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ABSTRACT 
This paper investigates the optimization of EEG signals cleaning 
process by elaborating a comparative study of swarm intelligence, 
evolutionary and memetic computation techniques. In this 
context, algorithms from each technique have been selected 
notably Clonal Selection, Particle Swarm Optimization, Firefly 
Algorithm, Harmony Search and Fireworks Algorithm. Each 
algorithm performance has been analyzed and validated by 
experiments conducted over the CEC Big-OPT EEG datasets. The 
results conclude a competitive performance of evolutionary and 
memetic methods in comparison to the swarm intelligence 
methods. 

CCS CONCEPTS 
 Theory of computation → Evolutionary algorithms  Applied 

computing → Health informatics  Hardware → Digital signal 
processing 
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1   INTRODUCTION 
Most Noninvasive Brain Computer Interfaces (BCI) [1] measure 
brain activity using special sensors placed on the head to record 
Electroencephalogram (EEG) signals [2] that allow 
neurobiologists to monitor the brain electric activity. Recent 
advances focus on analyzing and correctly interpreting the EEG 
signals. In one hand, they deliver essential information used by 
specialists to understand several interesting neurobiological 
disorders of great importance. For instance, understanding and 
treating epilepsy which affects 1% of the world’s population [3] 
can have not only a high medical and humanitarian impact, but 
also an enormous economic opportunity for medical and drugs 
companies. In the other hand, EEG signals can be interpreted and 
translated to computer tasks which open wide doors to integrate 
BCIs into potential applications in the public markets, notably 
gaming industry; Virtual Reality for in-stance; or military 
programs. However, achieving such levels is faced with several 
difficulties. A real-time BCI is characterized to be highly time 
dependent and captured signals may vary in a milliseconds scale. 
Also, using many sensors not only raises the amount of recorded 
data but also question the accuracy rate of each sensor when their 
manufacturing is not the same. Additionally, captured signals are 
noised by non-brain electrical sources which affect further the 
accuracy and augment the processing time. These difficulties can 
define the 4’v characterizing the Big Data concept [4], which 
leads to considering the EEG signals as an instance of Big Data. 
In the Optimization of Big Data 2015 Competition [5] [6], the 
problem is modeled as an NP-Hard Big Data optimization 
problem (Big-Opt). The dimensionality of this problem can be 
very high as the number of handled variables can reach the 
multiple of the length of EEG signals by the number of channels 
used in the capture operation. Besides handling such high 
dimensionality, the optimization solving algorithm should also 
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have a rapid convergence time, as EEG signals require a real-time 
processing. 
      Many real world optimization problems like Big-Opt are 
naturally complex and hard to solve using mathematical exact 
approaches, as they involve complex structures and a very large 
search space, in which, even exhaustive and random heuristic 
approaches fails to provide the optimal solution in an acceptable 
time. Meta-heuristics suggest a compromised approach aiming to 
deliver good solutions in a reasonable time. This approach is 
mainly ruled by two mechanisms in order to discover promising 
regions in the search space: Exploration of the search space and 
Exploitation of the local space nearby a given solution. Nature has 
been a great source of inspiration to implement these mechanisms. 
The evolutionary process of beings reported in the Darwin 
principles that suggest the survival of the fittest using mutation, 
crossover and reproduction, started a wide track of optimization 
known as evolutionary computation. Another important model of 
optimization solving is the swarm computation. In this approach, 
the optimization task takes advantage of the group intelligence 
developed by beings like ants and birds. Memetic computation is 
the most recent model in optimization. It somehow takes 
advantage of the evolutionary and swarm computation without 
being limited to the natural phenomenon. It mainly consists on 
imitating any real life phenomenon that might serve as a good 
optimization process that efficiently implements the exploration 
and exploitation mechanisms. It is mostly represented as an 
incorporation of a local search method into a global search 
optimization method such us an evolutionary algorithm. 
      The goal of this paper is to study the performance of several 
NP-Hard optimization techniques on solving the Big-Opt 
problem. As only few works have tackled Big-Opt, this paper 
delivers a comparative study using some relevant algorithms in 
the evolutionary, swarm and memetic computation fields, notably 
Clonal Selection, Particle Swarm Optimization, Firefly 
Algorithm, Harmony Search and Fireworks Algorithm. The paper 
will help to provide researchers with a ground truth about the 
performance of these algorithms to solve Big-opt and also a 
starting point to ameliorate and enhance the solving process using 
these algorithms. Additionally, this paper intends to strengthen the 
motivation for solving Big-OPT-like instances and to help other 
researchers from outside the optimization field, e.g. medical field 
researchers, on choosing the appropriate optimization method.  
      The rest of the paper is organized as follows: Section 2 
provides a description of the Big-Opt problem. Section 3 
describes the algorithms used in the comparative study. Section 4 
details the used solution encoding and initialization. The 
experimental results are reported in Section 5 at which we 
conclude right after.  

2   BIG-OPT PROBLEM: BACKGROUND & 
RELATED WORKS 

Although several methods to monitor and record the brain activity 
has been proposed like functional magnetic resonance imaging 
(fMRI) and magnetoencephalographic signal (MEG), the EEG 
signal is still the most used because of its convenience to the 

patients and its economic cost [7]. The challenge in EEG signals 
analysis lies in successfully recovering true brain signals of a 
given activity that is noised by some artifacts due to both internal 
and external factors. While external factors can be summarized in 
non-brain electric activity sources, the internal factors concern 
involuntary movements such as eyes blinking or undesirable 
imagined movements that generate an undesirable electrical brain 
activity. To remove these artifacts, the signals data is passed 
through an Independent Component Analysis [8]. The 
reconstruction is supposed to be performed in real time with the 
sensors’ recording. Considering the high dimensionality of the 
signals, the reconstruction becomes a time-consuming task. To 
automatize the noise cleaning process, the problem is 
mathematically expressed as a Big Data optimization problem. 
      Let X a matrix of dimension N x M, where N is the number of 
inter-dependent time series (signals), and M is their length. 
Assume S, an N x M matrix with N independent time series of 
length M such that: 
 

𝑋𝑋 = 𝐴𝐴	. 𝑆𝑆   (1) 
 

where A is a linear transformation matrix of N x N dimension. The 
problem is to decompose S into two matrices S1 and S2 of the 
same dimensionality as S such that: 
 

𝑆𝑆 = 	 𝑆𝑆� + 	𝑆𝑆�   (2) 
 

𝑋𝑋 = 𝐴𝐴	. 𝑆𝑆� + 𝐴𝐴	. 𝑆𝑆�  (3) 
 

The Pearson correlation matrix C between S1 and X is given by: 
 

𝐶𝐶 = 	 ���(�,�.��)
��� � .���(�	.��)

  (4) 
 

where cov(.) is the covariance matrix and var(.) is the variance. 
      The goal is to find S1 similar to S where the distance between 
the two matrices is as minimal as possible. Also, the off-diagonal 
elements of C should be minimized while the on-diagonal 
elements have to be maximized. This mathematical expression 
gave two formulations of the problem. The first one is a multi-
objective optimization problem that maximizes two functions f1 
and f2 such that: 
Given S, X and A, find S1 that minimizes: 
 

𝑚𝑚𝑚𝑚𝑚𝑚 	 𝑓𝑓� = 	 �
�.�

(𝑆𝑆�� − 	𝑆𝑆�,��)²�,�   (5) 
 

𝑚𝑚𝑚𝑚𝑚𝑚 	 𝑓𝑓� = 	 �
����

(𝐶𝐶��� ) + 	 �
�

(1 −	𝐶𝐶��)²��,���   (6) 
 

The second formulation is a single objective optimization problem 
that optimizes: 
 

𝑓𝑓 = 	𝑚𝑚𝑚𝑚𝑚𝑚 	(𝑓𝑓� + 	𝑓𝑓�)  (7) 
 

      In order to solve the single objective problem of Big-Opt, 
some techniques have been used. For instance, Zhang et al. [9] 
proposed a multi-agent genetic algorithm with redesigned 
competition and self-learning operators to solve the single 
objective Big-Opt problem. They combined them with crossover 
and mutation operators to simulate the learning behavior of 
agents. An adaptive configuration of differential evolution 
algorithms (DEA) was introduced in [10]. The idea proposed to 
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run three variants of DEA in parallel, and evolve only the best 
performing variant. Elsayed et al. [11] extended the same idea to a 
differential evolution framework to achieve better results. They 
mainly focused on analyzing and tuning the differential evolution 
algorithms parameters. 

3   EVOLUTIONARY, SWARM AND MEMETIC 
COMPUTATION FOR OPTIMIZATION 
PROBLEMS 

In this section, we describe the Immune Clonal Selection 
algorithms as an evolutionary computation algorithm, Particle 
Swarm optimization and the Firefly Algorithm to represent the 
Swarm intelligence computation and Fireworks Algorithm along 
with Harmony Search for the Memetic computation. 

3.1 Immune Clonal Selection 
The clonal selection algorithm “CSA” [12] is inspired by the 
clonal selection theory of the natural immune system to perform 
an optimization process. This latter is mainly based on the idea of 
proliferation of the B cells depending on their maturity degree 
called affinity. That means the higher the affinity the more clones 
are produced. Additionally, the mutation rate that a given 
antibody could suffer is inversely proportional to its parent 
affinity. In this paper, a fix number of clones is used to preserve a 
search diversity, along with an inversely proportional hyper-
mutation operator, allowing B cells with low affinity which is a 
fitness function value to undergo a high mutation rate. The 
pseudo-code of the implemented clonal selection algorithm is 
given below. 
 

 

3.2 Particle Swarm Optimization 
The Particle Swarm Optimization “PSO” is a very popular 
technique in stochastic optimization [13]. Developed by Eberhat 
and Kennedy, PSO essentially imitates the birds flock and 
simulates their flying pattern. It exploits the swarm information to 
update a position X of each particle of the swarm. Indeed, each 
particle updates its velocity V according to its best known location 
Pbest and the best known location found by the whole swarm Gbest 

as described in eq.8 and eq.9 where 𝛼𝛼, C1 and C2 are weighting 
parameters. In this study, the implemented pseudo-code of PSO is 
described below. 
 

𝑉𝑉��� 	= 	𝑉𝑉� 	+ 	𝛼𝛼	. (	𝐶𝐶�	. 𝑃𝑃���� − 𝑋𝑋�	 + 𝐶𝐶�	. (𝐺𝐺���� − 𝑋𝑋�))  (8) 
 

𝑋𝑋��� = 	𝑋𝑋� + 𝑉𝑉���   (9) 

 

3.3 Firefly Algorithm 

 
Presented by Yang [14], the Firefly Algorithm “FA” is another 
swarm intelligence algorithm based on imitating the fireflies’ 
patterns and social behavior. Roughly speaking, FA is ruled by 
two essential ideas. The first one develops the attractiveness 
between fireflies. As fireflies are unisex, each firefly is 
proportionally attracted to another depending on its brightness 
only. In other words, less bright fireflies will update their position 
by moving towards brighter ones using. The algorithm defines the 

Begin 
Initialize a population of n fireflies. 
Define maximum number of iterations Max iterations 
Calculate the light intensity If for each Firefly f. 
Define light absorption coefficient γ	
While t < Max iterations do: 
  For i = 1: n do: 
      For j = 1: n do: 
          If (Ij > Ii) 
               Move firefly i towards j. 
          End if 
          Evaluate new fireflies’ found solutions. 
          Update light intensity. 
      End for j 
  End for i 
  Update the best firefly. 
End while 
End 

Begin 
 Initialize a Memory Set M with initial Antibodies. 
 Initialize the number of clones k. 
 While Stopping condition is false do: 
   For each Antibody in M do:  
        Determine the affinity of the antibody. 
        Generate k clones of the current antibody.  
        Mutate attributes of these clones.  
   End for 
   Replace the n lowest affinity antibodies in M with n highest       
aaffinity mutated antibodies. 
End while 
End 

Begin 
 Initialize c1, c2 and α 
 Initialize Swarm 
 While stop criteria is false do: 
       For each particle P in the Swarm do:       
          Evaluate P.      
          Update the best known location of P. (Pbest) 
          Update the best known location of the Swarm. (Gbest) 
        End for 
        For each particle P in the Swarm do:    
              Calculate the new velocity using eq.8. 
              Calculate the new position using eq.9. 
        End for 
 End while 
End 
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brightness of a firefly by using the fitness function value of the 
current firefly position. The second idea is the attractiveness 
variation which depends on the separating distance between two 
fireflies. The algorithm above describes the pseudo-code used in 
our comparison study. 

3.4 Harmony Search 
Harmony Search “HS” algorithm described in the pseudocode 
below is a metaheuristic based on the concept of mimicking a 
skilled musician improvisation [15]. Indeed, three possible 
choices are available to the improvising musician: 1. Playing an 
already memorized tone, 2. Playing something similar to the 
memorized tone or 3. Composing a random tone. HS introduce the 
notion of the Harmony Memory HM. In order to store a harmony 
in the HM, an accepting rate raccept in [0,1] is used. To formalize a 
similar tone improvising, a pitch adjustment component is defined 
by using the brange and a pitch adjusting rate rpa. Now, if the 
harmony is to be modified, eq.10 is used to update it. 
 

𝑥𝑥��� = 	 𝑥𝑥��� + (𝑏𝑏�����	×	𝜀𝜀	)  (10) 

3.5 Fireworks Algorithm 
Fireworks Algorithm (FWA) [16] is a memetic approach inspired 
by fireworks and their explosion process. Actually, the resulted 
sparks generated by the explosion process are interpreted as 
solutions revealed by a search mechanism over the local space 
nearby the explosion’s location. During each generation of an 
explosion, n locations (solutions) are selected wherein n fireworks 
are set off. Sparks locations are calculated after the explosion 

triggering. The next generation explosion locations are selected 
from the generated sparks and the current fireworks locations 
relatively to their fitness value. The process runs iteratively until a 
stopping criterion is satisfied. 
      To correctly mimic the sparks generation process, many 
control parameters are defined such as the number of generated 
sparks for each firework, and the explosion amplitude. 

 
      These parameters control the search process and the 
explorative behavior of the algorithm. The FWA algorithm used in 
our study, a fix number of sparks is defined for all fireworks in 
order to promote diversity. As for the explosion amplitude for 
each firework, the equation is given by: 
 

𝐴𝐴� 	= 		 𝐴𝐴		×		 		� �� 		�		����		�		�
	� �� 		�		����		�		��

���
  (11) 

 

where 𝐴𝐴 is the maximum explosion amplitude, and represents the 
best value of the objective function: 
 

y��� = min 𝑓𝑓 𝑥𝑥�     ;    i = 1, 2, 3,…,n   (12) 

Begin 
Initialize Harmony Memory HM with random harmonies  
Initialize harmony memory accepting rate raccept  
Define pitch adjusting rate rpa and brange  
While Stopping condition is false do: 
     Initialize an empty harmony h 
     For each dimension i in h 
         Generate a random number Nrand 
         If (Nrand < raccept),  
             Choose the ith value of the best harmony in HM 
             If (Nrand < rpa),  
                 Adjust the value using eq.10 
             End if 
          Else Choose a random value from HM  
          End if 
      End for 
      Evaluate h 
      Rank HM Harmonies 
      Find the 1st harmony k in HM with a lower fitness than h 
      If found 
        Replace k with h in HM 
      End if 
End while 
End 

Begin: 
Initialize the set of Fireworks 
Initialize the best location 𝑆𝑆𝑜𝑜𝑙𝑙���� 
While Stopping condition is false do: 
    Initialize Â 
    Initialize the number of sparks 𝑺𝑺𝒏𝒏	to generate for all 
fireworks 
        For each Firework 𝒙𝒙𝒊𝒊 do: 
            Calculate the amplitude 𝑨𝑨𝒊𝒊 of 𝑥𝑥� using eq.11 
            For 	j ∶ 	1 …	𝑆𝑆� do:  
                Initialize a Spark location 𝒚𝒚 with 𝒙𝒙𝒊𝒊 
 Calculate the displacement 𝒉𝒉𝒊𝒊 using 𝒙𝒙𝒊𝒊 amplitude: 
                𝒉𝒉𝒊𝒊 = 𝑨𝑨𝒊𝒊	 . rand (-1,1) 
 Generate uniformly a random 𝒌𝒌 : 1 < 𝑘𝑘 < 𝑑𝑑 
 For 𝑗𝑗 ∶ 1… 𝑘𝑘 do: 
     Select a random dimension 𝒕𝒕. 
          𝒚𝒚𝒕𝒕	 = 𝒙𝒙𝒕𝒕	 + 𝒉𝒉𝒊𝒊 
 End For 
            End for 
        End for 
        Evaluate all Fireworks and generated Sparks. 
        Update the best location 𝑆𝑆𝑜𝑜𝑙𝑙���� 
        Select the best Firework location 𝐹𝐹���� 
        Select the best Spark location 𝑆𝑆𝑃𝑃����	 
        Initialize the next generation starting location:  

            𝑆𝑆𝑇𝑇���� = �
				𝐹𝐹����					𝑖𝑖𝑓𝑓		𝑆𝑆𝑃𝑃���� > 𝛼𝛼		.		𝐹𝐹����	

⬚
𝑆𝑆𝑃𝑃����																												𝑂𝑂𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑠𝑠𝑒𝑒

	  

        For each next generation Firework 𝒙𝒙𝒊𝒊 do: 
                  𝒙𝒙𝒊𝒊	= 𝑺𝑺𝑻𝑻𝒏𝒏𝒆𝒆𝒙𝒙𝒕𝒕 
        End For 
End while 
Stop 
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4   SOLUTION ENCODING & 
INITIALIZATION 
For all algorithms used in this study, solutions are represented 
using a matrix scheme where each decision variable is real 
encoded and is mapped using a couple (i,j), representing its row 
and column position. The size of each solution is the number of 
dimensions in the decision space. 
The problem of Big-OPT aims to find a matrix S1 similar to S. the 
similarity is measured using the second norm distance d2. This 
means: 
 

𝑑𝑑� 𝑆𝑆�	, 𝑆𝑆 = 0	  		 𝑆𝑆� ≡ 𝑆𝑆   (13) 
 

      The initialization process is then facing two choices: Random 
initialization of solutions with uniformly distributed values in the 
decision variables ranges or initialize vectors using the values of 
S, as S is the optimal solution of the minimization problem of the 
first objective function. The pseudo-code below is used to 
initialize each algorithm where 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 −1, 1 )  returns a 
vector of size equal to the number of the problem dimension, 
initialized with values in [-1,1] . We distinguish two cases. In the 
first case, a starting solution 𝑆𝑆𝑆𝑆 is initialized with random values 
in [-1,1]. In the second case, 𝑆𝑆𝑆𝑆 is initialized around the values of 
S. In this study, we have tested both scenarios, however, due to 
space limitation of the paper, we will present the results collected 
by the first case only. The initialization process is described 
below. 
 

 
      During the initialization tests of all algorithms, the successful 
parameter initializations are set as reported in the Table 1. It is 
noticed that for evolutionary and memetic algorithms, the selected 
parameters orient the search to be more exploitative than 
explorative. As for swarm intelligence methods PSO and FA, 
various configurations have been tested. The best ones essentially 
required a weak weighting on the local best position and a strong 
weighting on the global best position. We’ve noticed also that the 
fitness function minimization is continuously achieved using 
infinitesimal changes with small mutation amounts in 
evolutionary and memetic methods. 

 

Table 1: Parameters initialization 

Algorithm Parameters 

CSA Iterations = 10000 ; Memory Set Size = 3 ;  
k = 2 ; Hyper-mutation ρ = 2 

PSO Iterations = 10000 ; Swarm Size = 5 ;  
α = 0.07 ; C1 = C2 = 2 

FA Iterations = 10000 ; Swarm Size = 5 ;  
β0 = 1 ; γ = 3 

HS Iterations = 50000 ; HM Size = 15;  
raccept = 0.5 ; rpa = 0.5 ; ε = 0.05 

FWA Iterations = 30000 ; Population Size = 2 ;  
m = 2 ; Â = 0.02 

5   EXPERIMENTAL RESULTS & DISCUSSION 

5.1 Datasets & test protocol 
To compare each method’s performance, six datasets of different 
sizes are used as described in the table below: 

Table 2: Big-OPT instances details 

Dataset 
instance D4 D4N D12 D12N D19 D19N 

# channels 4 4 12 12 19 19 

Data length 256 256 256 256 256 256 

Size 1024 1024 3072 3072 4864 4864 

Noise No Yes No Yes No Yes 

 
      The experiments are executed on a laptop with a 2.3 GHZ 
CPU and 8 GB of RAM. No parallel computing has been 
performed. To avoid the “random effect”, experiments are 
repeated ten times on each dataset. Each algorithm has been 
allowed a maximum of 50000 fitness function evaluations as a 
stopping criterion. 

5.2 Detailed results 
The figures Fig.1.a and Fig.1b below shows respectively the 
convergence of the used algorithms in noise-free and noised 
datasets. It is clear that both swarm intelligence algorithms PSO 
and FA could not converge to a good optimum in comparison to 
CSA, HS and FWA. 

Begin 

Initialize the population (or Memory) with its 

corresponding size 

Initialize a constant ε 

For each solution 𝑥𝑥� do: 

 Initialize 𝑥𝑥� :   𝑥𝑥� = 	𝑉𝑉𝑒𝑒𝑐𝑐𝑡𝑡𝑜𝑜𝑟𝑟(rand(−1, 1))	x	ε 

End For 

End 
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Figure 1.a: Fitness convergence of each algorithm on noise-
free datasets. 
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Figure 1.b: Fitness convergence of each algorithm on noised 
datasets. 
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Table 3: Detailed results on all datasets 

 Alg. Best Average SD Avg. 
Time (s) 

D4 

CSA 7.75E-02 7.86E-02 6.34E-04 8.09E+00 

PSO 2.86E+00 3.12E+00 1.23E-01 7.82E+00 

FA 2.13E+00 2.25E+00 5.34E-02 4.81E+00 

HS 6.57E-02 6.59E-02 1.16E-04 1.28E+01 

FWA 9.00E-02 9.52E-02 2.31E-03 6.40E+00 

D4N 

CSA 7.58E-02 7.64E-02 4.62E-04 8.07E+00 

PSO 2.89E+00 3.07E+00 1.33E-01 7.81E+00 

FA 2.18E+00 2.26E+00 3.85E-02 4.80E+00 

HS 6.37E-02 6.39E-02 1.76E-04 1.25E+01 

FWA 8.89E-02 9.49E-02 2.93E-03 6.64E+00 

D12 

CSA 1.18E-01 1.22E-01 3.39E-03 4.01E+01 

PSO 3.05E+00 3.15E+00 6.24E-02 4.69E+01 

FA 2.25E+00 2.29E+00 2.73E-02 3.04E+01 

HS 6.70E-02 7.05E-02 2.58E-03 5.42E+01 

FWA 3.12E-01 3.19E-01 5.56E-03 3.28E+01 

D12N 

CSA 1.17E-01 1.23E-01 2.95E-03 4.02E+01 

PSO 2.94E+00 3.15E+00 9.63E-02 4.84E+01 

FA 2.24E+00 2.29E+00 2.51E-02 3.13E+01 

HS 6.42E-02 7.03E-02 3.27E-03 5.59E+01 

FWA 3.09E-01 3.22E-01 6.93E-03 3.40E+01 

D19 

CSA 2.63E-01 2.72E-01 6.01E-03 9.55E+01 

PSO 3.10E+00 3.20E+00 6.16E-02 1.02E+02 

FA 2.25E+00 2.30E+00 2.25E-02 7.68E+01 

HS 1.80E-01 1.95E-01 7.22E-03 1.15E+02 

FWA 4.66E-01 4.77E-01 6.92E-03 7.44E+01 

D19N 

CSA 2.65E-01 2.69E-01 2.75E-03 9.51E+01 

PSO 3.14E+00 3.21E+00 4.68E-02 1.08E+02 

FA 2.27E+00 2.30E+00 2.49E-02 7.80E+01 

HS 1.89E-01 1.94E-01 5.96E-03 1.20E+02 

FWA 4.71E-01 4.77E-01 4.66E-03 7.54E+01 

      

 

      Indeed, HS and CSA record almost the same performance with 
a slight difference to FWA while both PSO and FA suffer from 
stagnation. Furthermore, the Table 2 presents the detailed results 
of all algorithms in all datasets. CSA and HS show a very stable 
performance as the standard deviation SD is very low in the order 
of 10-4. FWA also scores the third good performance while PSO 
and FA record bad optimums in all datasets. To illustrate the 
results presented in Table 1, the figures below compare the 
average solutions of all methods. 
      As swarm intelligence methods performance is very weak, the 
Fig.2 compares only the evolutionary technique “CSA” to 
memetic techniques HS and FWA. the HS algorithm has the best 
quality performance among all algorithms for all datasets. 
However, it is found that HS is computationally expensive as it 
takes more time to accomplish the optimization process. CSA and 
FWA seem to deliver a good compromise between quality and 
computational time as FWA is the most rapid among all methods 
followed by CSA, as shown in Fig.3. 

Figure 2: Average fitness of CSA, HS and FWA on each 
dataset. 

  
 

      These results are found to be very promising especially when 
comparing them with techniques specially developed for Big-OPT 
such as the Differential evolution variants. For example, HS can 
reach optimums that are near to optimums found by the variant 
ACDE in [10]. Additionally, HS is twice as faster as ACDE. Also, 
HS, FWA and CSA obtains better results than JADE, SHADE, 
DECC and NSGAII [16] in terms of quality and computational 
time. 
      This is exactly the main purpose of this paper, where the 
implementation of simple metaheuristics reported in this study can 
be very helpful for readers and relatively fruitful than 
implementing adapted or more complex methods to solve Big-
Opt. Moreover, the simplicity of the successful methods in this 
study allows a straightforward parallel GPU implementation to 
fulfill the very short computational time constraint. 
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Figure 3: Computational time comparison in all datasets. 

 

6 CONCLUSIONS 
This paper introduced a comparative study for the Big-Opt 
problem. The comparison involves methods from evolutionary, 
swarm and memetic computation fields notably Clonal Selection 
Algorithm, Particle Swarm Optimization, Firefly Algorithm, 
Harmony Search and Fireworks Algorithm. Intensive initialization 
tests conclude that the exploitative configuration of the used 
methods is the best adapted to Big-OPT. The reported 
experimental results showed that memetic and evolutionary 
techniques are much more efficient than swarm intelligence 
methods which suffer from stagnation. As perspectives for this 
work, a good tuning of the used evolutionary and memetic 
techniques in a parallel implementation could be of interest in 
order to efficiently solve the problem in real time. Also, it is still a 
major work to test back the recorded performance on a real world 
application although the used benchmarks have been collected 
from real data records. 
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