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ABSTRACT
Evolutionary algorithms have proved their worth on various opti-
mization problems over the course of years. However, some tech-
niques like genetic programming (GP) and Cartesian genetic pro-
gramming (CGP) are not restricted only to optimization problems
but can be also used in classi�cation tasks. In this paper, we consider
mixed-type CGP (MT-CGP) and test it on a number of benchmark
binary and multi-class problems. Following that, we introduce a
new representation for our algorithm where each node also has
an accompanying weight factor called the amplitude. Our results
suggest that this version of CGP is more powerful and able to ob-
tain higher accuracies when compared to the mixed-type CGP or
the standard CGP. Finally, we introduce the L1 regularization into
MT-CGP in order to facilitate even further feature reduction.
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1 INTRODUCTION
Evolutionary algorithms (EAs) are well established as a viable
choice for solving di�cult, real-world problems. Two of the al-
gorithms belonging there are genetic programming (GP) and Carte-
sian genetic programming (CGP) [11] where their main di�erence
stems from the encoding of solutions. GP encodes its solutions as
trees, while CGP uses a more general structure – graphs.

When considering CGP, one can easily see that it has been used
on a wide variety of problems like circuit design [3], cryptogra-
phy [12], and classi�cation [2]. Naturally, in the process of ap-
plying CGP, researchers also developed a number of variants such
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as the self-modifying CGP [7], cyclic CGP [17], and mixed-type
CGP [6].

However, an impression that cannot be overlooked is that CGP
(and its variants) up to now received more a�ention and obtained
be�er results when considering optimization problems than classi-
�cation problems. �erefore, in order to build con�dence in CGP
for classi�cation tasks, more experiments must be made. �ere,
we consider scenarios where using CGP would be bene�cial when
compared with well-known classi�ers such as Decision trees or
Support Vector Machines. �e �rst conclusion is that CGP could
have clear advantage over GP since it can support an arbitrary
number of output nodes where each output represents one class,
which is a scenario important when dealing with the multi-class
classi�cation. Moreover, with techniques like GP or CGP there is
also an implicit feature selection since one can expect that GP/CGP
will use only a subset of the feature set.

In this paper, we start with the mixed-type CGP algorithm (MT-
CGP) that uses functions which dynamically select the data type of
their inputs, which in turn determines the output type. In addition,
as far as we know, we are the �rst to introduce the concept of
amplitudes to the CGP where each node has a parameter that is also
evolved. With such a concept we are able to obtain solutions that
are much more �ne tuned. In GP and CGP there is also an “implicit”
feature selection since usually only a subset of features is really
used in the end solution. However, here we extend our se�ing and
use the concept of amplitudes in order to obtain �tness function
with a regularization expression which enables us to conduct ex-
plicit feature selection during the evolution process. With this set of
experiments we aim to provide a further insight when it would be
bene�cial to use MT-CGP in the classi�cation tasks. As it could be
expected, di�erent algorithms and se�ings have varying behavior
on the problems we consider but some trends can be observed.

2 RELATEDWORK
Völk et al. used a novel representation of CGP in order to classify
breast X-rays in order to detect cancer [16]. �e same problem is
tackled by Ahmad et al. but here the authors used CGP to evolve
arti�cial neural networks [2]. Turner and Miller also evolved CGP
encoded arti�cial neural networks to classify three problems where
one of them was the breast cancer dataset [15]. Harding et al. devel-
oped a new type of CGP called the mixed-type CGP and tested it on
a number of binary classi�cation problems [6]. �eir results showed
that the algorithm can o�er competitive results when compared to
a number of classi�cation techniques.

Ahmad et al. also used CGP to evolve arti�cial neural networks
with a goal of classi�cation of heart arrhythmia types [1]. Smith
investigated CGP with an implicit context representation in order
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Figure 1: MT-GCP with the node amplitude and encoding.

to recognize Parkinson disease and to detect breast cancer [14].
Stepping aside from the classi�cation on medical data, Leitner et al.
used CGP to classify Mars terrain types [9].

3 MIXED-TYPE CGP
3.1 Basic Algorithm and Node Amplitude
Mixed-type CGP can handle multiple data types, in our case, scalars
and vectors. Scalars are real numbers with a double precision and
vectors consist of scalars. To be able to handle both data types to-
gether with a �exibility in the choice of functions, we have encoded
scalars and vectors as matrices of dimensions 1× 1 and 1×n, where
n represents the vector length.

In MT-CGP, even if the functions expect and return matrices, the
best suitable mathematical operation still needs to be determined.
Consider the “multiplication” function where the function takes
two inputs and returns one output. �ere are four cases that need
to be determined: two matrices representing scalar, two matrices
representing vectors without having necessarily same dimensions,
and a combination of a scalar and vector or vice versa.

Here, we introduce the node amplitude concept where the am-
plitude can increase or decrease the node function value and be�er
�t to the learning data. It is represented with a single real value
assigned to the each node that undergoes mutation in the evolution
strategy (ES). Figure 1 shows the amplitude novelty in the func-
tional nodes and bellow the graph we show the equivalent genotype
encoding. Next, Algorithm 1 shows MT-CGP graph execution and
the amplitude usage. First, set of active nodes is determined, where
active node is one that is used in the end solution. �e graph output
is based on active nodes connected from the graph input to the
output. Each active node output is calculated by multiplying value
node function and the node amplitude.

A simple (µ + λ) evolution strategy is used to evolve individuals
with µ = 1 and λ = 4. Accordingly, MT-CGP does not use the
crossover operator. �ere are numerous ways of implementing
the mutation operator and we have implemented several mutation
operators to be used in the tuning phase. In the experiments we
use a single active node mutation as the best performing one. �is
type of mutation was introduced by Goldman et al. [4] where point
mutations are applied until an o�spring is generated in which an
active gene is changed. Apart from o�en giving be�er performance,
using this mutation operator reduces the number of parameters
used in the algorithm.

Algorithm 1 MT-CGP with the amplitude graph execution.
Input: Λ – genotype length, I – input nodes size, N – output
nodes size, Ω – genotype
initialize boolean array of active nodes α [Λ]
initialize array of node values ω [Λ + I ]
determine active nodes α and set the input data to ω
π = 0
repeat

if α [π ] then
ϕ = Ω [π ] .connections
ζ = NodeFunctionIndex [π ] . f unction
A = Ω [π ] .amplitude
ω [π + I ] = A ·Calculate (ω,ϕ, ζ )

end if
inc (π )

until π < Λ

3.2 Classi�er and Cost Functions
In our implementation each output in MT-CGP represents an output
of a classi�er function. �is means that the individual will have
the same number of the output nodes as the dataset classes. �e
index of the maximal output node represents the input data class
as follows:

C(x) =maxi {σ (f0(x)), ...,σ (fc (x))}, (1)
where x represents the input data, C(x) data class, c number of
classes, and σ the sigmoid function. �e sigmoid function is used
to scale all values to the interval [0, 1].

We implemented three cost functions: MT-CGP individual error
with a constant node amplitude (Anode = const .), individual error
with a variable amplitude (Anode ∈ [0, 1]) and regularization cost
function. �e regularization cost function is described as sum of the
ratio of maximal classi�er output and output of i-th output node
and a sum of all active nodes amplitudes (L1 regularization). �e i
index stands for the true class of an example.

cost1 = error , Anode = const. (2)
cost2 = error , Anode ∈ [0, 1]. (3)

cost3 =
N∑
1

σ (fmax (x))

σ (ftrue class (x))
+
λ

2
∑
i
|wi | , i ∈ active nodes. (4)

�e main features of the L1 regularization are sparse outputs
and feature selection. Our motivation for this cost function usage
is to minimize the classi�er model complexity. �e comparison of
active nodes is shown in Table 3 where we can see that the best
solutions from the cost function 3 are the shortest where the main
reason is the usage of the L1 regularization.

4 EXPERIMENTS AND SETTING
4.1 Experimental Setting
In Table 1 we present all relevant se�ings we use in our experi-
ments. We concluded that a larger number of nodes do not improve
classi�er accuracy and consequently the �nal testing we conduct
with 100 nodes. Apart from giving be�er classi�er generalization,
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Table 1: Parameters for MT-CGP.

Parameter Value
Genotype length 100 nodes
Shortcut connections disabled
Evolutionary strategy (1+4)
Mutation type single active gene
Node amplitude [0-1] or constant 1.0
Maximum evaluations 500 000
Runs per experiment 30

Table 2: Accuracy vs. genotype length.

XXXXXXXProblem
Nodes 100 (Acc. %) 300 (Acc. %) 500 (Acc. %)

Breast cancer 97.4 97.9 97.9
Diabetes 72.9 74.2 73.2

Heart 81.4 82.3 81.7
Phoneme 86.0 86.9 85.3

Glass 69.1 72.3 73.2

Table 3: Active nodes number vs. cost function.

XXXXXXXProblem
Cost Cost 1 Cost 2 Cost 3

Breast cancer 25 22 9
Diabetes 34 24 13

Heart 40 25 7
Phoneme 36 25 13

Glass 34 22 17

a lower number of nodes improves the testing speed, which makes
the evolution process much faster. In Table 2 we show how the
accuracy changes with the increase of the genotype length. �e
best solutions are given in bold style.

�e implemented function set consists of four functions types:
vectorial, mathematical, statistical, and miscellaneous. Detailed
function description can be found in [6]. In Table 3 we give the
average number of active nodes for all test problems and cost func-
tions.

4.2 Problems
In our investigation, we explore in total �ve datasets where four
of them are binary classi�cation scenarios and one is the multi-
class scenario. All datasets are taken from [10]. For each of the
classi�cation tasks, the inputs presented to the program are both the
vector of a�ributes representing the object as well as the individual
a�ribute values of the vector. For example, if the data consists of 10
a�ributes, the MT-CGP program would have 11 input nodes, where
the last one is a vector of all data a�ributes. Evolved programs
are then able to select the most appropriate inputs to use in the
classi�er.

�e �rst dataset we consider is the Breast Cancer dataset. �is
dataset consists of 660 instances where each instance has 9 at-
tributes. �e second dataset is called Diabetes1 which consists of
768 instances and 8 a�ributes for each instance. Next, we use the
Heart1 dataset, which consists of 920 instances where each instance
has 35 a�ributes. �is dataset aims to discover heart disease in a
patient. Finally, the last binary dataset is Phoneme CR dataset that

Table 4: Tuned parameters for DT and SVM.

Problem DT SVM
con�dence # objects C γ

Breast cancer 0.10 5 25 0.10
Diabetes 0.20 3 50 0.08
Heart 0.25 2 10 0.01
Phoneme 0.25 4 20 10
Glass 0.25 5 30 0.70

Table 5: MT-CGP results.

Problem Cost1 (% Acc.) Cost2 (% Acc.) Cost3 (% Acc.)
Best Median Best Median Best Median

Breast cancer 98.50 97.88 99.13 98.00 97.50 97.17
Diabetes 74.00 70.90 79.70 74.00 75.50 70.60
Heart 81.70 77.30 77.80 72.50 80.20 76.00
Phoneme 85.00 80.00 82.00 78.00 83.40 81.40
Glass 78.00 72.00 82.00 78.00 68.00 63.00

Table 6: Machine learning results.

Classi�er Breast c. Diabetes Heart Phoneme Glass
% Acc. % Acc. % Acc. % Acc. % Acc.

NB 98.08 76.04 80.87 74.40 50.00
DT 97.31 77.60 75.22 87.00 74.00
SVM 97.69 78.12 78.69 88.4 86.00

consists of 5 000 instances and 5 a�ributes. Note that all the afore-
said datasets are also explored by Harding et al. when investigating
MT-CGP [6]. As an example of a multi-class dataset (more precisely,
there are six classes), we use the Glass dataset, which consists of
214 instances where each one has 9 a�ributes.

4.3 Machine Learning Classi�ers
We use three machine learning (ML) classi�ers for result compar-
ison: Naive Bayes (NB), C4.5 (DT), and Support Vector Machines
(SVM) with a radial kernel function. With the C4.5 algorithm we
investigate the in�uence of the con�dence factor parameter that is
used for pruning, where smaller values relate to more pruning. We
conducted a tuning phase for each dataset. Table 4 shows tuned
parameters for Decision Tree and SVM. Con�dence factor has in-
�uence to pruning and number of objects is minimum number
instances per leaf. When one uses radial kernel, factor γ is called
precision and C is complexity parameter.

5 RESULTS AND DISCUSSION
Here, besides giving the results for three cost functions as used in
MT-CGP, we also give results for three well-known ML classi�ers.
All the experiments with Naive Bayes, Decision tree, and SVM were
done in Weka [5] with a 10-fold cross validation. Table 5 shows
best and median results per each dataset we got with MT-CGP and
in Table 6 are results obtained by aforementioned classi�ers. As it
can be seen, for the Breast cancer dataset, MT-CGP outperforms
all ML algorithms and the second cost function performs the best.
For the Diabetes dataset the results are similar and again, with the
second cost function we achieved the best result.
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Table 7: Average rankings based on Friedman and post-hoc
analysis.

Cost function Ranking pHochberд

Cost1 2.09 0.033006
Cost2 1.18 –
Cost3 2.73 0.000579

With �rst cost function, MT-CGP had highest classi�cation ac-
curacy on the Heart dataset. For the Phoneme dataset SVM and DT
outperform our MT-CGP with the cost function 1. �e results for
multi-class classi�cation for the Glass dataset are the best with the
SVM, but compared with NB or DT, MT-CGP has be�er results.

Finally, we conduct a statistical analysis to determine whether
there are any statistically signi�cant di�erences in the performance
of three versions of MT-CGP. A�er running experiments on our
datasets, we observe that some of them do not follow the normal
distribution nor do they have the same variance. �erefore, we
conduct nonparametric statistical analysis [13]. As a measure of
e�ciency of algorithms, we again use accuracy where we average
it over all runs.

Since we have several algorithms and test scenarios, we use a
multiple comparison test. �e simplest test for multiple compar-
isons is the Friedman test where the goal of this test is to answer
whether there are global di�erences between related samples ob-
tained. We display average ranks obtained by each algorithm in
the Friedman test in Table 7. Since on the basis of the Friedman
test we see that the Cost2 function gives the best ranking we use it
as a control method in the post-hoc analysis (Hochberg test [8]). In
our experiments, we use the level of signi�cance α of 0.05 and we
can conclude that the second cost function performs the best. Nat-
urally, all our experiments are done with a relatively low number
of measurements so exploring the se�ing with a higher number of
measurements is of high relevance.

6 CONCLUSION
In this paper, we conducted a number of classi�cation tasks with
the mixed-type CGP where we explored three cost functions and
both binary and multi-class classi�cation. Our results show that
MT-CGP should be regarded as a viable option in classi�cation
tasks especially when the number of classes is larger than two (i.e.,
binary classi�cation). We emphasize as a particularly successful
se�ing where we also evolve the amplitude for each node (Cost2
function).

Other se�ings also o�er good results but it could be hard to
justify higher computational complexity coming with MT-CGP.
Still, one extra advantage over methods like SVM could be the
readability of solutions.
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