
Forecasting Glucose Levels in Patients with Diabetes Mellitus
using Semantic Grammatical Evolution and Symbolic

Aggregate Approximation

Jose Manuel Velasco
Universidad Complutense de Madrid

mvelascc@ucm.es

Oscar Garnica
Universidad Complutense de Madrid

ogarnica@ucm.es

Sergio Contador
Universidad Complutense de Madrid

scontador@ucm.es

Marta Botella
Hospital Hospital U. Principe Asturias,

Alcala de Henares

marta.botella@saludmadrid.org

Juan Lanchares
Universidad Complutense de Madrid

julandan@ucm.es

J. Ignacio Hidalgo
Universidad Complutense de Madrid

hidalgo@ucm.es

ABSTRACT

Type 1 Diabetes Mellitus can only be treated injecting insulin and

glucagon into the blood stream. This research is motivated by the

challenge to accurately predict future blood glucose levels of a

diabetic patient so that an automatic system could decide when is

necessary the injection of a bolus of insulin to keep blood sugar in

the healthy range.

In this paper, we have studied different evolutionary strategies

based on geometric semantic genetic programming and grammatical

evolution. The main contribution of this paper is the use of the

symbolic aggregate approximation representation of the glucose

time series that allow us to define easily semantic operators. We

have developed a new strategy that combines grammatical evolution

with the geometric semantic approach and that, thanks to the use

of the symbolic representation, improves the previous models of

glucose time series. We also present a variation of this technique

that employs a univariate marginal distribution algorithm to tune

the parameters of the symbolic representation. The experimental

results are compared against classical grammatical evolution and

geometric semantic hill climbing genetic programming. The baseline

is provided by the conventional ARIMA model.

Our experimental results show that the symbolic representation

improves the performance of the geometric semantic strategy and

reduces the number of mistakes that, if in an automatic system,

would put patient’s health at risk.

CCS CONCEPTS

•Computing methodologies→ Genetic programming; Optimiza-

tion algorithms; •Applied computing→ Health informatics;
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1 INTRODUCTION

The pancreas is a gland of the endocrine system that produces in-

sulin and glucagon. These two hormones keep blood glucose levels

within optimal ranges working together to regulate the carbohydrate

metabolism. There is a group of metabolic diseases associated with

an inability of the body to regulate this metabolism, and that can

produce high blood glucose levels over a prolonged period. These

diseases are called Diabetes, generally speaking, and in 2015, it

was estimated that more than 415 million people worldwide suffer

from it. Type 1 Diabetes mellitus (T1DM) represents 10% of this

number. T1DM is a chronic autoimmune disorder in which the

immune system attacks the insulin-secreting cells of the pancreas.

The result is that cells do not assimilate sugar and, as a consequence,

there is a rise in blood glucose levels (or hyperglycemia). If this

situation extends for a long period of time, the patient can develop

serious long-term complications including heart diseases, blindness,

kidney failure or foot ulcers. T1DM can only be treated with syn-

thetic insulin injected into the blood stream. However, this is not an

easy task. An excessive dose of insulin can produce hypoglycemia

(very low blood sugar). If hypoglycemia is very severe, it can lead

to unconsciousness or even a comma. In Figure 1 we can see the

evolution of blood glucose levels in a diabetic patient. As we can

see, the episodes of hyperglycemia and, even, hypoglycemia are

very frequent. The ideal solution for T1DM would be an artificial

pancreas (AP) capable of maintaining good control of the levels of

sugar in the blood and allowing the patient to have a normal life

while at the same time avoiding (or at least delaying) the appearance

of complications. AP is the main area of research in the field. One

of the main problems for the development of the AP is the lack of

accurate models for predicting the future of the glucose. Although

there are some classical approximations, there is still too much to do

for predictions within a horizon of more than 90 minutes.

This research is motivated by the challenge to predict accurately

future glucose levels so that an automatic system can decide when

and how much insulin to inject in order to keep blood sugar in the

healthy range. At the same time, it’s very important, for a correct
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blood glucose control system, to avoid predictions that can trigger

unnecessary treatments or, even worse, treatments that go against

patient’s needs. For achieving this task, we have studied different

evolutionary strategies based on geometric semantic genetic pro-

gramming and grammatical evolution. The main contribution of

this paper is the use of the symbolic aggregate approximation rep-

resentation of the glucose time series. As we will see later, this

representation allow us to define geometric semantic operators that

facilitate the search of suitable functions for forecasting. Our experi-

mental results show that the main problem of geometric semantic

genetic programming, when applied to time series modeling, seems

to be overfitting. Another advantage of the use of symbolic ag-

gregate approximation is that we can tune its parameters to avoid

overfitting. For doing so, we employ another evolutionary technique:

the univariate marginal estimation distribution algorithm.

Figure 1: Real Glucose Data - 12 Days.

The rest of the paper is organized as follows. Section 2 describes

the related work whereas Section 3 introduces the theoretical back-

ground of the techniques. Section 4 explains our approach. The

experimental setup and results are showed in Section 5. Conclusions

and future work are exposed in Section 6.

2 RELATED WORK

To our best knowledge, Semantic Genetic Programming has not been

tested yet in the field of medical time series data. In [17], McDer-

mott et al. applied Geometric Semantic Genetic Programming to

financial time series to get an automatic trading strategy. Their paper

explores the benefits of two different semantic operators. Our work

is complementary to theirs, as it is based on a different way of rep-

resenting time series data: the Symbolic Aggregate Approximation

(Section 3.4).

The problem of predicting and modeling glucose levels has been

an intensive area of research during the last ten years. Two are the

main targets of these studies. Some of them tried to predict the

glucose levels with a time horizon of up to two hours since this is

usually the time step needed by the patient to be comfortable after

a meal. There are also some researchers that tried to identify 24

hours models. The utility of the last is different and is usually more

effective when programming an insulin pump or when establishing

an insulin profile for longer periods. We can find in literature some

approximations providing models for the average case [16]. How-

ever, there are hardly few approaches adapted to the particularities

of each patient. Most of the articles in the literature apply clas-

sical modeling techniques, resulting in models or profiles defined

by linear equations with a limited set of inputs [11, 19]. Recently

Hidalgo et al. proposed the application of Grammatical Evolution to

obtain customized models of patients, unlike most of the previous ap-

proaches which get averaged models. The proposal has been tested

with in-silico patient data and results are clearly positive. Authors

also present a study of four different grammars and five objective

functions [8]. Our study extends this research as it employs real

data from a diabetic patient and, in addition, we introduce several

improvements to the Grammatical Evolution approach.

Other personalized control approaches were presented by the

main research groups on AP [4, 9, 12, 15]. Those are proposals

following the clinical practice. Treatment for subjects with T1DM

uses rates of basal insulin delivery, insulin to carbohydrate ratios

and individual correction factors, typically from observations of

the specialist. However, those models are often inaccurate, since

clinical data in T1DM are not extensive enough to identify the

exact models [29]. There are also some models used in artificial

pancreas systems or closed loop control models trying to emulate

the action of a pancreas [3, 27]. They are based on the assumption

that it is possible to reach a good control with approximate models,

provided that the model is related to the control objective [6]. Our

experimental results suggest that in this approach and due to the

lack of accurate individualized models, there is a significant risk

of an excessive insulin administration and therefore, the possibility

that blood glucose levels fall down to hypoglycemia zone. Our

evolutionary models try to avoid this situation.

3 BACKGROUND

3.1 Problem Description

Patients can inject themselves two types of insulin, IS (short-term

insulin) and IL (long-term insulin), and their doses depend on an

estimation of the amount of carbohydrates they ingest, and their

actual values of blood glucose. The problem of modeling the glucose

blood level of a patient can be formulated as follows: to find an

expression of estimated glucose values based on previous values

of glucose, carbohydrates, and insulin. In its most simplified form,

it is described in Equation 1, where predicted glucose is denoted

as ĜL, GL corresponds to previous glucose values, CH corresponds

to previously ingested carbohydrates and IS and IL represent the

previously injected insulin for both types, short and long effect. It

should be noted that the model will provide estimated glucose values

in a forecasting horizon H obtained by using the N previous samples

of glucose values, carbohydrates and insulin units. In this paper,

N = 8 which corresponds to two hours of recorded data. Table 1

shows a reduced version of our data set.
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k GL CH IS IL

· · · · · · · · · · · · · · ·

30 170 0 0 0

31 171 0 0 0

32 172 0 3 12

33 173 30 0 0

34 174 0 0 0

· · · · · · · · · · · · · · ·

40 237 0 0 0

41 247 20 0 0

42 250 0 0 0

43 251 0 0 0

· · · · · · · · · · · · · · ·

Table 1: Portion of a 24-hours dataset for a patient.

ĜL(t+H ) = f (GL(t − k ),CH (t − k ), IS (t − k ), IL(t − k )), 1 ≤ k ≤ N

(1)

3.2 Grammatical Evolution

To get a prediction of a patient’s glucose level in the future, we

deal with a kind of Symbolic Regression (SR) problem. SR tries

to obtain a mathematical expression to reproduce a set of discrete

data. Genetic Programming (GP)[13] has proven effective in some

SR problems but it also has limitations. During last years, variants

to GP like Grammatical Evolution (GE)[24] appeared to propose

different evaluation approaches. GE is an evolutionary computation

technique pioneered by C. Ryan, J.J. Collins and M. O’Neill in 1998.

In contrast to genetic algorithms, which work with a representation

of solutions, GE works (evolves) with a genetic code that determines

the production process of the solutions. The code translation process

is defined by grammars represented in Backus-Naur Form (BNF)

which is a notation for expressing context-free grammars. This

way, GE allows generation of computer programs, that is, symbolic

expressions in an arbitrary language using grammars to specify the

rules for obtaining the programs. In the definition of the grammars

and due to its flexibility, we can insert up to a point our knowledge

of the glucose-insulin interaction.

Figure 2 represents an extract of a grammar, in BNF, designed

for finding a forecasting model of future glucose levels. The code

that represents an expression will consist of elements of the set

of terminals. These are combined according to the rules of the

grammar. Besides, grammar can be adapted to bias the search of

the evolutionary process because there is a finite number of options

for each production rule, which limits the search space. So, in this

case, we have restricted to two hours the previous data that can be

employed in the model and the forecasting horizon is one hour. Next,

we detail the most important rules of our grammar. We search for

an expression based on glucose (<exprgluc>), plus some expression

regarding carbohydrates (<exprch>), minus an expression of insulin

(<exprins>). The expression of glucose denoted by exprgluc is a

recursive rule that may produce a complex formula using arithmetic

operators (<op>), functions (<preop>) and constant values (<cte>)

# Model expression

<func> ::= <exprgluc> + <exprch> - <exprins>

# Glucose

<exprgluc> ::= (<exprgluc> <op> <exprgluc>) |

<preop> (<exprgluc>) | (<cte> <op> <exprgluc>) |

realData(t-<idx>)

# CH

<exprch> ::= (<exprch> <op> <exprch>)

|<preop> (<exprch>)

|(<cte> <op> <exprch>)

|(getPrevData(1,t,1) * <cte> * <curvedCH>)

# Insulin:

<exprins> ::= (<exprins> <op> <exprins>)

|<preop> (<exprins>)

|(<cte> <op> <exprins>)

|getVariable(2,t-<idx>)

<op> ::= +|-|*|/

<preop> ::= exp|sin|cos|log

<cte> ::= <dgtNoZero><dgtNoZero>.<dgt><dgt>

<idx> ::= <dgtNoZero>|<dgtNoZero><dgt>|<dgtNoZero><dgt><dgt>

<dgtNoZero> ::= 1|2|3|4|5|6|7|8|9

<dgt> ::= 0|1|2|3|4|5|6|7|8|9

Figure 2: Grammar for Glycemic Modeling.

which, in our case, are generated through a base and an exponent

built with integer values.

3.3 Geometric Semantic Genetic Programming

Both Grammatical Evolution and Genetic Programming are tech-

niques that transform programs at a syntactic level without being

aware of the behavior of the programs. This produces that, generally

speaking, the parents and offspring behaviors are quite unrelated,

because the distance between the fitness values of parents and off-

spring can be great; that is, the fitness landscape is very bumpy.

Because of this, many researchers consider GP and GE blind opti-

mization techniques. This situation was pointed out in [25] and lead

to a new research field that is currently exploring the addition of

semantic knowledge (program behavior) to strategies based on GP.

In the classical Koza’s GP [13], programs are represented by trees,

and new individuals are created swapping and mutating subtrees

amongst previous individuals. The idea behind Geometric Semantic

Genetic Programming (GSGP) [21] and the techniques that have

been derived from it [28] is to find semantic crossover and mutation

operators that guarantee that the distance between the fitness values

of parents and offspring is bounded. This way, the fitness landscape

(as it is seen by the new operators) transforms itself into a cone

and the optimization process becomes a hill-climbing algorithm

(GSHCGP). Nevertheless, nothing comes without a cost and the

semantic operators usually produce extraordinary large trees and

the evolutionary process needs a great amount of memory resources.

This limitation prohibits the application of GSGP into embedded

devices with limited memory.

3.4 Symbolic Aggregate Approximation

Symbolic Aggregate Approximation (SAX) [14], translates the time

series data into a symbolic representation. It has two main character-

istics that are useful for GSGP:

• It uses Piecewise Aggregate Approximation (PAA)[14] to

produce a reduction in the dimensionality of the time series.
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• The distance function defined into the symbolic represen-

tation is lower bounded regarding a distance function in

the corresponding original series. This feature allows us to

develop semantic aware operators easily.

The PAA technique reduces the time series from N dimensions

to M dimensions dividing the time span into windows of N /M size.

Within each window, we calculate the mean value of the different

samples that lay into it. These mean values give us a new time series

which is the PAA representation.

After obtaining the PPA approximation, we get the distribution

of the time series. Providing it is a Gaussian distribution, the SAX

technique translates the PAA values to SAX symbols using a prede-

fined table of breakpoints obtained from Gaussian lookup tables to

translate the PAA values into symbols. We have also experimented

with the approach presented in [5]. These authors found the break-

points using a genetic algorithm, and they called their technique

GASAX. In this paper, we have employed an UMDA strategy (see

Section 3.6) to find the best breakpoints dynamically and we call it

USAX. In Figure 3, we present the application of USAX to glucose

time series. If we reduce the first 32 glucose samples (marked with

a vertical dashed line) to eight dimensions with four symbols, the

glucose time series is translated into the word dddccbaa.
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Figure 3: Glucose Time Series into SAX Representation with

four symbols using UMDA. The blue line is the full time series

distribution.

3.5 ARIMA

Following the ideas presented in [18], we have measured the perfor-

mance of the evolutionary strategies against non-seasonal Auto Re-

gressive Integrated Moving Average (ARIMA) model [1]. ARIMA

is a well established standard technique for modeling and forecast-

ing time series. In Equation 2 we can see that the model can be

segregated into two parts. The first part is a linear regression of

yt based on the observations during period p, that is to say, is an

autoregression. The other part is a linear combination of the current

error term and the q most recent past error terms during period p.

Integrated means that the drift has been removed (if present) by

differencing the time series.

yt =

ARIMA
︷                                                                    ︸︸                                                                    ︷

c + ϕ1ẏt−1 + · · · + ϕpẏt−p
︸                            ︷︷                            ︸

Autoregresive Part

+θ1et−1 + · · · + θqet−q + et
︸                            ︷︷                            ︸

Moving Average

(2)

3.6 Univariate Marginal Distribution Algorithm

The Univariate Marginal Distribution Algorithm (UMDA) [22, 26]

is a stochastic optimization method that belongs to a subclass of

evolutionary strategies called Estimation of Distribution Algorithms

(EDAs). In the EDAs, the usual genetic operators for creating new

individuals (crossover and mutation) are not used. Instead, they

create a new generation of candidates, sampling a probabilistic

distribution which is estimated from the best individuals of the

previous generation. The UMDA algorithm is one of the simplest

forms of an EDA, and the estimation of the distribution is achieved

using the univariate marginal probability, that is, the frequency of

each component in the population.

3.7 Error Grid Analysis

For Diabetic patients, the forecasting mistakes can have an entirely

different impact depending on whether the actual blood glucose

level is in the hypoglycemic, hyperglycemic or in-between zone. For

instance, let’s suppose that our prediction points up erroneously that

a patient’s future glucose levels are going to be in the hyperglycemic

zone, but the actual blood glucose falls under the hypoglycemic

threshold. In this case, the treatment for the hyperglycemic zone will

get the patient deeper into the hypoglycemic zone provoking a very

dangerous situation which must be avoided at all cost. To take into

account this kind of situations we use the method that was presented

in 1987 by Clarke et al. [2], known as the Error Grid Analysis (EGA).

The EGA method was proposed to quantify the patient’s estimates

versus the values given by a blood glucose monitoring device, but

it has been used since then as a way to standardize the behavior of

glucose meters. In this study, we use it as a way of measuring the

accuracy of the predictions of our methods.

Following the EGA method, we draw a scatterplot of the exper-

imental results. In one axis, we have the real observations and on

the other, the values obtained through a forecasting method. The

main diagonal represents the perfect prediction, and depending on

the severity of the misprediction, the rest of the points can fall into

five regions:

• Region A is those values within 20% of the actual values,

• Region B contains points that are outside of 20% but would

not lead to inappropriate treatment,

• Region C is those points leading to unnecessary treatment,

• Region D is those points indicating a potentially dangerous

failure to detect hypoglycemia or hyperglycemia, and

• Region E is those points that would confuse treatment of

hypoglycemia for hyperglycemia and vice versa.

Therefore, the lesser points that appear in the C zone, the better,

being very critical to avoid the E and D zones.
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4 METHODOLOGY

In Figure 4 we can see a flow-chart picture summarizing the way we

generate and optimize our model using as a background the original

structure of GSHCGP.

(1) As a previous step, we get the SAX representation (a string

of symbols) of the real data training set (top-right in the

figure) which is our fitness goal.

(2) Then, we begin with the evolutive process. Our grammar

produces a function (top-left in the figure). From this func-

tion, we get a time series that is translated to the SAX

approximation.

(3) We, then, calculate the fitness of this solution by compar-

ing the two SAX strings. If the fitness is better than our

current solution, the new function becomes the new model.

It is important to remark that for GSHCGP the fitness is

calculated based on the Euclidean distance.

(4) We get the offspring of the current model through semantic

mutation:

• Our GE produces a new function and a scale factor

between (−1, 1). This is another difference respect to

GSHCGP.

• The result of the new function and the scale is added

up to the current model.

(5) From the new function, we get a new time series that is

translated into a string of symbols.

(6) A new fitness is calculated, and the offspring is either dis-

carded or become the current tentative model.

(7) If the fitness is at its highest value or if we have consumed

the maximum amount of generations, we end up validating

the final model with the real data validation set.

If we run this process with a set of fixed SAX breakpoints, we

have our SAX-SGE model. We have also experimented with a

dynamic tuning of the SAX breakpoints. During this training phase,

we get these parameters using the UMDA algorithm (see Section 3.6)

implemented in the library [7]. In this case, we evolve a population

of solutions, and the UMDA algorithm employs the best solutions

to estimate the breakpoints in the distribution that, afterwards, the

SAX algorithm uses to translate the time series data into symbols.

We call this option the USAX-SGE model.

5 EXPERIMENTS

5.1 Experimental Setup

Thanks to the staff at the Principe de Asturias Hospital at Alcala de

Henares, Spain, we have been able to collect data from a real patient

with a continuous glucose monitoring system (CGMS) during twelve

days 1. We have observations every fifteen minutes up to a total of

1152 measures. We also have recorded carbohydrate units ingested

and insulin injected, distinguished by insulin type, for every day.

Our twelve days of real data (Section 3.1) have been segregate into

two sections of six days. We have used the first section for training

the models, and the last section has been targeted for validating the

three new techniques and the two used as baseline in this study.

1On 6 June 2012, the Clinical Research Ethics Committee of the Hospital of Alcalá de
Henares (Spain) authorized the use of the data collected, provided that the privacy of
the data is ensured and the informed consent of patients is made.

Figure 4: SAX-SGE Model generation and optimization.

The models were trained rolling a window of two hours (eight

samples) through the data to make a prediction with the correspond-

ing horizon (30, 60, 90 and 120 minutes). We run the experiment

ten times and we show here the average of the ten runs.

The fitness function for the GE and GSCHGP models were the

mean squared error (MSE), that is to say, the average of the squares

of the Euclidean distance between the time series of the candidate

and the actual data. For the SAX-SGE models, the fitness function

is the number of identical symbols between the SAX approximation

of the actual and candidate time series.

The value of the parameters of the evolutionary algorithms used in

the training phase was selected after a set of preliminary experiments.

In these preliminary experiments we did a systematic sweep of values

ranging from 50% to 200% of the values shown on Table 2. We

must remember that:
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• The Semantic (with Hill Climbing) models do not use

CrossOver nor Selection and the number of generations

has the meaning of number of steps. The Depth parameter

is the maximum number of levels of the new tree that is

used in the mutation phase.

• The USAX-SGE strategy employs two evolutionary algo-

rithms: the SAX Semantic Grammatical Evolution and the

UMDA.

Table 2: Experimental parameters.

Grammatical Evolution UMDA

Parameter Value Parameter Value

Population 200 Population 200

Generations 2000 Generations 1000

Selection 25% Selection 25%

CrossOver 70%

Mutation 20%

GSHCGP SAX-SGE

Parameter Value Parameter Value

Generations 2000 Generations 2000

Depth 4 Depth 4

Compression rate 8

Symbols 16

5.2 Experimental Results

Figure 5 shows the results of all models within a Clarke Error Grid,

and Table 3 summarizes the results of the five models. The legend

for both is:

• ARIMA: The classical ARIMA model that we use as a

reference to compare against the evolutionary strategies

(see Section 3.5). We have employed the library from [10].

• GE: Grammatical Evolution Strategy. We have used the

library from [23] and the grammar presented in Section 3.2.

• GSHCGP: The Geometric Semantic Hill Climbing Genetic

Programming model. We have modified the code from [20]

to implement the forecasting function based on the lagged

glucose time series as in the GE model. This version of

GSGP only uses mutation to generate the offspring. The

fitness is calculated using the Euclidean distance between

the time series.

• SAX-SGE and USAX-SGE: These are our proposal, and

they are explained in Section 4.

• MAPE is the Mean Absolute Percentage Error for both

Training (T) and Validation (V) phases.

Figure 5 is a scatterplot of real values (horizontal axis) and pre-

dicted values (vertical axis) during the second section of our real

data. For clarity, we show only the worst predictions for each strat-

egy (that is, the predictions with a higher mean square error). The
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Figure 5: Clarke Error Grid results for the worst 20% of pre-

dictions. Forecasting Horizon = 60 min.

forecasting horizon is one hour. For bigger horizons, the predictions

get worse, but here, we can see that all the evolutionary strategies

stay within the limits of the A, B and C zones. Whereas the ARIMA

model has its points scattered across the C, D and E zones. So,

several conclusions arise from this figure and Table 3:

• Prediction Horizon equals to 30 minutes:

– All the strategies have similar performance with no

points in the D and E zones.

– The GE model has the biggest percentage of points in

the C zone and, therefore, qualifies as the worst option

in this time frame.

– The results for both SAX-based models are slightly

better than for the rest of models, being the best strat-

egy the SAX-SGE although we cannot state that this

is noteworthy.

• Prediction Horizon equals to 60 minutes:

– Here, the ARIMA model has near a ten percent of

prediction in the D and E zones whereas the rest of

models get their forecastings out of those zones.

– Although the GE model has no points in the D and

E zones, it has a lot of predictions into the C zone.

We must remember that predictions into the C zone

can lead to unnecessary treatments and therefore this

situation is not admissible. Enhancing the GE behavior

is one of the motivations of this research work.

– The best strategy in this time frame is the geometric

semantic genetic programming. The GSHCGP model

has clearly the minimum percentage error.

• Prediction Horizon equals to 90 and 120 minutes:

– With these larger horizons, all the techniques get big-

ger MAPEs, but the semantic strategies keep a low per-

centage of predictions into the most dangerous zones.

– The GSHCGP model achieves great results but it

seems to suffer from overfitting. It always gets the
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best results during the training phase but the SAX

models overtake it during the validation phase. There-

fore, the advantage of using the SAX representation

is that it can avoid the overfitting. As we can see, the

SAX models are capable of better results during the

validation phase.

– In these horizons the strategy that gets more robust

results (lesser points in the C, D and E zones and lower

MAPE-V values) is the USAX-SGE.

Summarizing, for the short-term forecasting horizons, the perfor-

mance of the semantic algorithms seem to suggest that they could be

good candidates for an automatic system. Nevertheless, for the fur-

ther forecasting horizons, all these techniques incur in a considerable

amount of hazardous predictions. The SAX and USAX results for

the distant horizons during the validation phase, although promising,

are still not good enough.

Table 3: Clarke Zones for Predicted Values.

Strategy

Horizon = 30 min

MAPE-T MAPE-V
Zones Percentage

A B C D E

ARIMA 47.59 50.64 1.74 0.00 0.00 3.3 6.23

GE 45.88 47.18 6.92 0.00 0.00 4.1 7.1

GSHCGP 57.44 41.12 1.43 0.00 0.00 2.1 5.45

SAX-SGE 62.49 37.2 0.31 0.00 0.00 4.3 5.3

USAX-SGE 59.25 39.92 0.83 0.00 0.00 5.7 6.33

Strategy

Horizon = 60 min

MAPE-T MAPE-V
Zones Percentage

A B C D E

ARIMA 15.74 27.81 47.23 5.45 3.77 8.7 14.4

GE 16.56 44.46 38.98 0.00 0.00 11.72 18.52

GSHCGP 61.19 35.78 3.03 0.00 0.00 5.08 7.77

SAX-SGE 47.11 38.89 14.01 0.00 0.00 7.79 8.98

USAX-SGE 46.43 41.20 12.37 0.00 0.00 8.39 10.72

Strategy

Horizon = 90 min

MAPE-T MAPE-V
Zones Percentage

A B C D E

ARIMA 15.7 45.23 21.47 9.2 8.4 18.4 21.4

GE 19.26 40.28 33.03 6.88 0.56 12.20 19.07

GSHCGP 49.94 31.96 14.83 1.49 1.78 10.63 20.33

SAX-SGE 52.14 33.17 8.84 4.41 1.45 11.43 17.70

USAX-SGE 449.51 33.89 12.30 3.82 0.48 11.96 15.74

Strategy

Horizon = 120 min

MAPE-T MAPE-V
Zones Percentage

A B C D E

ARIMA 14.37 37.23 26.40 10.70 11.30 23.14 31.10

GE 15.45 35.81 40.30 3.78 4.66 17.31 23.89

GSHCGP 39.53 36.07 15.89 4.19 3.32 12.52 21.85

SAX-SGE 58.98 33.05 5.05 3.85 3.15 18.71 19.13

USAX-SGE 42.58 33.54 18.97 2.89 2.01 16.33 18.13

6 CONCLUSIONS AND FUTURE WORK

This research is motivated by the challenge to predict accurately

future blood glucose levels of a diabetic patient so that an automatic

system can decide when to inject a bolus of insulin and its doses

to keep blood glucose in the healthy range. It is also crucial, for a

correct blood glucose control system, to avoid predictions that can

trigger unnecessary treatments or, even worse, treatments that go

against patient’s needs.

In this paper, we have studied different evolutionary strategies

based on Geometric Semantic Genetic Programming and Grammati-

cal Evolution.

The main contribution of this paper is the use of the Symbolic

Aggregate Approximation representation of the glucose time se-

ries. As we have seen in the experimental results, the use of this

representation has reduced the mean absolute percentage error of

the predictions and the number of mistakes that, if in an automatic

system, would put patient’s health at risk. Besides, in this paper,

we have studied an evolutionary technique for tuning the parame-

ters of the symbolic approximation which has improved the general

performance of the semantic strategy.

As future work, a lot of problems remain open:

• The evolutive process of the semantic strategies needs a

lot of memory resources due to the increment in the size

of the tentative solution in every step. In its current state,

the Geometric Semantic Genetic Programming technique

and its variants (as the ones studied in this paper) are not

suitable for their future implementation into an embedded

device with constraint resources. So, we need to develop

techniques that mitigate this problem.

• For the forecasting horizons of 90 and 120 minutes, the

results of the semantic strategies, although promising, are

still not good enough for their inclusion into an automatic

Artificial Pancreas.
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