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ABSTRACT
Local optima networks are a compact representation of the global
structure of a search space. They can be used for analysis and visu-
alisation. This paper provides one of the �rst analyses of program
search spaces using local optima networks. These are generated
by sampling the search space by recording the progress of an Iter-
ated Local Search algorithm. Source code mutations in comparison
and Boolean operators are considered. The search spaces of two
small benchmark programs, the triangle and TCAS programs, are
analysed and visualised. Results show a high level of neutrality, i.e.
connected test-equivalent mutants. It is also generally relatively
easy to �nd a path from a random mutant to a mutant that passes
all test cases.

CCS CONCEPTS
•Software and its engineering→ Search-based software engi-
neering; •Computingmethodologies→Randomized search;
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1 INTRODUCTION
Genetic Improvement (GI) is the use of Search-Based Software
Engineering (SBSE) techniques to improve existing software. A
number of challenges related to the use of computational search
techniques and their speci�c application to optimising code have
been identi�ed by Langdon and Ochoa [5]. These include analysing
the structure, or landscape, of program search spaces. Particular
features of interest include the distribution of local optima and the
neutrality of the landscapes because these usually in�uence how
di�cult it is to traverse the landscape and, thus, how di�cult it is to
solve the problem at hand. This paper uses so-called Local Optima
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Networks (LONs) to represent the global structure of program
search space in order to analyse and visualise these spaces.

Within GI, a program is mutated in an attempt to improve some
property that represents the �tness of the program, for instance the
number of failed test cases. Neutrality is especially relevant because
it is related to the proportion and distribution of test-equivalent
mutants. Traditionally, the space of program mutants has been
thought to be relatively disjoint, and with few good programs.
However, recent work [6, 7, 12, 17] suggests that many changes
do not impact the �tness of the mutants. This may either point to
the programs being quite robust or to the test suite not providing
enough coverage — which is relevant to mutation testing.

Various metaheuristics have been used in the SBSE literature. In
this paper, we employ a perhaps less common — in the SBSE context
— metaheuristic, which is Iterated Local Search (ILS). Nevertheless,
it is a quite powerful yet simple approach based on multiple hill-
climber applications and random perturbations. It is especially well-
suited to our context since its search trajectories can be modelled
by LONs with high �delity.

The remainder of the paper is organised as follows: Section 2
presents our GI test bench; Section 3 provides de�nitions for �tness
landscapes and LONs; results in terms of both network analysis
and visualisations are presented in Section 4; threats to validity are
identi�ed in Section 5; and, �nally, the conclusion is provided in
Section 6.

2 PROGRAM SEARCH SPACE TEST BENCH
In order to study the landscape of program search spaces, we start
o� with known bug-free programs and introduce random mutations.
Starting from these mutants, we try to recover the original bug-free
programs or any version that passes all the test cases in the test
suite.

We make the assumption that programmers usually create close-
to-being-correct programs, i.e. they make minor mistakes such as
typos or small logic errors. This is also known as the competent
programmer hypothesis [2].

We examine two C programs, described in Section 2.1. For the
sake of simplicity, in this paper we �rst consider mutations on
comparison operators (<, <=, ==, !=, >=, >), as done by Langdon
et al. [4], and then add mutations of Boolean operators with two
operands (&&, ||).

Instead of generating new code that needs to be compiled for
each new mutant, we use a super-mutant program that contains all
the possible mutations under consideration [14]. These mutations
can then be activated or turned o� as desired. In our implemen-
tation, each operator is transformed into a function call with four
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i f ( s i d e 1 == s i d e 2 ) {
t r i a n g = t r i a n g + 1 ;

}
i f ( s i d e 1 == s i d e 3 ) {

t r i a n g = t r i a n g + 2 ;
}

(a) Original code snippet

i f (SM( 4 , s i d e 1 , s i d e 2 , " == " ) ) {
t r i a n g = t r i a n g + 1 ;

}
i f (SM( 5 , s i d e 1 , s i d e 3 , " == " ) ) {

t r i a n g = t r i a n g + 2 ;
}

(b) Super-mutant code snippet

Figure 1: Code snippets showing an example of super-
mutant transformation where the two equality operators
are the fourth and �fth operators in the code.

arguments: an operator id, the two operands of the operator, and a
cosmetic �nal argument string that describes the original operator.
This is mostly useful for a fast evaluation of the �tness function.
An example of the transformation is shown in Figure 1.

The transformation is carried out using the LibTooling library of
Clang–LLVM to parse the programs, build the abstract syntax trees,
and rewrite the required nodes. Some additional manual steps are
required to build our test harness, as described in Section 2.1.

Note that, in the programs we examine, no two operators are
ever part of the same expression when only the comparison opera-
tors are considered. When both comparison and Boolean operators
are considered, then operator precedence is enforced and left as-
sociativity is used for operators of similar precedence when the
super-mutant is generated.

2.1 Benchmark Programs
We use two C programs: the triangle program and the TCAS pro-
gram. Their characteristics are summarised in Table 1.

triangle.c: The triangle program is a small program that takes
the lengths of the three sides of a triangle and determines if it is
scalene, isosceles, equilateral, or not a triangle. We use a simpli�ed
version [4], which has been translated into C from the original
Fortran version by DeMillo et al. [2].

tcas.c: The TCAS, or Tra�c Collision Avoidance System, pro-
gram controls the altitude of an aircraft depending on a number of
input parameters. We use version 2.0 from the SIR repository [3]1.
For the sake of simplicity, we do not consider the test cases that do
not have all 12 input parameters. This e�ectively reduces the num-
ber of test cases from 1608 to 1578. Array indices are not checked in
the original program. We introduce a check to accept valid indices
and generate an arbitrary output value for invalid indices. This
prevents the program from crashing and improves the e�ciency of
the sampling process, which is described in the next subsection.

1http://sir.unl.edu/content/sir.php

Table 1: Characteristics of benchmark programs

Program triangle.c tcas.c

Lines of code 40 135
No. comparison operators 17 14
No. Boolean operators 7 16
No. input parameters 3 12
No. output values 1 1
No. test cases used (original) 14 (14) 1578 (1608)

2.2 Iterated Local Search
A full enumeration of the search space, or even of the local optima,
for the two programs is unmanageable. Therefore a sample of
high-quality local optima in the search space is generated.

The sampling algorithm is an Iterated Local Search, or ILS, (Al-
gorithm 1) which starts from a locally-optimal solution and then
alternates between a random mutation and a best-improvement hill-
climber. The termination criterion is a �xed number of iterations.
At each step, only non-worsening local minima are accepted. The
�tness, or objective value, of a solution is the number of test cases
that it fails. Both the hill-climber and the mutation consider the
�rst degree or 1-move neighbourhood, i.e. neighbouring solutions
only di�er by a single element.

Algorithm 1 Iterated Local Search
s0 ← RandomInitialSolution
s∗ ← HillClimber(s0)
repeat
s ′ ← RandomMutation(s∗)
s ′∗ ← HillClimber(s ′)
if f (s ′∗) ≤ f (s∗) then
s∗ ← s ′∗

end if
until termination condition met

3 LOCAL OPTIMA NETWORKS
Fitness landscapes are a commonly-used metaphor to describe the
dynamics of evolutionary and local search heuristics. The search
space can be regarded as a spatial structure with height representing
�tness, forming a surface that can vary from smooth to rugged, and
that can contain ridges and plateaus. Formally [13], a landscape is a
triplet (S,N , f ) where S is a set of potential solutions, i.e. a search
space; N : S −→ 2S , a neighbourhood structure, is a function that
assigns to every s ∈ S a set of neighbours N (s), and f : S −→
R is a �tness function that can be pictured as the height of the
corresponding solutions.

In our study, a potential solution is encoded as a vector of in-
tegers of length l , where l = c + b corresponds to the number of
comparison operators (c) and Boolean operators (b) in the program
under consideration (Table1). There are 6 possible comparison op-
erators and 2 Boolean operators. Therefore, the size of the search
space is |S | = 6c × 2b . The neighbourhood structure, N , is given
by the simplest possible move operator in this landscape, namely,
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the value of a single position in a solution is changed: to one of
the 5 alternatives if it is a comparison operator, or the opposite
Boolean operator. Let us call this operator 1-move. The size of the
neighbourhood induced by 1-move on the given representation is
5×c +b. The �tness function f is given by the number of test cases
failed by the program, which is to be minimised.

Local optima are important features of �tness landscapes as they
can be seen as obstacles to the progress of heuristic search. Local
optima networks (LONs) [9] model the global structure of land-
scapes as graphs where nodes are local optima and edges represent
possible transitions among them with a given search operator. In
order to model GI �tness landscapes with local optima networks,
we adapted the model with escape edges [16]. To construct these
networks, we need to de�ne their nodes and edges. The de�nitions
are related to the search operators used, speci�cally, the local search
(hill-climbing) heuristic to determine the local optima and escape
operator to transit among them. In our study, the hill-climbing
heuristic is a best-improvement approach based on the 1-move op-
erator, and the escape operator is also given by a single application
of 1-move. This is possible as, given the problem encoding, a single
1-move provides enough variability to escape from a local optimum
basin of attraction.

Local optima. A local optimum, which in GI landscapes is a
minimum when considering the number of failed test cases, is
a solution s∗ such that ∀s ∈ N (s∗), f (s∗) ≤ f (s). Notice that the
inequality is not strict, in order to allow the treatment of the neutral
landscape case.

The set of local optima, which corresponds to the set of nodes in
the network model, is denoted by L. Since the whole set of local op-
tima cannot be determined in realistic search spaces, such as those
considered here, a process of sampling is required to estimate L.

Escape edges. Edges are directed and based on the 1-move op-
erator. There is an escape edge from local optimum x to local
optimum y, if y can be obtained after applying a 1-move random
mutation to y followed by the best-improvement hill-climbing. The
set of escape edges is denoted by E. Note that during the sampling
process we only store edges that correspond to non-worsening
transitions.

The type of edge is dependent on the algorithm used to sam-
ple the landscape. While escape edges are natural edges for ILS
algorithms, other edge types may be used such as crossover and
mutation edges in the case of an evolutionary algorithm, as done
by Veerapen et al. [15].

Local OptimaNetwork (LON ). This is the LON = (L,E) graph
where nodes are the local optima L, and edges E are the escape
edges. Edges are directed.

4 RESULTS
Sampling was carried out by running an ILS 1000 times. Within
each ILS run, the stopping criterion corresponds to 10 000 calls to
the hill-climbing procedure.

4.1 Visualisations
Figure 2 shows visualisations of the LONs, only for a subset of
the sampled runs since representing large graphs is not straight-
forward on paper medium. The �gures show the �rst 100 runs of
the sampling process and the �rst 2000 iterations of each of these
for the triangle program and the full 10 000 iterations for the tcas
program. Nodes are not displayed: there would be roughly 100 000
of them in each �gure. However, the edges by themselves provide
insight into the nature of the landscapes. Edges between global
optima are painted red and edges between local optima of equal
�tness are painted grey. Edges between local optima with di�erent
�tness are painted black.

The layouts for the visualisations are �rst generated in two
dimensions using a force-directed layout algorithm [8] and imple-
mented in the igraph library [1]. This algorithm is able to deal with
large graphs and tries to utilise space e�ciently and to minimise
overlap of edges and nodes (even if the latter are not rendered in
our context). The third dimension, �tness, is then added to provide
the height to the visualisation.

A common characteristic of all four visualisations is the clear
presence of a large number of edges that connect nodes of equal
�tness. These are plateaus at the LON level, or meta-plateaus. Let
us note that meta-plateaus do not necessarily indicate plateaus at
the solution level, only that a random mutation in the ILS more
often than not leads to a new local optimum with the same �tness as
before. These local optima may e�ectively be on the same plateau
at the solution level, or be in two di�erent basins of attraction.
Although an abuse of language, we will use the term plateau in-
stead of meta-plateau in the rest of the paper since we are always
considering plateaus at the LON level.

The worst plateau has �tness 5 for the triangle program — and
there is a tiny �tness 6, easily escapable, plateau when both compar-
ison and Boolean operators are considered. For the tcas program,
the maximum �tness is 264. For both programs, we thus have
plateaus that are well below the maximum �tness of 14 and 1578.
Since random, not locally-optimal solutions, are often close to those
maximum values, this indicates that it is fairly easy to improve the
solution �tness with a simple hill-climber, at least initially.

The triangle program LONs are made up of 6 (�tness 0–5) large
plateaus relatively well-connected between each other. However,
when mutations on Boolean operators are introduced, more ILS
runs get stuck at �tness 2 and are not able to progress to the global
optima level. The ILS success rate, i.e. the proportion of runs that
reach a global optimum, is measurably lower (87 % vs. 31 %).

The tcas program LONs display more di�erence between them.
Perhaps surprisingly, the variant that only considers comparison
operators shows fairly well-de�ned plateaus — the three main ones
have �tness 0, 144 and 264. This may be an artefact of some interac-
tion between mutations. The study of these interactions is beyond
the scope of this paper but seems to be an interesting area for future
research. The variant with both comparison and Boolean operators
shows more “steps” along the di�erent runs and, therefore, less
well-de�ned plateau structures. This potentially means that �nding
improving solutions, and ultimately a global optimum, is easier.
Whilst the ILS success rate for both variants is quite high, there is
a marked improvement for the second variant (from 94 % to 98 %).
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(a) triangle (comparison operators) – 3D view (b) triangle (comparison operators) – pro�le view

(c) triangle (comparison & Boolean operators) – 3D view (d) triangle (comparison & Boolean operators) – pro�le view

(e) tcas (comparison operators) – 3D view (f) tcas (comparison operators) – pro�le view

(g) tcas (comparison & Boolean operators) – 3D view (h) tcas (comparison & Boolean operators) – pro�le view

Figure 2: Local optima networks for the two variants of the two programs. Edges between global optima are painted red and
edges between local optima of equal �tness are painted grey. Edges between local optima with di�erent �tness are painted
black.
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Table 2: Network characteristics and ILS performance. The variant that considers only comparison operators is denoted by c,
while the variant that considers both comparison and Boolean operators is denoted by c+b.

Program triangle.c tcas.c

Variant c c+b c c+b

No. of nodes 2.4×106 4.1×106 8.6×104 5.0×105

No. of edges 2.8×106 4.7×106 6.4×105 1.4×106

No. of global optima 9.2×103 5.4×104 2.3×104 1.1×105

Network density 4.7×10−7 2.8×10−7 8.7×10−5 5.6×10−6

Clustering coe�cient 2.4×10−3 2.4×10−3 4.4×10−2 1.6×10−2

Neutral degree 99.8 % 99.9 % 99.6 % 99.6 %
No. of connected components 3 3 2 12
Relative size of largest connected component 92.6 % 99.8 % 97.3 % 94.9 %
Nodes with path to global optimum 92.5 % 99.4 % 94.8 % 96.4 %
No. of sinks 4 5 3 12
No. of global sinks 1 1 1 5
ILS success rate 87.1 % 31.2 % 94.4 % 98.4 %

4.2 Network Statistics
Table 2 reports the main characteristics of the LON graphs extracted
from the benchmark problems described in Section 2.1. The sam-
pling procedure yielded, in all cases, graph sizes in the order of
one million edges, which are non-deteriorating transitions between
local minima. The actual number of distinct local minima visited
during the search, that is, the number of nodes in the graph, is also
in the order of one million for triangle.c, and one order of mag-
nitude less in the case of tcas.c. In particular, allowing mutations
to both comparisons operators and Boolean operators, increases
the size of the search space and the number of local minima.

Let us observe that there is a high number of global optima, i.e
solutions that are test-equivalent to the original programs. This
may mean that the programs are quite robust — we have not tested
this hypothesis — or that the test suite dose not provide enough
coverage.

In all benchmarks, LONs are rather sparse but present patterns
of local connectivity. In fact, the clustering coe�cient, that is, the
average proportion of transitive closures among the neighbours of
a vertex, is always around four orders of magnitude higher than the
overall network density. That is, connections between nodes that
already share a neighbour, are orders of magnitude more frequent
than connections in general, which could be explained by the fact
that the LON graph displays the traces of iterated local search
trajectories.

However, the great majority of these local connections happen
on the plateaus that are well-visible in Figure 2. Indeed, considering
the sampled non-deteriorating moves, more than 99% of the times a
transition out of a local minimum leads to another local minimum
with the same �tness value. That applies to both problems and both
mutation operators subsets.

In terms of global connectivity, we can observe that a path be-
tween any pair of nodes is not always present, even if we disregard
the direction of the edges. That is, the networks break down into
a number of weakly-disconnected components, especially when
the larger search space of comparison and Boolean operators is

considered. Nonetheless, more than 92% of the local minima we ob-
served belong to a single, largest connected component. Moreover,
a similar high fraction of all local minima lie on paths that could
eventually descend to a global optimum.

By following the steepest descent directions on the LON, we
can also detected the presence of multiple attractors with no non-
deteriorating transitions around them, which we term sinks. Their
number is indicative of the multi-funnel global structure of the
landscapes [11], and may directly relate to the empirical problem
hardness from the point of an iterated local search [10]. Among the
four benchmark instances, the one with the lowest success rate also
has multiple sub-optimal sinks. Indeed, almost all its local minima
have access or belong to the funnel containing the global optima,
but we hypothesise that, given the ILS stopping criterion, the actual
success rate might depend on how easy it is for the search to �nd
exits across plateaus and gain access to better (lower) �tness levels
within the budget of function evaluations. As it can be visually
appreciated on Figure 2, the “hardest” instance is also, notably, the
one with fewer such connections across the lowest �tness levels.

5 THREATS TO VALIDITY
This paper provides some interesting insight into the global struc-
ture of program search spaces. It is, however, important to note
that, while there may be grounds to believe that other programs
may exhibit similar global structure, our analysis does not permit us
to draw any broader conclusions. Furthermore, the analysis relies
on a sample of the search space which only gives a partial picture
of the actual space. This is somewhat mitigated by the fact that
the sampling method is an actual solving method. Thus, the subset
of the space that is sampled provides the coarse structure of the
reachable parts of the space. This leads us to another cautionary
point. A �tness landscape, or a local optima network, is not only
dependent on the instance, or program, examined but also on the
search algorithm used and the operators within. Should a di�erent
neighbourhood be used, a di�erent landscape would probably be
produced.
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6 CONCLUSION
We used Local Optima Networks to investigate the landscapes pro-
duced when applying Iterated Local Search to two small programs.
Mutations in comparison and Boolean operators were considered,
on the assumption that programmers make relatively minor mis-
takes. The visualisations and analysis of multiple network metrics
highlighted the high level of neutrality in the networks but also
showed that paths exists from most sampled local optima to some
global optimum. Thus neutrality should not necessarily be seen as
a negative.

Naturally, it is di�cult to draw broad conclusions from a very
limited number of exemplars. Future work will remediate this by
looking at a wider range of programs and mutation points. Further
insight into the neutrality issue is required, which will involve
examining the actual modi�cations brought about by higher-order
mutations. This kind of analysis is also potentially useful to provide
clues on which algorithms and neighbourhoods would work best
for landscapes and programs with speci�c features.
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