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ABSTRACT

We construct and investigate a strongly embodied evolutionary
system, where not only the controllers but also the morphologies
undergo evolution in an on-line fashion. In these studies, we have
been using various types of robot morphologies and controller ar-
chitectures in combination with several learning algorithms, e.g.
evolutionary algorithms, reinforcement learning, simulated anneal-
ing, and HyperNEAT. This hands-on experience provides insights
and helps us elaborate on interesting research directions for future
development.

CCS CONCEPTS

·Computingmethodologies→Evolutionary robotics;Mobile
agents; · Theory of computation→ Evolutionary algorithms;

KEYWORDS

Evolutionary robotics, On-line evolution, Indirect encoding, Lamar-
ckian evolution, Gait learning

ACM Reference format:

Milan Jelisavcic, Evert Haasdijk, and A. E. Eiben. 2017. Acquiring Moving
Skills in Robots with Evolvable Morphologies: Recent Results and Outlook.
In Proceedings of GECCO ’17 Companion, Berlin, Germany, July 15-19, 2017,
7 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 BACKROUND AND OBJECTIVES

The long-term vision behind the research covered in this paper
foresees robotic (eco)systems that evolve in real time and real space.
This implies that the robot morphologies (body, hardware), as well
as the controllers (mind, software) are evolvable, i.e., subject to
reproduction and selection. In other words, we are concerned with
robots that can produce offspring based on their fitness determined
by the environment and the functional criteria set by the given
application.

Over the last six years several papers have introduced and dis-
cussed this vision as awhole [7, 12] or particular algorithmic aspects
of it [5, 10, 11]. The underlying system architecture called the Trian-
gle of Life has been put forward in 2013 in [6]. This triangle captures
the pivotal life cycle of an ecosystem of self-reproducing robots.
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This lifecycle does not run from birth to death, but from conception
(being conceived) to conception (conceiving one or more children)
and it is repeated over and over again, thus creating consecutive
generations of robot children. The result is a population of robotic
organisms that evolves and thus adapts to the given environment.
The Triangle of Life consists of 3 stages, Morphogenesis, Infancy,
and Mature Life.

This paper focusses on the Infancy stage. We assume that there
is a procedure for Morphogenesis that can produce new robotic
organisms. Obviously, this procedure depends on the chosen type
of robot morphologies, but in all cases, it holds that the body (mor-
phological structure) and the mind (controller) of a new robotic
organism will unlikely fit each other well. Even if the parents had
well-matching bodies and minds, crossover and mutation can easily
result in a child where this is not the case. Hence, the new robot
needs to do some fine tuning; not unlike a newborn calf the ‘baby ro-
bot‘ needs to learn how to control its own body. This problem śthe
Control Your Own Body (CYOB) problemś is inherent to Artificial
Life systems where newborn organisms are random combinations
of the bodies and minds of their parents.

(a) Rossi-Eiben model (b) Roombots

(c) YaMoR
(d) RoboGen

Figure 1: Illustration showing four differentmorphology de-

signs used for the experiments with a modular robots.

The first essential skill for newborn robots is arguably locomo-
tion, eventually in combination with vision. Therefore, we have
investigated this issue extensively in the past in search of a generic
approach to learning locomotion skills in robots with evolvable mor-
phologies. Notice, that the evolvability of morphologies represents
a particular requirement for the learning algorithms. Whereas most
related work (that we, unfortunately, cannot review here by the
lack of space) is based on a given specific robot body, our method
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should be able to work in any body form that can be constructed
within the given design space. To this end we make an assumption:
the robot bodies are modular constructs with a few basic types of
modules that can be combined into a large number of particular
robots. Figure 1 shows some of the forms we have studied.

The central research question can be phrased as follows.

What is the best mechanism for acquiring ade-
quate moving skills in a large space of (evolvable)
robot morphologies?

Let us note that this question can be further split into two sub-
questions regarding the controller architecture (e.g., neural nets,
periodic oscillators, decision trees) and the learning algorithm it-
self that obtains a high quality controller (e.g., back-propagation,
reinforcement learning, or evolution in the space of controllers).

In the rest of this paper, we review our results regarding this
question, draw conclusions based on these results, and identify the
most important findings. We conclude this overview by discussing
some promising directions for future research.

2 REVIEW OF RESULTS

In order to cover key aspects of the recent research toward con-
structing an efficient locomotion mechanism, a few common key
aspects should be noted to make a clear distinction between results
from each paper. The type of simulator, learner and controller mech-
anism, and morphology are the meeting points for this research.
Two different simulators were used: Webots [16] and Revolve [13].
Common ground for all tested morphologies is their modularity
regardless of the modules design choice. The design choices include
Roombots, YaMoR, and RoboGen models, with predominant usage
of latest choice. Concerning learner-controller mechanisms, most
of our research investigates possibilities of RL PoWER learner in
pair with spline-based controllers, but also we compare it with
HyperNEAT learner which works in pair with indirectly encoded
Compositional Pattern-Producing Networks (CPPNs).

Simulators. In first three presented researches, we used Webots
simulator as our tool of choice. Webots is a commercial robot simu-
lator proved to be a good research platform and is a good starting
point for designing our system. Webots uses the Open Dynamics
Engine (ODE) for simulating rigid body dynamics, which allows
one to accurately simulate physical properties of objects such as
velocity, inertia, and friction.

In our later research, simulated experiments were migrated to
a new platform, custom made for our purposes, called Revolve.
Revolve has several advantages over Webots; in first place, its open-
source nature. It is built as a wrapper of Gazebo [15], an open source,
multi-platform robotic simulation package. Apart from ODE, it also
provides support for Bullet, Simbody and DART physics engines,
which allows us to verify experimental results.

Morphologies. As mentioned, the robot forms are constructed
from one or a few basic types of modules that are combined into
larger and more complex forms. In the first experimental setup,
the modular robots used within Webots are self-designed capsule
modules connected to each other by two degrees of freedom (DOFs)
actuated joints that allow both horizontal and vertical movement
(Fig. 5a). Each module has six connection points, and each robot

(a) Simulated łgeckoł

morphology.
(b) Hardware

implementation.

Figure 2: Illustration showing a software and a hardware ro-

bot model compared for gait learning.

has a special head module provided with two distance sensors. In
the second experimental setup, the simulated modules (Fig. 5b) in
Webots are based on an existing hardware platform (Roombots)
which makes the system, in principle, constructible [18]. Every
module consists of two cubic-like blocks, ten active connection
mechanisms (ACMs) and three actuated joints. In the third experi-
mental setup, another promising module design was tested, namely
YaMoR (Fig. 1c). A YaMoR module used for robot representation
[17] is made of a static body and a joint on its front that has a single
degree of freedom and an operating range of [−π/2,π/2]. It also
has two connectors, one on the joint and one in the back of the
body, which allows connecting modules at arbitrary angles. For the
purpose of investigation, three changes were applied to the original
YaMoR model. Two extra connectors on the remaining sides of the
body in a central position were added, allowing the construction of
complex structures.

Obviously, the specific robot design and the construction pro-
cedure are closely related. A straightforward idea is to use rapid
prototyping (3D printing) in the production center. To mitigate
this problem, after migrating to Revolve, we have chosen the robot
design featured in RoboGen (Fig. 1d), and all subsequent research
was verified on this model [1]. The RoboGen framework includes
multiple different simple components which are simple to 3D print,
an important aspect for implementing an envisioned embodied
robotic system.

Controllers. Among selected controller approaches used to test
on our modular systems, predominantly spline-based controllers
were tested, but also Central Pattern Generator (CPG) controllers
were used. Spline-based controllers represent an open-loop con-
troller which lacks a sensory feedback but is easy to implement
and test used learner algorithms. Considering CPGs, different ap-
proaches exist, and we focused on a sinusoidal pattern generator
and a differential oscillator approaches.

Spline-based controller represents a set of splines that all to-
gether form a gait policy for particular morphology. Each spline
within this set specifies the angular positions of a single actuator
over a certain amount of time. With an update function, the robot
can send a signal to reposition its actuators based on a spline value
at a certain time point. A cyclic spline is a mathematical function
that is defined using a set of n control points. Each control point is
defined by (ti ,ai ), where ti represents time and ai the correspond-
ing value. ti ∈ [0, 1] is defined as

ti =
i

n − 1
, ∀i = 0, . . . , (n − 1)
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and αi ∈ [0, 1] is freely defined.
To ensure cyclic splines, an additional control point (tn ,αn ) is

defined that by definition has the same value as the first control
point (α0 = αn ). These control points are then used to interpolate
a cubic spline with periodic boundary conditions using GSL 1 dedi-
cated C functions. Using GSL it is possible to query a spline for a
different number of points than it was defined with.

The CPG approachwith a sinusoidal pattern generatorwas tested
in Sec. 2.1. The modular robots used have two Degrees of Freedom
(DOFs) and are actuated according to a periodic function, in the
form

ϕi (t ) = αi sin (ωt + βi ) + γ
(Tarдet )
i · anдle (t )+

γi · di f f (t )
(Obstacle )

+ γ
(Centre )
i

where ϕi (t ) is a sinusoidal function that determines the position
of joint i between two body segments (i = 1..2(n − 1)), n is the
number of body segments of the robot. Parameters ω, αi and βi
determine, respectively, the angular speed, amplitude, and phase
of the oscillation of the joints, αi being in the range [−π/2,π/2].
Considering other parameters,di f f (t ) is the difference between the
range sensors readings, anдle (t ) is the angle between the robotâĂŹs
orientation. A robot‘s controller can be thus described by an array
of floating-point values of length 5 · 2(n−1)+15, with 5 parameters
governing the joints‘ motion, plus one for the common ω.

Differential oscillators are another approach tested as the core
of CPG implementation. Each oscillator is defined by two neurons
that are recursively connected as shown in Fig. 3. These generate

xy out

wxy

wyx

wxo

Figure 3: A differential oscillator with output node as used

in the CPG controller.

oscillatory patterns by calculating their activation levels x and y
according to the following differential equation:

ẋ = wyxy + biasx

ẏ = wxyx + biasy

With wxy and wyx denoting the weights of the connections be-
tween the neurons; biasx and biasy are parameters of the neurons.
Ifwyx andwxy have different signs the activation of the neurons x
and y is periodic and bounded. An oscillator‘s x node is connected
to a linear output neuron that in turn connects to the robot‘s active
hinge. Output neurons use the following activation function:

f (x ) = (wxo · x − bias ) · дain.

with x the activation level from the oscillator, wxo the weight of
the connection between oscillator and output node and bias and
дain parameters. Each active joint in the robot body is associated
with an oscillator and connected to it through an output neuron
that determines the joint‘s angle.

1http://www.gnu.org/software/gsl/

Learners. The RL PoWER implementation follows the descrip-
tion by Jens Kober and Jan Peters [14] and [2] If the organism is
from the initial population the algorithm starts by creating the
initial policy π0 with as many splines as there are motors in the
organism. These splines are initialised with n values of 0.5 and
then adding Gaussian noise. Otherwise, the minds of the parents
are combined as explained later and this mind is used as the ini-
tial policy. The initial policy is then evaluated after which it is
adapted. This adapted controller is evaluated and adapted again
until the stopping condition is reached. Adaptation is done in two
steps which are always applied: exploitation and exploration. In
the exploitation step, the current splines α̂ are optimised based on
the outcome of previous controllers, this generates a new set of
splines.

α̂i+1 = α̂i +

∑k
j=1 ∆̂αi, jRj
∑k
j=1 Rj

where ∆̂αi, j represents the difference between the parameters of
the i-th policy and j-th policy belonging to a ranking of the best
k policies seen so far and Rj its reward. In the exploration phase
policies are adapted by applying Gaussian perturbation to the newly
generated policy.

α̂ ′i+1 = α̂i+1 + ε̂i+1, ε̂i+1 ∼ N (0,σ 2)

where α̂i+1 are the parameters after the exploitation step, α̂ ′i+1 the
parameters after the exploration step and ε̂i+1 values drawn from a
Gaussian distribution with mean 0 and variance σ 2.

Each controller is evaluated for a fixed time as follows:

Ri =
*..
,
100

√

∆2
x + ∆

2
y

∆t

+//
-

6

where ∆x and ∆y is the displacement over the x and y axes mea-
sured in meters and ∆t the time of an evaluation.

Proposed HyperNEAT [20] , an indirectly encoded evolutionary
algorithm for neural networks. The idea behind HyperNEAT is to
assign the nodes in a substrate neural network a location in an
n-dimensional hypercube. The assigned relative positions should
in some way reflect a relationship between the nodes. allowing the
algorithm to exploit the geometry of the problem. The coordinates
of two nodes in the hypercube are then input values for a Compo-
sitional Pattern Producing Network (CPPN), which outputs a value
for the weight of their connection. The CPPN evolves using NEAT
[21] so that the substrate network‘s performance is optimised.

Like a neural network, a CPPN is a network of mathematical
functions with weighted connections. Unlike neural networks, the
network can contain a variety of activation functions including
Sine, Cosine, Gaussian and Sigmoid. To determine the weight of
a connection in the neural network that controls the robot (the
substrate), the coordinates of the two substrate nodes are fed into
the CPPN which then returns the connection weight [19].

The CPG nodes are positioned in a three-dimensional hyper-
space. Such modular differentiation allows specialisation of the ac-
tive hinge‘s movements depending on its relative position in the
robot. The hinge coordinates are obtained from a top-down view
of the robot body. Thus, two coordinates of a node in the CPG
controller correspond to the relative position of the active hinge
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it is associated with. The third coordinate depends on the role of
the node in the CPG network: output nodes have a value of 0 and
differential nodes have values of 1 for x and −1 for y nodes. The
CPPNs have six inputs denoting the coordinates of a source and
a target node. The CPPNs have three outputs: the weight of the
connection from source to target as well as the bias and gain values
for the target node

For spline-based controllers, the CPPNs must output the αi value
for a given ti for each spline in the controller. Obviously, ti must
be one of the inputs for the CPPN. As before, two further inputs
correspond with the position of the active hinge associated with the
spline. Thus, CPPNs for splines have three inputs: the coordinates
of the active hinge and ti . They have one output: αi .

2.1 Simultaneous versus Incremental Learning
of Multiple Skills by Modular Robots

The main question concerned in this paper is whether it is better to
learn multiple skills simultaneously (all-at-once) or incrementally
(one- by-one). An experimental study was conducted with modular
robots of various morphologies that need to acquire three different
but correlated skills, efficient locomotion, navigation towards a
target point, and obstacle avoidance, using a real-time, on-board
evolution as the learning method.

In this research, the main focus is on generating controllers that
are capable of dealing with the generic motion task (i.e., moving
from one place to another, avoiding obstacles in between) accord-
ing to their sensory input without the need of switching between
behaviors, that is, without a higher level behavior control. One
strategy would be trying to learn all the skills at the same time,
eg. simultaneous learning. The simultaneous learning approach is
compared with an alternative strategy based on a ‘syllabus‘ that
consists of three sequential classes. In Class 1, robots have to learn
how to control their bodies in order to generate gaits for efficient
unconstrained locomotion. In Class 2, robots have to learn how to
move towards a target point, and in Class 3, robots have to learn
how to move around obstacles.

The robot ecosystem is modeled in Webots simulator based on
Rossi-Eiben model (Fig. 5a) of the design of the modules.

The adopted learning strategy is a simple (1 + 1) Evolution-
ary Strategy running on every robot in pair with controller im-
plemented as sinusoidal CPG mentioned earlier. This choice of a
learner is motivated by the natural encoding of the robots con-
trollers as arrays of floating point values.

The first tests compare locomotion and target reaching and was
carried out in the following way. The simultaneous learning process
was allotted a fixed learning time, i.e. a fixed number of generations,
set to 100. The incremental learning process was stopped when it
reaches comparable fitness to the simultaneous learning process.
The results show that, in general, learning in two steps takes less
than 100 generations

In the second test of this series, the learning of the three tasks
(locomotion, target reaching and obstacle avoidance) was compared.
Here, a wall was put in between the robots‘ initial position and the
target, and the robots had to learn how to avoid it to reach their
target. Again, incrementally learning the tasks takes less time than
learning them simultaneously.

2.2 A Robotic Ecosystem with Evolvable Minds
and Bodies

This research is primarily concerned with investigating whether
the robots, endowed with reinforcement learning capabilities, learn
to locomote efficiently during their lifetime and how this learning
ability evolves. Apart from this main task, it is also beneficial to
investigate whether the system could develop a sustainable popula-
tion of evolving organisms.

The system is implemented in the Webots simulator based on
an existing hardware platform Roombots.

Organisms are not required to perform any specific task and are
free to move in any direction. This reduces the locomotion problem
to gait learning. Particularly, it requires the generation of rhythmic
functions for the activation of the organisms‘ step motors. The RL
PoWER algorithm has been chosen for gait learning in this project
based on previous investigations [3]. Learning is not restricted to
the infancy period, but organisms continue learning for their full
lifetime.

Considering the research objective łto investigate if robots, en-
dowed with reinforcement learning capabilities, learn to locomote
efficiently during their lifetime and how this learning ability evolves.ł
The robots are indeed capable of lifetime learning and profoundly
improve their locomotion capabilities over their lifetime. The evo-
lution of the initial minds does not, however, seem to have a great
impact on the learning ability, but this may change with longer
evolutionary runs.

Another stated research objective was łto show that the sys-
tem enables sustainable populations of evolving organisms that
are born, learn and procreate autonomously.ł Results have indeed
shown that in the environment as it is defined, with movement
through the environment promoting fecundity, the robots evolve to
move around the arena and so encounter mates. This allows them
to procreate, resulting in a viable population that spans several
generations.

2.3 Online Gait Learning for Modular Robots
with Arbitrary Shapes and Sizes

Even if the parents had well-matching bodies and minds, recombi-
nation and mutation can easily result in a child where this is not
the case. The main question in this work was: łWhat is the best
and fastest gait learning approach for modular robots? ł

All tests were done in the simulation with the Webots based
on YaMoR module design. The environment chosen for the exper-
iments is an infinite plane free of obstacles so to avoid any extra
complexity and the need of supervision. Each experiment starts
with the organism lying completely flat at the plane origin.

In order to test and verify different learning approaches, several
algorithms were compared which includes RL PoWER, Simulated
Annealing, and HyperNEAT. RL PoWER and Simulated Annealing
were tested in pair with a spline-based controllers and HyperNEAT
evolves a neural network‘s connectivity pattern indirectly, using a
generative encoding mentioned as a CPPNs.

The controller used with RL PoWER and Simulated Annealing is
a set of cyclic splines that define an open-loop gait. The HyperNEAT
experiments use a neural network that controls a closed-loop gait
composed of three layers: input, hidden and the output layer. Each
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layer is an m × n matrix of nodes where m = (OrдanismSizex ·

2) − 1 and n = (OrдanismSizey · 2), with OrдanismSizex and
OrдanismSizey the sizes of the organism respectively on the x

and y axes measured by the number of modules. The inputs are
the angular positions of each module‘s servo at the previous time
step together with a sinusoidal signal s = sin (ωt ) where ω repre-
sents the maximum angular velocity of the modules servo and t the
current time. The network outputs the angular positions of each
module servo for the current time step.

The experiments were conducted with three complexity lev-
els: organisms with two extremities (I-shape), three extremities
(T-shape), and four extremities (H-shape). The second test suite
was constructed by generating 270 random shapes.

In most cases, Simulated Annealing fares worse than RL PoWER,
particularly on the T and H shapes. On the I shapes Simulated An-
nealing fares much better, even matching RL PoWER performance
for the I-7 shape. Once converged, RL PoWER provides consistent
performance, while Simulated Annealing’s performance of con-
secutive policies is more erratic. The difference in performance
between organisms of the same size, but the different shape is sig-
nificant in all cases. This supports the conclusion that with either
algorithm the complexity of the shape has a larger influence on the
performance than the size of the shape.

The results for HyperNEAT show very competitive controllers,
in many instances outperforming the best results of RL PoWER
and Simulated Annealing. The controllers from the best run (blue
dots) are among the best found in our experiments. On the other
hand, the median performances are much worse than those for RL
PoWER: HyperNEAT succeeds in finding very good controllers at
the cost of evaluating many poorly performing controllers as well.

This highlights an important issue in on-line evolution: because
the robot controllers evolve while the robots perform their tasks,
the robots’ actual performance is determined by the quality of all
the controllers they evaluate, not only by the best controllers they
consider. In reinforcement learning terms, one must consider the
balance between exploration and exploitation when employing
evolution in on-line scenarios. This is a radical departure from
the optimisation-centred mindset in most evolutionary robotics
research that implies the off-line development of controllers that
do not evolve once deployed.

2.4 Improving RL Power for On-Line Evolution
of Gaits in Modular Robots

The main objective of this work is to increase the performance of
RL PoWER by altering the main search operators used therein. The
basis for the objective is (re)describing RL PoWER as an evolution-
ary algorithm (EA) with a specific mutation and crossover operator.
Considering RL PoWER from an EA perspective provides hints for
possible improvements by using a different crossover, a different
mutation, or both.

RL PoWER can be viewed as an evolutionary algorithm with
policies as individuals, fitness defined as the corresponding reward,
population size k , an elitist (k + 1) selection strategy, a k-parent
crossover, and Gaussian mutation [8].

Regardingmutation, using self-adaptive step-sizes (σ s) is a promis-
ing option that is known to work well for numerical optimization

problems. The simplest version of this method uses one step size
globally. This σ is mutated each time step before using it to create a
new individual by multiplying it by a term expΓ where Γ is random
variable from normal distribution.

σ ′ = σ · expτ ·N (0,1)

The used simulator is Revolve, the Robot Evolve toolkit devel-
oped at our department with RoboGen modules as the basis for a
robot design.

The results showed a difference between employing the RL
PoWER algorithm in its original form and using it with modified
mutation and crossover operators. The original RL PoWER is fast
to learn, but also that it converges very quickly to suboptimal solu-
tions. Reducing the number of parents in the crossover from ten to
two improves performance and so does the usage of self-adaptive
mutation step-sizes. The overall ‘winner‘ regarding the final solu-
tion quality is algorithm version that combines both extensions.

2.5 Real-World Evolution of Robot
Morphologies: A Proof of Concept

The first of the two research objectives presented here is to inves-
tigate whether it is possible to construct the system that enables
sustainable populations of evolving organisms that are born, learn
and procreate autonomously, in simulation as well as in hardware.
Secondly, given the opportunity, it is highly relevant to investi-
gate the differences between the behaviour of designed robots in
simulation and in the real world, eg. to measure the ‘reality gap‘.

To validate the choice of RoboGen as the physical substrate and
genetic representation for online evolution of robot morphology,
experiments where conductedwith a population of simulated robots
that coexist in a featureless arena and are centrally evaluated and
selected. New individuals are inserted at a fixed rate of one every 15
s. Two parents are selected using using four-tournament selection,
and their offspring is generated using RoboGen’s recombination
and variation operators. The offspring is then placed at a random
position within a circle of radius 2 m around the origin.

Earlier works identified RL PoWER as a reliable and efficient
algorithm for gait learning in arbitrary morphologies with modular
robots consisting of homogeneous modules. Here these findings
were verified for the RoboGen-based morphologies using the Re-
volve simulator. In these experiments, RL PoWER was revisited,
and it was noted that it is, in essence, an evolutionary algorithm,
which subsequently was improved by adding two-parent crossover
with binary tournament selection.

Figure 4 shows the development of fitness over time. The experi-
ments were terminated after the birth of 100 individuals, which is
a reasonable number of individuals to consider also in real-world
experiments. It is clear that the robots rapidly improve their loco-
motion capabilities, showing that the substrate, genetic encoding,
and variation operators are suitable for online evolution and can
yield interesting results in a limited number of evaluations.

As mentioned, the task of the robot’s learning algorithm is to
optimize the robot’s controller so that performance śin this case,
the distance covered by the robotś is maximized. Here we com-
pare the performance in the simulation, as well as in real system.
Figure 5 shows the results from testing the learning algorithm
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on real hardware. The real hardware results show a significant
decrease in performance when compared to the simulation. This
can be attributed to several factors: (1) servo motors were con-
stantly breakingâĂŤon average 1.5 motors per run; (2) the weight
of a robotÊĳs head significantly influences the performed gait; (3)
robots were bounded in a small arena rather than the infinite plane
in the simulation. However, there is an evident positive trend in
performance, and after 30 evaluations (which take 20 to 30 min) the
robots have obtained gaits that allow them to traverse the arena.
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Figure 5: Illustration showing a gait learning trends in

łgeckoł morphology tested in the software and in the hard-

ware, making ‘reality gap‘ problem vivid.

2.6 Analysis of Lamarckian Evolution in
Morphologically Evolving Robots

Implementing lifetime learning by means of on-line evolution, we
establish an indirect encoding scheme that combines CPPNs and
CPGs as a relevant learner and controller for open-loop gait con-
trollers in modular robots which have evolving morphologies. Here,
we address this challenge by means of a lifetime learning approach
for robot controllers, focussed on scenarios where robots’ mor-
phologies evolve. In particular, we show how the use of an indirect
encoding can enable a Lamarckian evolutionary set-up, allowing

learned control knowledge of parent robots to be transferred to o
spring.

The experiment was conducted in Revolve simulator with Robo-
Gen morphologies. By using this indirect encoding, the CPPN can
easily be transferred from one robot to a robot with a di er- ent
morphology. The control system consists of CPGs with a differential
oscillator in every active joint, with connections linking neighbor-
ing CPGs.
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Figure 6: Comparison of Baldwinian approach (blue) op-

posed to Lamarckian approach (red). Scenarios are tested on

an offspring created combining łspiderł and łgeckoł mor-

phologies mentioned earlier.

Experimental validation on the morphologically evolved robots
shows that a Lamarckian setup with CPPN-CPG provides substan-
tial benefits compared to controllers learned from scratch. At the
end of the evaluation budget (1000 evaluations), the approaches
have reached mostly similar locomotion performances, although
the Lamarckian approach seems to have a slight advantage. This
may indicate that, given enough time, both approaches could reach
the practical limits for a specific morphology. However, the Lamar-
ckian approach clearly has an advantage in the earlier stages of the
learning process, reaching higher locomotive performance in the
first 100 evaluations. This characteristic of quick convergence to a
high locomotive performance is particularly interesting for a sce-
nario where the learning is performed on real robots. In such cases,
evaluations are both time-consuming and may cause considerable
wear and tear on the robots, and thus an early termination of the
learning phase would be a considerable advantage.

3 SUMMARY AND OUTLOOK

In the foregoing, we have reviewed our results regarding the chal-
lenge of finding a good mechanism that can learn a good controller
for locomotion in ‘newborn‘ modular robots whose morphology
is not known in advance. In these studies, we have been using
various types of robot morphologies and controller architectures
in combination with several learning algorithms, e.g. evolution-
ary algorithms, reinforcement learning, simulated annealing, and
HyperNEAT. An important aspect in all these experiments is the
on-line nature of the learning algorithm: learning takes place during
(and not before) the operational period of the robot. This implies
that the computational budgets are typically quite low. Overall,
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our findings can be summarized in a few observations. First and
foremost, it is possible to learn a good gait with a relatively low
number of trials that make on-line learning in real time practicable.
We found that the (10+1) evolution strategy śa generalization of
the RL PoWER reinforcement methodś is a good algorithm for this
purpose. Using splines for the robot controllers is successful for the
simple gait learning task in an open loop without sensory feedback.
However, it has limitations for more complex tasks that require a
closed loop that uses visual and/or tactile inputs for tasks like di-
rected locomotion or obstacle avoidance. Last but not least, we have
promising results that support the use of Lamarckian evolution,
where the controllers are partly inheritable and partly learnable. We
expect that such mechanisms can accelerate the individual learning
process in the ‘newborn‘ robots.

Regarding future work let us only mention two interesting di-
rections: the use of generative encodings because it promises in-
creased levels of evolvability and closed loop controller mechanisms
that can accommodate sensory inputs for these are necessary for
purposeful behavior, e.g., approaching mating partners and food
(energy sources).
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