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ABSTRACT
Directional changes (DC) is an event based encoding for time series
data that has become popular in �nancial analysis, particularly
within the evolutionary algorithm community. In this paper, we ap-
ply DC to a medical analytics problem, using it to identify and sum-
marise the periods of opposing directional trends present within a
set of accelerometry time series recordings. �e summarised time
series data are then used to train classi�ers that can discriminate
between di�erent kinds of movement. As a case study, we con-
sider the problem of discriminating the movements of Parkinson’s
disease patients when they are experiencing a common e�ect of
medication called levodopa-induced dyskinesia. Our results sug-
gest that a DC encoding is competitive against the window-based
segmentation and frequency domain encodings that are o�en used
when solving this kind of problem, but o�ers added bene�ts in the
form of faster training and increased interpretability.
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1 INTRODUCTION
In order for time series data to be processed by a machine learning
algorithm, it is o�en necessary to segment the data. A common ap-
proach to doing this is to use a sliding window [5], which involves
spli�ing the time series into a sequence of (generally overlapping)
n-tuples. Each of these n-tuples, or windows, is then used as input
to the machine learning algorithm and elicits a response. �ese
responses are then combined, typically through summing or aver-
aging, into a single output for the whole time series. Whilst o�en
e�ective, this approach can be sensitive to parameters such as the
length of the window and the degree of overlap.

In the computational �nance community, there has been a grow-
ing interest in event-based encodings of time series, notably the
directional changes (DC) encoding developed by Olsen et al. [2, 15].
�is approach has become particularly popular in evolutionary
algorithm-based approaches to �nancial time series analysis [8, 9].
Rather than segmenting a time series into segments of equal length,
these approaches segment a time series into a sequence of consec-
utive events. In the case of DC, these events are upturn events
and downturn events, and the associated overshoot periods that
occur between events. Both types of event occur where there is a
signi�cant and sustained change in the magnitude of a value being
tracked.

Computational �nance is not the only domain that might bene�t
from event based encodings. In this paper, we consider medical
time series analysis, focussing on the analysis of abnormal human
movements. As for a �nancial time series, important pa�erns in
movement data are o�en indicated by changes in direction, such
as a change in the sign of a velocity or a switch from acceleration
to deceleration. �ese changes are the equivalent of upturn and
downturn events in �nancial time series data, and can be captured
using a DC encoding.

As a case study, we use a dataset collected to study levodopa-
induced dyskinesia (LID) in Parkinson’s disease patients [10]. LID
is a common side-e�ect of dopamine replacement therapy, and
causes uncontrollable muscle spasms that can signi�cantly impair
a patient’s quality of life [14]. It can be managed through changes
to dosage, but only if there is a reliable means for recognising and
recording when a patient is experiencing dyskinesia. In previous
work, Cartesian genetic programming was used to train classi�ers
that can identify periods of dyskinesia within accelerometry time
series data, employing a window-based segmentation of the data
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Table 1: Number of examples of each dyskinesia grade

UDysRS Study 1 Study 2

0 2933 1747
1 1227 971
2 1688 562
3 681 183
4 64 361

[10]. In this work, we consider the bene�ts of using a segmentation
based on DC.

�e paper is organised as follows. Section 2 describes the dataset
used in this work, and previous �ndings. Sections 3 and 4 describe
the DC encoding that is applied to this data, and the evolutionary
se�ings, respectively. Section 5 presents results, showing how
the predictive ability of classi�ers is a�ected by the use of a DC
encoding. Section 6 concludes.

2 MOVEMENT DATASET
We use the dataset described in [10], which was collected from
accelerometry devices worn by a cohort of 7 Parkinson’s disease
patients as they went about unscripted movement for a period of
6 hours. �e resulting recordings were segmented into regions
of interest by three trained clinicians, who identi�ed periods of
movement when the patients were displaying dyskinesia, labelling
these with the corresponding clinical grade on the uni�ed dyskine-
sia rating scale (UDysRS) [7], along with indications of the sensor
positioning and the subject’s current activity. �e clinicians also
labelled periods where the patients were displaying no dyskine-
sia. Samples of movement data with UDysRS ratings from 0 (no
dyskinesia) to 4 (severe dyskinesia) were then extracted and each
saved in the form of an acceleration time series. For the purpose of
training and evaluating classi�ers, the dataset was uniformly split
three ways into training, validation and test sets. �e training set
was used for �tness evaluation, the validation set for early stopping,
and the test set was used to estimate generality.

In this work, we make use of an additional, more recent, dataset
which was collected using a similar experimental protocol from
a larger group of 17 patients using a newer set of accelerometry
modules. We refer to this as Study 2, and use it to provide an unbi-
ased estimate of classi�er accuracy for selected classi�ers. Table 1
summarises the datasets from both studies.

In previous work with the �rst dataset [10], implicit context rep-
resentation Cartesian genetic programming (IRCGP) [3] was used
to train classi�ers which could discriminate clinically signi�cant
grades of dyskinesia (3 & 4 on the UDysRS scale) from periods of
motion when no dyskinesia was present. Cartesian genetic pro-
gramming (CGP) is a form of genetic programming in which func-
tions are laid out on a grid and connected together as a graph [12].
In addition to allowing implicit reuse of evolved sub-expressions,
and displaying useful forms of neutral evolution, it has the practical
bene�t of limiting the size of the evolved expression and thereby
preventing bloat. Consequently it tends to generate expressions
which are more interpretable than those produced by conventional
GP.�is is particularly useful in a medical context, where it is o�en
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Figure 1: Example of an acceleration pattern recognised by
a classi�er trained using a �xed-size sliding window. Repro-
duced from [10].

necessary to understand the basis of a classi�cation in order to for
clinicians to have con�dence in its prediction. IRCGP is a variant
of CGP that is designed to improve the behaviour of crossover [3];
for details, see [11].

�e results of this earlier study showed that classi�ers could be
evolved with a mean AUC (area under ROC curve) of about 0.9
when segmenting the time series data using overlapping sliding
windows. �is was signi�cantly higher than the AUCs that could be
achieved when training classi�ers using frequency domain features,
a notable result since most studies in this area focus on spectral
analysis [13]. Analysis of the evolved classi�ers suggested that
their classi�cation was based upon the shape of movements, rather
than their magnitude or frequency. Fig. 1 shows an example of a
pa�ern of acceleration that was found to be over-represented [10].

3 DIRECTIONAL CHANGES
DC segments a time series into a sequence of upturn and down-
turn events (see Algorithm 1, adapted from [2]). Both of these are
sustained changes in the direction of a variable, measured in terms
of a percentage change in magnitude using a threshold parameter,
�xdc . For example, if �xdc = 0.05, an upturn event is recognised
as having occurred when the variable increases in magnitude by at
least 5% from its lowest point in the previous cycle.

DC is essentially a method for detecting turning points within a
time series, and has commonalities with other methods that achieve
this. However, the method does have several advantages over other
methods when considered in the context of human movement anal-
ysis. Perhaps most notable in the ease of comprehension, since, for
example, a 5% change in acceleration has an obvious physiological
interpretation.

Also useful is the ability to change the scale of analysis by vary-
ing the threshold parameter. Fig. 2 shows an acceleration time
series being encoded as a sequence of upturn and downturn events,
illustrating the e�ect of changing �xdc from 20% to 10%. Multi-
scale analysis of this kind using DC has been instrumental for the
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Figure 2: Encoding an acceleration time series as a sequence
of directional change events, each summarised as a duration
�t and a change in acceleration �a. �e e�ect of varying the
sensitivity parameter �xdc is also shown.

discovery of scale-free laws in �nancial time series data [6]. Since
di�erent neural programmes are thought to govern motion over
di�erent timescales, it could also help to understand how di�erent
disease pathways contribute to movement disorders [4].

Finally, the method always detects the exact point of in�ection
(i.e. the maximum or minimum in a cycle), rather than an approx-
imation. �is could be particularly bene�cial for the analysis of
movement data, where changes in behaviour can be abrupt and
short-lived, and where peak acceleration is thought to be an impor-
tant discriminator of motor ability.

4 CLASSIFIER EVOLUTION
For comparative purposes, we use the same approach reported in
earlier work [10], where IRCGP was used to optimise mathematical
expressions on a 6⇥6 CGP grid. A standard set of arithmetic func-
tions is used {+,�,⇥,÷, |x |,mean,min,max}. As in earlier work,
the evolved expression is applied using a sliding window, and the
overall output for a sequence is the mean of the outputs from the in-
dividual windows. However, unlike earlier work, the time series is
�rst re-coded as an event sequence (as shown in Fig. 1), comprising
ordered (�te ,�ae ) pairs for each event e . Each window contains a
�xed number of events. A window is always aligned to start at a
�t , and is slid along one event at a time.

Each run uses a population size of 200 and a generation limit of
50. Point mutation is applied using a Gaussian distribution centred
around the current value, with rates of 6% for functions and 3%
for functionality pro�le elements (see [11]). Uniform crossover is
applied with crossover points occurring with a probability of 15%.

Algorithm 1 Encode time series in as out using directional changes
1: out  () . out is a sequence of numbers
2: e�ent  Upturn

3: hi�h  low  in[0], th  tl  0
4: for t 2 0 . . . |in | do . Iterate through in
5: if e�ent = Upturn then
6: if in[t] 6 hi�h ⇥ (1 � �xdc ) then . Upturn over
7: e�ent  Downturn

8: out  out

_ (th � tl ,hi�h � low ) . Append (�t ,�a)
9: low  in[t], tl  t

10: else
11: if hi�h < in[t] then . Update high point
12: hi�h  in[t], thi�h  t

13: end if
14: end if
15: else
16: if in[t] 6 low ⇥ (1 + �xdc ) then . Downturn over
17: e�ent  Upturn

18: out  out

_ (tl � th , low � hi�h) . Append (�t ,�a)
19: hi�h  in[t], th  t

20: else
21: if low > in[t] then . Update low point
22: low  in[t], tl  t

23: end if
24: end if
25: end if
26: end for

5 RESULTS
Fig. 3a shows the distributions of AUC across 50 runs using various
combinations of window size and DC threshold. �ere are several
notable observations. First, all combinations achieve a good level
of discrimination, with AUCs ranging from 0.85 to 0.92. �is is
comparable to previous results on this data set, showing that the
reduced information present in the DC encoding does not impair
classi�cation accuracy, possibly because it helps to emphasise pat-
terns of interest. Second, the highest mean AUCs (⇠ 0.90) were
achieved for a window size of one with a DC threshold of 5%. �is
is interesting, since it indicates that discrimination can be achieved
by analysing each period of increasing or decreasing acceleration
in isolation. �ird, for a DC threshold of 20%, the results are sig-
ni�cantly be�er when using a window size of three. �is suggests
that di�erent discriminative pa�erns may be present at di�erent
temporal scales.

5.1 Expressions
To gain more insight into these results, we analysed individual
classi�ers. Equation 1 shows the evolved expression used by the
classi�er which performed best overall on the test set. �is uses a
window size of one, a DC threshold of 5%, and achieved an AUC of
0.92 on the test set.
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Figure 3: Ability of evolved classi�ers to discriminate samples of Grades 3 and 4 dyskinesia frommovements where no dyski-
nesia is present. For each combination of window size and DC threshold, notched box plots show distributions of AUC on the
test set over 50 independent runs. Non-overlapping notches indicate a strong likelihood of statistically signi�cant di�erences
between means. Results are shown for two di�erent CGP grid sizes.

exp = min(min(s1,mean(s1 + 1, (s3)2)), s1s2 �
s3
s5 )

s1 = s4 + 0.005
s2 =

s5
s3

s3 = �t0 + 0.88
s4 = mean(s2, s6)
s5 = |�a0 |
s6 = mean(s5 � �a0,��t0 � 0.88)

(1)

s1 . . . s5 are sub-expressions in the solution graph that are used
more than once. �e overall expression is not easy to interpret.
However, it is notable that event duration (s3), the magnitude of
the acceleration change (s5), and the gradient (s2) are all used in
reaching a decision. Also notable is sub-expression s6, where the
�rst argument expands to |�a0 |��a0, leading to a di�erent response
depending on whether the event is an upturn or a downturn. �is
suggests that periods of increasing and decreasing acceleration
should be treated di�erently in reaching a classi�cation. �is is in
keeping with our understanding of human movements, where ac-
celeration and deceleration are thought to be governed by di�erent
neural pathways [1].

Given the di�culty of analysing large evolved expressions such
as this, we repeated the experiments using a CGP grid of 3⇥3,
limiting expressions to a maximum of nine function instances. Fig.
3b shows the results, showing that the relationships between the
distributions remain very similar to the original experiments, but
with an overall drop in AUC of about ⇠ 0.02, which is small but

signi�cant. For a window size of one and a DC threshold of 5%, the
solution shown in Equation 2 was found several times. �is has a
test set AUC of 0.88.

exp = |�a0 | � �t0 (2)

�is expression is very simple in comparison to Equation 1.
When applied to all the events in a particular movement sequence,
the output of the classi�er will be the di�erence between the mean
magnitude of acceleration changes and the mean duration of each
event. Given that acceleration values are in general numerically
higher than durations, the magnitude term will be the dominant of
the two, indicating that large changes in acceleration are particu-
larly signi�cant indicators of dyskinesia in this data set. However,
when the duration term is numerically large—which will be the case
when directional changes are infrequent—the classi�er’s output
will be signi�cantly reduced, indicating non-dyskinetic behaviour.
�is may help to �lter out voluntary movement, such as walking,
where the changes in acceleration are large but infrequent. It is
particularly interesting that this expression evolved at the 5% DC
threshold level, suggesting that themagnitude and duration of accel-
eration changes at a small scale are more useful for discriminating
dyskinesia than those that occur at larger scales of movement, i.e.
those that a clinician would tend not to notice during a clinical
assessment of dyskinesia may be the most signi�cant.

When a DC threshold of 20% is used, the best classi�ers are
found for larger window sizes. �is suggests that classi�ers may be
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responding to di�erent pa�erns at larger scales of movement. Equa-
tion 3 shows the expression used by the classi�er which performed
best overall (0.90) on the test set for a DC of 20%, and Equations
4 and 5 show two shorter expressions from the 3⇥3 runs, both
achieving AUCs of 0.89 on the test set.

exp = mean(max(��a0, s1 + ��t1) � (�a0�a1 + s1 � �a0),
0.89(0.65 +min(s1 � �a1,�t0�t1)) (s1 � �a0))

s1 = max(�a0,�a1)
(3)

exp = max( |0.007�a0 � �a1 |, 0.06�a1 (�a1 � �t0)) (4)

exp = max(0.63|�a0 |,�a0 �min(�a1,�a0�t1) � �t0) (5)

Although the window size is 3, it is evident from these examples
that the ��est classi�ers among the 20% DC threshold group tend
to use only the �rst two events in each window, suggesting that
the third event is only useful in terms of evolvability. Equ. 5 is the
easiest to interpret. �e max andmin functions both act as switches.
Unless the �rst period of motion is much longer than the second, the
max function returns the second term, which then evaluates to one
of two expressions depending upon whether the window comprises
an upturn followed by a downturn, or a downturn followed by an
upturn. For the former case, it approximately returns the sum of
magnitudes of the two changes in acceleration. For a downturn
followed by an upturn, it approximately returns the magnitude
of the �rst acceleration change multiplied by the duration of the
second period of change. Notably, this is usually much larger than
the value returned for the cycle from upturn to downturn, and so
dominates the overall mean when applied to all the windows in a
movement sequence. �is seems to suggest that the relationship
between a period of reducing motion and its following period of
increasing motion is useful for discriminating dyskinesia.

�e use of max and min functions for switching appears fre-
quently within the ��est evolved solutions. �is suggests that, in
future work, it could be useful to introduce a more explicit mech-
anism for switching between behaviours, for instance the use of
conditional execution.

5.2 ROC Curves
To gain a be�er understanding of the generality and relative utility
of the selected classi�ers, we re-evaluated them on the second data
set. Fig. 4 shows the resulting ROC curves, showing how well
they recognise the di�erent grades of dyskinesia, and also how
appropriate they are for di�erent body positions and activities. For
comparative purposes, we show a classi�er from the previous study
[10] alongside the overall best DC classi�er (Equ. 1), the shortest
classi�er (Equ. 2), and the best classi�er for a 20% threshold (Equ.
3).

�ese ROC curves give a more nuanced view of the DC classi-
�ers’ performance. Although they do generalise well to the second
data set, the AUCs they achieve are slightly below those of the
best non-DC classi�er. However, the di�erence is small, and the
considerable reduction in computational e�ort required to train a
classi�er using a DC sequence rather than a full time series may
make them preferable in some circumstances; for example, when
online training is used. For instance, the number of windows of

data that need to be evaluated in the training data set is reduced by
a factor of about 30 when using DC.

�e 5% threshold classi�ers do well at discriminating grade 3
and 4 dyskinesia, but are relatively poor at identifying instances
of grade 1 and 2 dyskinesia. �e 20% threshold classi�er, on the
other hand, has a slightly lower accuracy on grades 3 and 4, but
discriminates grades 1 and 2 relatively well. �ey also di�er in
their trade-o�s between sensitivity and speci�city. �is can be seen
both in the lower grades and in the e�ect of sensor position, where
the 5% classi�ers favour speci�city over sensitivity and the 20%
classi�er favours sensitivity over speci�city. �ese observations,
again, suggest that they are responding to di�erent pa�erns in the
data.

Fig. 4 also compares the ability of the classi�ers to discriminate
dyskinesia based on the subject’s activity. All the classi�ers per-
form well when the subject is si�ing down, achieving high AUCs
for all grades. However, discriminating dyskinesia whilst walking
is known to be a di�cult problem, and this is re�ected in the plots.
�e DC classi�ers are a�ected more than the non-DC classi�er,
suggesting that the shape of an acceleration change event is par-
ticularly important in this context. Nevertheless, it is notable that
the 5% classi�er does signi�cantly be�er than the 20% classi�er,
indicating the relative bene�t of considering �ne movements when
recognising dyskinesia in the presence of large-period voluntary
movements, such as walking.

6 CONCLUSIONS
In this paper, we have described the use of a DC encoding when
evolving classi�ers for discriminating abnormal movements in
Parkinson’s disease. By segmenting an accelerometry time series
into a sequence of events, each summarised by its duration and
acceleration change, DC signi�cantly reduces the size of movement
data. �is means that movement sequences can be processed with
considerably less computational e�ort during �tness evaluation,
which is important in applications such as online training and em-
bedded learning, both of which are desirable in telemonitoring
systems. It also reduces the information content. However, our
results suggest that this loss of information has only a small ef-
fect upon classi�cation accuracy. Furthermore, the reduction in
extraneous information promotes the evolution of interpretable
expressions. �is is useful in the application domain described in
this paper, where the movement disorder under study (dyskinesia)
is incompletely understood, and where information about how to
clinically discriminate it is potentially useful.
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Figure 4: ROC curves for selected classi�ers when re-evaluated on the second data set. �e position plots show ability to
separate grades 3 and 4 dyskinesia (from no dyskinesia) when using data sensors mounted in particular body regions. �e
activity plots show the ability to recognise grades 1–4 dyskinesia whilst subjects perform di�erent activities. Note that the
wide con�dence bands for walking re�ect a relatively sparsity of data for this activity. Con�dence bands are calculated by
repeated re-sampling, as implemented by the pROC package in R.
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�ispe, Geroid Ó Laighin, and others. 2016. Dopaminergic-induced dyskinesia
assessment based on a single belt-worn accelerometer. Arti�cial Intelligence in
Medicine (2016).

[14] Bhomraj�anvi, Nelson Lo, and Tom Robinson. 2007. Levodopa-induced dysk-
inesia in Parkinson’s disease: clinical features, pathogenesis, prevention and
treatment. Postgraduate medical journal 83, 980 (2007), 384–388.

[15] Edward P. K. Tsang, Ran Tao, Antoaneta Serguieva, and Shuai Ma. 2017. Pro�ling
high-frequency equity price movements in directional changes. �antitative
Finance 17, 2 (2017), 217–225.

1371


	Abstract
	1 Introduction
	2 Movement Dataset
	3 Directional Changes
	4 Classifier Evolution
	5 Results
	5.1 Expressions
	5.2 ROC Curves

	6 Conclusions
	References

