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ABSTRACT
With the continuous advancement of industry 4.0, also in the area of
production and logistics optimization, a more holistic consideration
of problems is required. �erefore, in contrary to the traditional
sequential optimization approach in the area of operations research,
in this paper, an integrated solution approach called optimization
networks (ON) is presented. In an ON, multiple problem models get
connected and optimized by an evolutionary solution algorithm.
By having several optimization runs, in which the results of the
preceding optimizations are considered, opportunity costs which
could arise out of a traditional sequential optimization approach,
are avoided.
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1 INTRODUCTION
With the development of the fourth industrial revolution, it is tried
to realize an increasing interconnection between di�erent �elds
of action within and between organizations [7]. One of the main
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goals of this new approach, which is also called industry 4.0, is the
achievement of resource e�ciency [7]. By connecting (inter-) orga-
nizational units, hitherto hidden and unused synergy e�ects should
be detected and utilized [7]. As a result, the approach of industry
4.0 indicates an increasing focus on the holistic consideration of
di�erent problems and problem models of organizations.

For the optimization of problems in the area of production and
logistics, the typical main objective is gaining quantitative improve-
ments, which also corresponds to an increase of resource e�ciency.
However, by the sequential execution of optimization models of
di�erent departments, high opportunity costs can arise. If two mod-
els are optimized sequentially, the result of the �rst optimization
problem could for example bring high savings. Taking this outcome
as an input for the next optimization model, the second result’s
costs could be higher than the achieved savings for the �rst one.
As a consequence, an alternative to the traditional consideration
of single problems in the area of operations research (OR) is de-
veloped, in which an interconnection of di�erent units is possible.
�erefore, opportunity costs should be avoided. �e di�erence
between the traditional sequential approach and the new approach
of optimization networks is presented in Fig. 1.

In this work, a generic solution approach for multiple problems
is presented. Production and logistics problem models are inte-
grated into one optimization network, where they get connected
and optimized. With this approach, every integrated problem model
is solved by one assigned solution algorithm. An orchestrator is
responsible for the data transfer between all nodes of the network.
�is transfer allows an ongoing data exchange between problem
solvers and the so-called meta solver. �e meta solver is responsible
for the optimization of the calculated overall result out of all single
problem model solutions. �e result of this optimization is then
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Figure 1: Sequential optimization versus optimization net-
works.
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used to initiate a new optimization run for all single problem mod-
els. �us, solutions of single solvers in�uence further optimization
runs, which was not possible with a sequential approach, where
problems are solved once and consecutively. With this approach,
opportunity costs should be avoided and so far undetected synergy
e�ects should be made visible and used.

�e article is organized as follows. In Sect. 2, related work
concerning mathematical optimization is presented. A�erwards,
a generic optimization network is illustrated in Sect. 3. Finally, in
Sect. 4 a conclusion is provided and directions for further research
are given.

2 LITERATURE REVIEW
For the integration of more than one production or logistics prob-
lem model or solution technique, di�erent approaches exist within
the �eld of OR. One possiblity is the integration of various prob-
lems into one mathematical problem model and the development
of a speci�c algorithm for solving it. An already existing example
is the Location Routing Problem (LRP) [9], which consists of the
Facility Location Problem (FLP) and the Vehicle Routing Problem
(VRP). Matheuristics are a solution approach for integrating dif-
ferent optimization methods, where metaheuristics are combined
with mathematical programming. High-quality results show their
capabilities [3, 12]. [1, 8] also show the potential of integrating dif-
ferent problem formulations into one optimization. �ey introduce
new algorithmic strategies to be able to combine di�erent problem
models and heuristic solution approaches within one optimization.

[5] describe in their survey the so-called multilevel decision-
making optimization. �e described techniques follow the leader-
follower principle of Stackelberg’s game theory [13], where the
follower decides on the basis of the leader’s decision. However,
the leader’s decision-making process is implicitly in�uenced by the
included assumption of the reaction of the follower. A widespread
application is the bilevel optimization. Within two decision levels,
the leader (�rst optimization level) has to decide about his variables
and the follower (second optimization level) has to take the decision
variables of the leader into account [6]. Solution approaches for
bilevel optimization are amongst others metaheuristics und genetic
algorithms [6]. In the area of production and logistics, it can for
example be seen that the focus of solution approaches is on the in-
dividual development of algorithms for the overall problem, such as
ant colony optimization methods [2] or particle swarm algorithms
[6].

3 A GENERIC OPTIMIZATION NETWORK
FOR PRODUCTION AND LOGISTICS
PROBLEM MODELS

As already stated in Sect. 1, there is a growing need for an inte-
grated consideration of multiple planning problems in the �eld of
production and logistics. If more than one planning problem is
considered, there are di�erent possibilities of problem modeling
and solving, as presented in Sect. 2. With a desired integration of
two or even more real-world problem models into one (multilevel)
optimization problem, every single modi�cation in one a�ected
business area leads to a change of the developed mathematical prob-
lem model. Moreover, the whole algorithmic solution approach for

the developed model has to be varied every time, one unit demands
an adjustment.

However, within the consideration of real-world applications, a
solution approach does not only have to combine di�erent problem
models out of di�erent departments. It rather has to have short
reaction times on changing requests of a unit, since operational
activities normally can only be stopped for a short time. Subse-
quently, a new solution approach for the combination of production
and logistics problem models is presented. Within an optimization
network (ON), single problem models are integrated with their
single solution mechanisms. A�er every model has been solved,
all solutions are merged. �is overall result is optimized by a meta
solver and another optimization run is initiated to achieve the best
possible solution. By taking single problem models and their as-
signed solution mechanisms into account, requested modi�cations
of one business area should not lead to a change of the whole solu-
tion approach but only to an adaptation of the a�ected part of the
network.

3.1 Structure and Operating Principle of an
Optimization Network

With the structure and the operating principle of an ON, the tradi-
tional, sequential optimization procedure and the related arising
opportunity costs described in Sect. 1 should be conquered. �e
single sequences within an optimization network are connected to
each other. �ey continuously exchange information and therefore
get optimized with every optimization run.

�e structure of an optimization network is composed of two
stages. Within the �rst stage, the model spli�ing, problem models
have to be de�ned and appropriate solution approaches have to be
found. �e second stage, the solution merging, unites calculated
results of single problem models. New combination strategies for
the single solutions have to be developed to be able to have multiple
optimization runs which lead to improved solutions.

�e operating principle of an optimization network is divided
into three di�erent sectors. Problem solvers, a meta solver and an
orchestrator, which are described hereina�er.

Problem Solvers. For every business unit, which is taken into
account, a problem model has to be de�ned and a solution algorithm
has to be assigned.

• Depending on the complexity of the problem and the prob-
lem instances, it can be an already existing exact or an
evolutionary solution approach.

• A�er all problem models are optimized, one optimization
run is �nished and the overall result can be calculated.

Meta Solver . �e meta solver is an algorithm, which optimizes
the overall result. �e method of this optimization is decisive to be
able to �nd a be�er solution within the next run of the ON.

• �e meta solver takes the overall result of all optimized
problem models into account and tries to �nd optimized
parameter con�gurations for the problem instance. With
the variegated problem data con�gurations, a new opti-
mization run is started, which should bring a be�er overall
solution.

• A changed problem instance of course involves non-realistic
input data for the optimization. �erefore, the variegated
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Figure 2: Operating Principle of an Optimization Network.

problem data is only used for the �rst problem solver. �e
solution of problem 1 is then converted to the original
input data. �is means that the optimized decision vari-
ables of solution 1 are given to problem solver 2 a�er they
have been provided with original input data. �e exact
mechansim of this return process is explained in 3.2.

Orchestrator . �e orchestrator is the central control point
within the optimization network. It tries to reduce opportunity
costs by integrating all nodes of the network. Moreover, it is respon-
sible for the transfer of the problem instance data to and between
the di�erent parts of the ON.

• �e orchestrator gives the problem instance to the prob-
lem solvers and to the meta solver. It is concerned with
the initialization of the single optimizations, the solution
spli�ing, and with the data transfer between the solvers.

• A�er every optimization run, the solution merging process
is started. �e orchestrator calculates the overall result and
gives it to the meta solver. �en it waits for the problem
instance, which is optimized and therefore changed by the
meta solver. Next, it gives this changed instance to the �rst
problem solver. With this action, a new optimization run
is started.

• �e orchestrator is also concerned with the return transfer
of the changed problem data to its original one. Hence, it
is guaranteed that the overall solution of the optimization
network is always valid and therefore corresponds to the
original real-world input data.

In Fig. 2, the operating principle of an optimization network
with two problem solvers is presented. A detailed explanation and
a real-world example, especially including the ongoing change of
problem input data, is given in Sect. 3.2.

3.2 Procedure and Execution of an
Optimization Network

�e procedure of an optimization network is explained with the
exemplarly Capacitated Location Routing Problem (CLRP) [9]. It
consists of the Capacitated Facility Location Problem (CFLP) [10]
and the Capacitated Vehicle Routing Problem (CVRP) [11]. In the
literature of operations research, these problems are, among others,
considered by the integrated mathematical modeling approach of

the LRP [9], als already explained in Sect. 2. Subsequently, the
solution approach of an optimization network is applied to the
CLRP. Besides the described procedure for the ON of a LRP, an
illustrative quanti�ed example is given for every explained step of
the procedure with italic le�ers.

Initialization. Original input data and objective of the CFLP:
• Input Data: Potential depots n = 3(j = 1, ..,n) with coor-

dinates; depot capacities s1 = 11; s2 = 10; s3 = 10; depot
opening costs f 1 = 100; f 2 = 110; f 3 = 100; customers
m = 6(i = 1, ..,m); customer coordinates i1{1; 1}; i2{1; 2};
i3{1; 3}; i4{1; 4}; i5{1; 5}; i6{1; 6} (distances c ji from depots
to customers are calculated out of coordinates); customer
demands d1 = 2; d2 = 3; d3 = 1; d4 = 4; d5 = 3; d6 = 2.

• Decision Variables and Objective: yj = 1 or 0 if a depot is
opened or not and xi j = 1 or 0 if a customer is supplied by
a depot or not. �e objective is the minimization of depot
opening costs and delivery costs from depots to customers.

Original input data and objective of the CVRP:

• Input Data: One depot u = 0 with coordinates; vehicles k ;
vehicle capacity q; vehicle �xed costs k f ; customersw (u =
1, ..,w) with coordinates; customer demands deu ; distances
diuv from all nodes to all nodes.
• Decision Variables and Objective: zuvk = 1 or 0 if one node

is served a�er another one and which vehicle is used. �e
objective is to minimize distances and vehicle �xed costs.

�e orchestrator starts the optimization network. A random solu-
tion (�rst overall result of the ON) is generated.

ON Part 1. �e overall result of the �rst optimization run is
given to the meta solver. �e meta solver is equipped with an evo-
lutionary approach, the CMA/ES [4]. For the CMA/ES, a speci�c
amount of generations and a population size has to be assigned.
Generations correspond with the number of allowed optimization
runs of the ON and the population size complies with the amount
of generated solutions per optimization run. �is evolutionary al-
gorithm optimizes the problem input data for problem 1 (CFLP) by
considering the overall result. �e objective of the alteration is to
achieve a be�er overall result a�er the next optimization run. It
has to be decided which parts of the input data are changed. �ree
di�erent examples for such a changing strategy are the change of
customer coordinates, the change of depot coordinates and the change
of depot opening costs. �e development and application of the
changing strategies are crucial for the solution of every optimiza-
tion run. �erefore, several strategies and also the combination of
di�erent strategies can be tested for an ON. However, in this exam-
ple, the �rst strategy is pursued, which means that the meta solver
optimizes and therefore generates new customer coordinates a�er
every optimization run. �e orchestrator stores the relationship of
original coordinates per customer and its new, assigned coordinates
out of the CMA/ES. �e new, optimized customer coordinates cor-
respond to a real-vector, which is sent to problem solver 1 together
with the rest of the original problem input data.
�e meta solver’s optimization of the �rst overall result leads to
changed input data: �e new customer coordinates for the CFLP are
i1{1; 2}; i2{1; 4}; i3{1; 7}; i4{1; 9}; i5{1; 8}; i6{1; 10}.

ONPart 2. Problem solver 1 solves the CFLP with the variegated
customer coordinates. For small problem instances, the problem
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can be solved to optimality within a very short time. �erefore, an
exact solver, such as IBM ILOG CPLEX1 can be connected to the
ON. Solution 1 is sent back to the orchestrator.
�e changed input data leads to the following solution.

• Depot 1 y1 = 1 is opened with i2{1; 4}; i3{1; 7}; i4{1; 9}.
• Depot 2 y2 = 1 is opened with i1{1; 2}; i5{1; 8}; i6{1; 10}.

ON Part 3. �e orchestrator takes solution 1. It considers the
stored correlation of �ctional coordinates and original, real coor-
dinates per customer. It takes the customer assignment per depot
out of solution 1 and converts the customer coordinates back to its
original coordinates on basis of the stored correlation of ’ON Part
1’. �ese converted customer coordinates, and therefore original
ones, are given to problem solver 2 per opened depot yj = 1. All
other necessary input data, such as vehicle capacities, are taken
out of the CVRP original input data. As CVRP are only solveable to
optimality for up to 50 customers [11] for most problem instances,
a genetic algorithm is selected for solving the CVRP.
�e orchestrator gives the information of opened depots 1 and 2 to the
CVRP. Moreover, it gives the new customer assignment of ’ON Part 2’
to the CVRP, but with the original customer coordinates.

• Solve one CVRP for y1 = 1 with i2{1; 2}; i3{1; 3}; i4{1; 4}.
• Solve one CVRP for y2 = 1 with i1{1; 1}; i5{1; 5}; i6{1; 6}.

Within problem solver 2, all CVRP are optimized. �en, the result is
transferred to the orchestrator, which calculates the overall result
out of solution 1 and 2. It sums up depot opening costs fj for
all yj = 1 out of solution 1 and distance costs diuv and vehicle
�xed costs k f out of solution 2 (for all zuvk = 1). Based on this
second overall result, the meta solver’s algorithm, the CMA/ES,
again optimizes the problem input data by assigning a new real
vector with di�erent customer coordinates. Another optimization
run is initiated. �e whole process is repeated, until the maximum
number of allowed generations of the CMA/ES is reached.

In the case of an ON, the above described continous information
exchange should lead to the detection and utilization of synergy
e�ects. If one only considers a CFLP, low depot costs could lead
to very high routing costs for a CVRP. However, it could be the
case that higher depot opening costs lead to less routing costs
and therefore to a be�er overall result. First preliminary results,
where an ON is applied to the Location Routing Problem and its
solutions are compared with another generic solution approach, a
mathematical optimization solver called Local Solver2, show that
this new solution approach is promising.

4 CONCLUSION
In the literature, in multilevel optimization applications in supply
chain management, new solution algorithms are developed for the
whole multilevel decision problem, as for example shown in [2]
and [6]. In this work, a new solution approach for the simultaneous
optimization of multiple production and logistics problem mod-
els has been proposed. Within an optimization network, problem
solvers, a meta solver and an orchestrator are integrated. When
problem models are solved, the meta solver and the orchestrator are
responsible for the evolutionary variegation of the problem input
1www.ibm.com/so�ware/products/en/ibmilogcpleoptistud
2h�p://www.localsolver.com/

data by considering the overall solution quality and exchanging
input data and results. By the introduction of new optimization
runs every time the input data has been changed, existing synergy
e�ects between di�erent problem models and therefore between
di�erent production and logistics real-world departments, should
be detected and utilized. Moreover, di�erent problem models of
di�erent departments are regarded separately per problem solver.
�us, demanded real-world modi�cations only concern one prob-
lem solver and not the whole solution approach.

First results are promising, as stated in Sect. 3.2. However, the
solution approach has to be tested on several problem models to be
able to �nd out more about its methodogical quality. Furthermore,
it is suggested that another future challenge is the development of
e�cient strategies for the evolutionary solution approach of the
meta solver as described in Sect. 3.2. �ese intelligent changing
strategies are crucial for the solution quality of the single optimiza-
tion runs and therefore for the quality of the overall result of the
network.
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