert researchers, allowing them to opt for compromise solutions
believed to have be�er chances of working in vivo.

An analysis of available CSOMs reveals several shortcomings of
the current methods. As an example, de�ning an objective func-
tion for a CSOM can be a di�cult task. Because of this, and since
models lack critical information to improve the quality of the predic-
tions, the solutions proposed by most CSOMs are not only overly-
optimistic, but sometimes physiologically impossible.

Indeed, assumptions regarding the cellular objectives of an organ-
ism when subjected to distinct conditions (environmental, genetic,
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etc.) are still the object of active discussion. �e most common
approach is to consider the cell to be in a pseudo steady-state and,
since the solution space for the metabolic �uxes of the cell is usu-
ally very large, constraint-based optimization approaches are o�en
applied for simulating metabolic �uxes. Given this assumption,
it is therefore plausible to predict cellular behaviour by solving
optimization problems, as long as biologically realistic objective
functions are put forward. Several methods have been developed
following these trends. Among these, Flux Balance Analysis (FBA)
[8] is the most widely used phenotype prediction algorithm, that
uses a linear programming (LP) formulation for the maximization of
growth (synthesis of biomass constituents) as the objective function,
considering the biological assumption that unicellular organisms
tend to maximize their growth as an evolutionary trend [6].

However, to predict the cellular behaviour of mutant organisms,
such assumption is not widely accepted and, for that purpose, other
methods have been proposed such as Minimization of Metabolic
Adjustment (MOMA) [17] based on �adratic Programming (QP),
where the objective function is the minimization of �ux variations
relative to the wild-type. �e hypothesis underlying MOMA is that
�uxes in a perturbed cell (e.g. a mutant) will be redistributed in
order to be as similar as possible to the wild-type [2].

In this work, we focused on variations of two of the most widely
used phenotype prediction methods, the parsimonious enzyme us-
age FBA (pFBA) (a variation of FBA that minimizes the overall sum
of enzyme-associated �uxes [9]) and LMOMA (a linear implemen-
tation of MOMA [1]). We analyze the in�uence of the simulation
methods on the results of strain optimization metaheuristic algo-
rithms and suggest a multi-objective approach capable of �nding
designs compliant with the cellular objectives assumed by the vari-
ous phenotype prediction methods.

2 METHODS
In previous work by the authors, Evolutionary Algorithms (EA) and
Simulated Annealing (SA) have been proposed to address strain
optimization problems, selecting (near-)optimal sets of genes/ re-
actions to delete from a model, to overproduce a given compound,
where both used the same variable size set-based representation
[13]. Two types of reproduction operators were used: crossover
(EA only) and mutation (both EA and SA).�e �rst is inspired on
uniform crossover and, regarding mutation, three operators were
used: random mutation, grow mutation and shrink mutation. �e
details of both algorithms are depicted in Figure 1, and their full
con�guration can be obtained in [10].

In the �rst part of this work, the two metaheuristics (EAs and
SAs) were executed using both pFBA and LMOMA as the phenotype
prediction method. �e output of the phenotype prediction is the
set of �ux values for all reactions in the model. �ese are used
to compute the �tness value of the solution, using the Biomass-
Product Coupled Yield (BPCY) [12] as objective function, given by
PB
S , where P stands for the �ux of the desired product; B for the
biomass �ux and S for the substrate uptake �ux. In the EAs, the
population sizewas set to 100 individuals. For analysis purposes, the
resulting solution sets for the EA and SA algorithms were merged
for each set of conditions. However, the convergence analysis is
done separately (algorithm-dependent).
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Figure 1: Overview of the developed algorithms. �e upper
region shows the major steps of the three algorithms. �e
evaluation box illustrates the processes of solution decod-
ing, from Gene Knockout Sets (GKS) to Reaction Knockout
Sets (RKS) (upper-le�), phenotype prediction showing the
added constraints (bottom) and �tness evaluation for both
MO and SO cases (upper-right).

In the second part of this work, a multi-objective mechanism,
capable of searching for genetic designs compliant with two or
more phenotype prediction methods, was devised. In this work, the
SPEA2 [21] was used following the structure depicted in Figure 1.
SPEA2 uses an external archive that contains non-dominated solu-
tions (called the external non-dominated set). At each generation,
non-dominated individuals are copied from the population to this
external set. For each individual in the archive, a strength value,
proportional to the number of solutions in the archive it dominates,
is computed. �e �tness of each individual in the current population
is computed according to the strengths of all external individuals
that dominate it. �is strategy is used to promote the convergence
of the algorithm. �e fact that the external non-dominated set is
used in the selection process brings the problem that, if that set
grows too much, the selection pressure might be reduced, thus
slowing down the global search process. To prevent this, a clus-
tering technique called ”average linkage method” was adopted to
prune the external non-dominated set, thus maintaining diversity.

For all the algorithms, each individual candidate solution en-
codes a set of identi�ers for metabolic genes whose activity should
be suppressed (knocked-out) from the GSMM. In the GSMM, this
information is made available by means of Gene-Protein-Reaction
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(GPR) associations which resorts to Boolean logic, where the rela-
tionships between reactions and their encoding genes are modeled
as logical and/ or operations representing, among others, cases of
protein complexes and isoenzymes, thus allowing, for instance, de-
termination of the reactions inactivated a�er a set of gene deletions.
In practice, each set of gene deletions encoded in a candidate solu-
tion is translated into the corresponding reaction deletions, which
in turn are set as override constraints whose lower and upper limits
are set to zero in the original model, thus simulating the e�ect of a
gene deletion.

�e con�guration for SPEA2 follows the one used by the EA, us-
ing the same operators and termination criterion (other details are
provided in [10]). �e population and archive sizes were set to 100
individuals. �e main di�erence concerns the evaluation of the solu-
tions. In this case, each solution is decoded as before and simulated
independently using the selected phenotype prediction methods,
which in the experiments will be two: pFBA and LMOMA.�ese
originate two distinct �ux distributions which will be evaluated
using BPCY. �ese two values, BPCY-pFBA and BPCY-LMOMA,
make the two objective functions used by SPEA2.

Using a recent model of Escherichia coli K12 (iAF1260) [4], the
experiments were setup considering two case studies for the pro-
duction of lactate and succinate from glucose in aerobic conditions.
For each algorithm, the execution was halted a�er 50000 function
evaluations and the process was repeated 30 times.

3 RESULTS
3.1 E�ects of phenotype prediction methods

over strain optimization
A summary of the number of solutions generated by each of the
algorithms in the �rst part is presented in Table 1. Only solutions
where BPCY � 1 ⇥ 10�5 are shown. Note that this was a criterion
used to take into account solutions where both the biomass and
target compound �uxes are larger than zero.

Table 1: Size of the merged solution sets (EAs and SAs). Tar-
get products: Lac. - lactate, Suc. - succinate.

Target Product
Method Lac. Suc.
pFBA 292 143
LMOMA 661 1187

In an initial analysis of this table, the larger number of solutions
reachable when LMOMA is the used prediction method is easily
observable. �is seems to imply that the space of BPCY-valid solu-
tions is larger when LMOMA is used in the simulation, leading the
algorithms to more rapidly �nding interesting solutions.

To understand how di�erent phenotype prediction methods af-
fect the solutions reached, the convergences of the EA and SA,
when using pFBA and LMOMA were analyzed separately. Figure 2
depicts the convergences in the two case studies.

In a �rst observation of the convergence plots, a smoother con-
vergence when the LMOMA phenotype prediction method is being
used becomes evident. When pFBA is the selected method, the con-
vergence evolves in a stepped pa�ern, with no observable change in
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Figure 2: Convergence plots for the EA and SA algorithms
applied to the production of lactate and succinate. �e solid
lines indicates the means of 30 runs, while the color-shaded
areas indicate the standard deviation. �e dashed lines rep-
resent themaximum value for each algorithm and problem.

�tness for several evaluation functions and larger �tness jumps in
some steps. �e LMOMA pa�ern is a smoother one, represented by
slight but constant increases in �tness until convergence is a�ained.
In the easier case study, lactate, these di�erences are not so easily
observable, while in the more di�cult one, succinate, this trend
becomes evident. �ese trends are extensible to the additional case
studies (in supplementary material) where, in some cases, these
pa�erns are even more declared.

To evaluate the e�ect that these di�erences had in the pheno-
type (�ux values) of the solutions reached by the algorithms with
each of the phenotype prediction methods, an analysis on the �ux
distribution of such solutions was devised. A wild-type �ux distri-
bution was predicted using pFBA and taken as the reference �ux
distribution. �e distribution of �ux distances from the mutant
phenotypes to this reference was then computed (Figure 3). To
meet this end, the Jaccard distance for asymmetric binary a�ributes
(d � ) was employed:

d � =
M01 +M10

M01 +M10 +M11
(1)
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whereM01 represents the total number of �uxes active in the mu-
tant, but inactive in the wild-type;M10 is the total number of �uxes
active in the wild-type but not in the mutant; and,M11 is the num-
ber of �uxes that are active in both the mutant and the wild type
�ux distributions. �is metric only considers the �ux di�erences as
a binary array (on or o�), thus ignoring the e�ective �ux levels.
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Figure 3: Distribution of the Jaccard distances from the solu-
tions to the wild-type �ux distributions for the production
of lactate and succinate. Red bins and blue bins represent
solutions generated by LMOMA and pFBA, respectively. So-
lutions were re-simulated with pFBA (top in each plot) and
LMOMA (bottom in each plot).

Every solution generated by the EA and SA, while using LMOMA
(LMOMA-generated) was re-simulated using pFBA (top histogram
in each chart), while every solution generated using pFBA (pFBA-
generated) was re-simulated using LMOMA (bo�om histogram in
each chart). By visually inspecting the histograms, some observa-
tions are possible:

(1) Overall, the solutions simulated by LMOMA are usually
farther from the wild-type than the ones simulated by
pFBA;

(2) When re-simulated with pFBA, the LMOMA-generated
solutions, are generally closer to the wild-type than the
pFBA ones;

(3) When re-simulated with LMOMA, the pFBA-generated
solutions are generally much farther from the wild-type
than the LMOMA ones. Some of them even have ad � > 0.5.

�ese facts can be dissected and analyzed in more detail. �e
formulation of the pFBA procedure helps explaining the observation
1 given that, for a given �ux space that maximizes biomass, it will
return the �ux distribution that minimizes the overall sum of �uxes.
On the other hand, the fact that LMOMA solutions are closer to
the wild-type than pFBA ones, even when simulated with pFBA
(observation 2), can be a�ributed to the fact that the LMOMA
objective function tries to minimize the distance between the wild-
type and the mutant �ux distributions (i.e., there is a bias in the
LMOMA optimization towards this objective). �is is important,
because we assume that solutions that are closer to the wild-type are
more likely towork in reality [17]. �is is observable for simulations
with pFBA and LMOMA. On the other hand, the solutions simulated
with pFBA are generally closer to the wild-type, which can be
a�ributed to the pFBA objective function that minimizes the overall
sum of �uxes. �is means that pFBA simulations are probably closer
to other phenotype prediction methods such as ROOM [18] than
LMOMA. Finally, in observation 3, the pFBA-generated solutions
are clearly modifying a higher number of �uxes when they are
simulated with LMOMA. �is can be explained by the fact that the
pFBA procedure does not have any bias towards �ux distributions
that are closer to the wild-type.

Another question that quickly arises is how many solutions,
generated by each of themethods, are actually valid when simulated
with the other. Venn-like diagrams are presented in Figure 4 to
provide a �rst answer to this question.

Lactate

PFBA BOTH LMOMA
(205) (488) (260)

0 250 500 750 1000
Number of solutions

PFBA
BOTH
LMOMA

Succinate

PFBA BOTH LMOMA
(92) (751) (487)

0 500 1000
Number of solutions

PFBA
BOTH
LMOMA

Figure 4: Venn-like diagrams for checking the inter-method
validity of the solutions. From le� to right, solutions that
are BPCY-valid for: only pFBA, both pFBA and LMOMA, and
only LMOMA.

It is easily observable that a large number of solutions (about
half) are not BPCY-valid for both methods. From these, the ma-
jority are BPCY-valid for LMOMA only. �is con�rms that the
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phenotype prediction method is a determining factor not only on
the performance of the strain optimization algorithms, but also in
the sets of solutions they yield. If we assume that the likelihood of
these solutions working in reality increases if they are valid using
di�erent phenotype prediction methods methods, then most of the
solutions found are not robust.

While it is also clear that, in these case studies, there is a good
set of solutions that are BPCY-valid for both methods, the quality
of these solutions is not addressed, since this analysis includes
solutions whose BPCY values are close to zero (� 1 ⇥ 10�5).

To be�er understand how the �tnesses vary as a function of the
phenotype prediction methods, Figures 5 and 6 are put forward,
where the BPCY-values are taken into account. In Figure 5 , solu-
tions generated by the strain optimization algorithms when one
of the phenotype prediction methods was used were re-simulated
with the other, their BPCY values were calculated for both cases
and represented in the form of boxplots.
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Figure 5: BPCY (mmol product . mmol substrate

�1 . h�1) box-
plots for the Lactate and Succinate case studies. Solutions
generated with pFBA (blue,right) and LMOMA (red,le�) are
re-simulated using both methods (x-axis).

From the boxplots it is clear that the distribution of the BPCY
values of the solutions generated when using one of the phenotype
prediction methods changes dramatically when using the other.
Remarkably, in the succinate case study, the average BPCY of the
LMOMA-generated solutionswhen simulatedwith pFBA is superior
to the average of the pFBA-generated solutions.

�is fact is further supported by the sca�er plots presented in
Figure 6, which allow the visualization of the BPCY obtained using
the two di�erent methods for individual solutions. In these plots,
particular a�ention should be paid to the LMOMA solutions in the
top right region of the plots. In the perspective of this work, these
will be the desired solutions since they provide good results using
both prediction methods, being considered more reliable.

Albeit being curious, this can be partially a�ributed to the larger/less
constrained LMOMA solution space. �at is, in cases where few
valid FBA solutions exist, and there is the necessity for a speci�c
(and restricted) combination of knockouts to guarantee the pro-
duction of a desired compound, that speci�c combination might
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Figure 6: Scatter plots showing BPCY
(mmol product . mmol substrate

�1 . h�1) values obtained
by LMOMA(red) and pFBA(blue) generated solutions when
simulated using pFBA (x-axis) and LMOMA (y-axis) for the
lactate and succinate case studies.

be hard to reach using FBA, thus rendering the optimization pro-
cess close to a random sampling while no valid solution is found.
Alternatively, LMOMA solutions can spread the �ux by multiple
reactions reaching a multitude of valid solutions from the early
stages of the optimization, i.e, with few knockouts (this e�ect can
be observed in the convergence plots). Some of these solutions
or areas of the LMOMA solution space are BPCY-valid for FBA as
well, as shown by Figures 5 and 6. �is supports the rationale that
LMOMA-based optimization can be used to guide the FBA-based op-
timization, which was used as one of the pivotal reasonings behind
the development of the tandem optimization approach detailed in
the next section.

3.2 Robust strain optimization by means of
tandem phenotype prediction

We applied our MO approach to all previously presented case stud-
ies and compared the results. �us, the analysis will be focused on
the aerobic production of succinate and lactate using glucose as the
carbon source. �e number of solutions found by our method in
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the two case studies are the following: 1184 in lactate, and 709 in
succinate. �e generally larger number of BPCY-valid solutions is
easily perceptible when compared to the last section results.

Figure 7 represents the Jaccard distance of the mutant �ux distri-
butions (solutions found by the tandem approach) to the wild-type
�ux distribution. From the histograms, it is possible to conclude that,
while the average distance of the LMOMA-based �ux distributions
when simulated with both pFBA and LMOMA has not decreased
signi�cantly in comparison with the EA/SA approaches, the out-
liers found in the pFBA-based �ux distributions when simulated
with LMOMA are not present anymore.
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Figure 7: Distribution of the Jaccard distances from the so-
lutions �ux distributions to the wild-type �ux distributions
for the aerobic production of lactate and succinate from glu-
cose. All the solution were re-simulated with pFBA (top in
each plot) and LMOMA (bottom in each plot).

�is observation suggests that the current solutions are closer
to each other in terms of �ux distributions. Notwithstanding, as
stated in the previous section, if we assume that the likelihood of the
solutions working in reality increases, if they are valid for di�erent
phenotype predictionmethods, no conclusions can be derived about
the inter-method validity of these solutions. To access the validity
in both pFBA and LMOMA phenotype prediction methods, Figure
8 is introduced. �e results presented in the Venn-like diagrams

are self-explanatory, with all solutions but 2 in the succinate case
study and 1 in the lactate case study being BPCY-valid for both
methods. �is result is extremely positive by itself, however, the
precise performance of these solutions remains to be evaluated.
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Figure 8: Venn-like diagrams for checking the inter-method
validity of the solutions. From le� to right, solutions that
are BPCY-valid for: only pFBA, both pFBA and LMOMA, and
only LMOMA.

�e hypothesis raised in the previous section, that the LMOMA-
based optimization could be used to guide the pFBA-based opti-
mization, is now revisited here. �e corresponding boxplots were
generated and are presented in Figure 9.
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Figure 9: BPCY Boxplots for the Lactate and Succinate case
studies obtained by the tandem approach. Solutions are re-
simulated with both methods (x-axis).

By analyzing the boxplots it is now evident that the results have
improved greatly in comparison with the previous approach. In
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the Lactate case study, while in the former approach the pFBA-
generated solutions were generally not valid with LMOMA and the
LMOMA-generated solutions were not valid with pFBA, here, the
solutions are not only valid, but the average of their BPCY values
is be�er, in particular for the pFBA method.

Even more interesting are the results of the Succinate case study.
In the previous section, we pointed out the curious results found
for this example, where the LMOMA-generated solutions achieved
be�er BPCY values when simulated with pFBA than the pFBA-
generated solutions themselves. It is clear that the tandem ap-
proach is able to �nd still be�er solutions that are valid with
pFBA, than in the previous approach, with an average BPCY of
0.6mmol product .mmol substrate

�1 . h�1. �is improvement in
the results can also be witnessed in the sca�er plots presented in
Figure 10 where a large portion of the solutions are located on the
top-right region of the plots.
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Figure 10: Scatter plots showing BPCY values obtained by
the tandem approach generated solutions when simulated
using pFBA (x-axis) and LMOMA (y-axis) for the lactate and
succinate case studies.

One of our claims is that, in very constrained FBA solution
spaces where few BPCY-valid solutions exist, i.e., where to reach so-
lutions than can couple biomass growth and target overproduction
a large number of speci�c deletions is required, the LMOMA-based

optimization process can act as chaperone for the FBA-based opti-
mization. To help illustrate this process, Figure 11 is put forward.
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Figure 11: Illustration of LMOMA-pFBA tandem optimiza-
tion. Solution spaces with few knockouts contain no valid
pFBA solutions while some LMOMA solutions can be found.
In the much larger, many-knockouts, solution space, pFBA,
LMOMA and pFBA/LMOMA solutions are found.

�e early stage LMOMA solutions allow the algorithm to initial-
ize convergence towards interesting regions of the solution space,
by using solely LMOMA solutions’ �tnesses. For higher numbers
of deletions, despite being scarce, valid pFBA solutions exist. How-
ever, the probability of a valid combination of deletions being found
by an evolutionary heuristic using only pFBA as the phenotype
prediction method is low. When (and if) the LMOMA and pFBA fea-
sible solution spaces intersect, the tandem optimization approach
starts to a�ribute more value to solutions that are valid for both
methods. �is is a natural outcome of the dominance property of
the underlying MO approach.

In this context, our interpretation of robustness is two-fold. First,
we introduce a new concept of robustness in which solutions that
are predicted by more than one phenotype prediction method are
more robust, since they comply with more than one assumption
regarding the behavior of the organism when subjected to pertur-
bations (multi-method robustness). While we will not provide any
further tests supporting this claim, this robustness is a natural con-
sequence of the objective functions of our tandem approach, which
are su�ciently detailed in our previous analyses.

Secondly, we argue that the tandem optimization process is able
to a�ain solutions that are also robust in the LP (FBA) solution
cone (FBA-robustness). �e problems associated with competing
pathways not being accounted for by strain optimization algorithms
were �rst brought to light by Tepper and Schlomi in [20] where
they introduced the concept of robust solutions.

�e FBA-robustness is tested in a 2-step approach, �rst a regular
FBA phenotype prediction is performed, maximizing the biomass
(biostep1), while subjected to the genetic and environmental condi-
tions of the solutions. Next, FBA is performed with the objective of
minimizing the production of the target compound, but an extra
constraint - biostep2 � biostep1 ⇤ (1 � �) where � = 0.00001- is
added to the problem. If FBA is still able to predict the production of
the target compound in these conditions, we consider the solution
to be FBA-robust.
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To analyze the validity of this claim, we observed the FBA-
robustness of the solutions reached by the tandem algorithm. �e
results of this analysis show 76% in lactate and over 99% in succi-
nate. �us, most of the solutions found by the tandem algorithm
are FBA-robust. �e percentage of FBA-robust solutions found by
our method is in the same range of the previous methods, however
our method is able to �nd a much larger number of solutions. �us,
as a consequence, a higher number of FBA-robust solutions is made
available to the researchers.

4 CONCLUSIONS
From the results of this work, we have con�rmed that the results
of strain optimization meta-heuristics are highly dependent on
the phenotype prediction methods, and speci�cally, the use of
FBA/pFBA leads to sub-optimal results in more challenging tasks.

A new tandem optimization approach capable of �nding robust
strain designs compliant with multiple phenotype prediction meth-
ods is proposed, to address these limitations. Several advantages
emerge from using this tandem approach. First, the algorithm helps
uncovering pFBA solutions that would otherwise be di�cult to �nd
by traditional approaches. Secondly, the majority of these solutions
are both FBA-robust and multi-method robust.

Arguably, a valid alternative would be to ignore FBA/pFBA as a
phenotype prediction method for perturbed/mutant organisms and
use MOMA/LMOMA. However, LMOMA designs su�er from some
limitations. Given that the objective function in MOMA/LMOMA is
to minimize the distance to the wild-type �ux distribution and since
it is not bound to the maximization of biomass constraint, MOMA
can arti�cially activate/deactivate a large number of reactions to
reach this minimum value. �is results in �ux distributions with a
large number of minimally activated �uxes, which is unlikely to be
biologically sound. Furthermore, because of this, the analysis of the
�ux distribution of MOMA/LMOMA solutions is a challenging task,
whereas analyzing pFBA �ux distributions is an amenable one. �e
solutions a�ained by our tandem algorithm provide the advantages
of both approaches with none of the shortcomings.

ACKNOWLEDGMENTS
�e authors acknowledge the project DD-Decaf - Bioinformatics
Services for Data-Driven Design of Cell Factories and Communities,
funded by Horizon 2020 (LEIT Biotechnology, ref. H2020-LEIT-BIO-
2015-1 686070-1). �is study was also supported by the Portuguese
FCT under the strategic funding of UID/BIO/04469/2013 unit and
COMPETE 2020 (POCI-01-0145-FEDER-006684) and BioTecNorte
(NORTE-01-0145-FEDER-000004) funded by ErDF under the scope
of Norte2020.

REFERENCES
[1] Sco� A Becker, Adam M Feist, Monica L Mo, Gregory Hannum, Bernhard Ø

Palsson, and Markus J Herrgard. 2007. �antitative prediction of cellular metab-
olism with constraint-based models: the COBRA Toolbox. Nature protocols 2, 3
(2007), 727–738.

[2] Ana Rita Brochado, Sergej Andrejev, Costas D Maranas, and Kiran R Patil. 2012.
Impact of stoichiometry representation on simulation of genotype-phenotype
relationships in metabolic networks. PLoS computational biology 8, 11 (2012),
e1002758.

[3] Anthony P Burgard, Priti Pharkya, and Costas D Maranas. 2003. Optknock: a
bilevel programming framework for identifying gene knockout strategies for

microbial strain optimization. Biotechnology and bioengineering 84, 6 (2003), 647–
657. h�p://www3.interscience.wiley.com/journal/106556773/abstractpapers2:
//publication/doi/10.1002/bit.10803

[4] Adam M Feist, Christopher S Henry, Jennifer L Reed, Markus Krummenacker,
Andrew R Joyce, Peter D Karp, Linda J Broadbelt, Vassily Hatzimanikatis, and
Bernhard Ø Palsson. 2007. A genome-scale metabolic reconstruction for Es-
cherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic
information. Molecular systems biology 3, 1 (2007).

[5] Christopher S Henry, Ma�hew DeJongh, Aaron A Best, Paul M Frybarger, Ben
Linsay, and Rick L Stevens. 2010. High-throughput generation, optimization and
analysis of genome-scale metabolic models. Nature biotechnology 28, 9 (Sept.
2010), 977–82. h�p://dx.doi.org/10.1038/nbt.1672

[6] Rafael U Ibarra, Jeremy S Edwards, and Bernhard O Palsson. 2002. Escherichia
coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal
growth. Nature 420, 6912 (2002), 186–189.

[7] Kenneth J Kau�man, Purusharth Prakash, and Jeremy S Edwards. 2003. Advances
in �ux balance analysis. Current Opinion in Biotechnology 14, 5 (Oct. 2003), 491–
496. DOI:h�p://dx.doi.org/10.1016/j.copbio.2003.08.001

[8] Kenneth J Kau�man, Purusharth Prakash, and Jeremy S Edwards. 2003. Advances
in �ux balance analysis. Current opinion in biotechnology 14, 5 (2003), 491–496.

[9] Nathan E Lewis, Kim K Hixson, Tom M Conrad, Joshua A Lerman, Pep Charu-
santi, Ashoka D Polpitiya, Joshua NAdkins, Gunnar Schramm, Samuel O Purvine,
Daniel Lopez-Ferrer, and others. 2010. Omic data from evolved E. coli are con-
sistent with computed optimal growth from genome-scale models. Molecular
systems biology 6, 1 (2010).

[10] Paulo Maia, Isabel Rocha, and Miguel Rocha. 2013. An integrated framework for
strain optimization. In Evolutionary Computation (CEC), 2013 IEEE Congress on.
IEEE, 198–205.

[11] Jens Nielsen. 2001. Metabolic engineering. Applied Microbiology and Biotechnol-
ogy 55, 3 (2001), 263–283.

[12] Kiran Raosaheb Patil, Isabel Rocha, Jochen Förster, and Jens Nielsen. 2005. Evo-
lutionary programming as a platform for in silico metabolic engineering. BMC
bioinformatics 6, 1 (2005), 308.

[13] M. Rocha, P. Maia, R. Mendes, J. Pinto, E. Ferreira, J. Nielsen, K. Patil, and I.
Rocha. 2008. Natural computation meta-heuristics for the in silico optimization
of microbial strains. BMC bioinformatics 9, 1 (2008), 499.

[14] Joanne M. Savinell and Bernhard O. Palsson. 1992. Optimal selection of metabolic
�uxes for in vivomeasurement. I. Development ofmathematical methods. Journal
of �eoretical Biology 155, 2 (March 1992), 201–214. DOI:h�p://dx.doi.org/10.
1016/S0022-5193(05)80595-8

[15] Joanne M. Savinell and Bernhard O. Palsson. 1992. Optimal selection of metabolic
�uxes for in vivo measurement. II. Application to Escherichia coli and hybridoma
cell metabolism. Journal of �eoretical Biology 155, 2 (March 1992), 215–242.
h�p://www.sciencedirect.com/science/article/pii/S002251930580596X

[16] Stephan C Schuster. 2008. Next-generation sequencing transforms today’s biol-
ogy. Nature methods 5, 1 (2008), 16–18.

[17] Daniel Segre, Dennis Vitkup, and George M Church. 2002. Analysis of optimal-
ity in natural and perturbed metabolic networks. Proceedings of the National
Academy of Sciences 99, 23 (2002), 15112–15117.

[18] Tomer Shlomi, Omer Berkman, and Eytan Ruppin. 2005. Regulatory on/o�
minimization of metabolic �ux changes a�er genetic perturbations. Proceedings
of the National Academy of Sciences of the United States of America 102, 21 (2005),
7695–7700.

[19] George Stephanopoulos, Aristos A. Aristidou, and Jens Nielsen. 1998. Meta-
bolic Engineering: Principles and Methodologies. h�p://www.google.pt/books?
hl=pt-PT&lr=&id=9mGzkso4NVQC&pgis=1

[20] Naama Tepper and Tomer Shlomi. 2010. Predicting metabolic engineering knock-
out strategies for chemical production: accounting for competing pathways.
Bioinformatics 26, 4 (2010), 536–543.

[21] E. Zitzler, M. Laumanns, L. �iele, and others. 2001. SPEA2: Improving the
Strength Pareto Evolutionary Algorithm. EUROGEN (2001), 95–100.

1668

http://www3.interscience.wiley.com/journal/106556773/abstractpapers2://publication/doi/10.1002/bit.10803
http://www3.interscience.wiley.com/journal/106556773/abstractpapers2://publication/doi/10.1002/bit.10803
http://dx.doi.org/10.1038/nbt.1672
http://dx.doi.org/10.1016/j.copbio.2003.08.001
http://dx.doi.org/10.1016/S0022-5193(05)80595-8
http://dx.doi.org/10.1016/S0022-5193(05)80595-8
http://www.sciencedirect.com/science/article/pii/S002251930580596X
http://www.google.pt/books?hl=pt-PT&lr=&id=9mGzkso4NVQC&pgis=1
http://www.google.pt/books?hl=pt-PT&lr=&id=9mGzkso4NVQC&pgis=1

	Abstract
	1 Introduction
	2 Methods
	3 Results
	3.1 Effects of phenotype prediction methods over strain optimization
	3.2 Robust strain optimization by means of tandem phenotype prediction

	4 Conclusions
	References

