
A Comparative Study of the EEG Signals Big Optimization
Problem using Evolutionary, Swarm and

 Memetic Computation Algorithms

M. A. El Majdouli
Conception & Systems Laboratory

Mohammed V University
Rabat, Morocco

elmajdouli@acm.org

S. Bougrine
Conception & Systems Laboratory

Mohammed V University
Rabat, Morocco

saad.bougrine@acm.org

I. Rbouh
Conception & Systems Laboratory

Mohammed V University
Rabat, Morocco

rbouh.ismail@ieee.org

 A. A. El Imrani
Conception & Systems Laboratory

Mohammed V University
Rabat, Morocco

elimrani@fsr.ac.ma

ABSTRACT
This paper investigates the optimization of EEG signals cleaning
process by elaborating a comparative study of swarm intelligence,
evolutionary and memetic computation techniques. In this
context, algorithms from each technique have been selected
notably Clonal Selection, Particle Swarm Optimization, Firefly
Algorithm, Harmony Search and Fireworks Algorithm. Each
algorithm performance has been analyzed and validated by
experiments conducted over the CEC Big-OPT EEG datasets. The
results conclude a competitive performance of evolutionary and
memetic methods in comparison to the swarm intelligence
methods.

CCS CONCEPTS
 Theory of computation → Evolutionary algorithms Applied

computing → Health informatics Hardware → Digital signal
processing

KEYWORDS
Medical Data Optimization, Evolutionary Computation, Swarm
Intelligence, Big-OPT, EEG Signals

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.

GECCO '17 Companion, July 15-19, 2017, Berlin, Germany

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-4939-0/17/07…$15.00
DOI: http://dx.doi.org/10.1145/3067695.3082489

1 INTRODUCTION
Most Noninvasive Brain Computer Interfaces (BCI) [1] measure
brain activity using special sensors placed on the head to record
Electroencephalogram (EEG) signals [2] that allow
neurobiologists to monitor the brain electric activity. Recent
advances focus on analyzing and correctly interpreting the EEG
signals. In one hand, they deliver essential information used by
specialists to understand several interesting neurobiological
disorders of great importance. For instance, understanding and
treating epilepsy which affects 1% of the world’s population [3]
can have not only a high medical and humanitarian impact, but
also an enormous economic opportunity for medical and drugs
companies. In the other hand, EEG signals can be interpreted and
translated to computer tasks which open wide doors to integrate
BCIs into potential applications in the public markets, notably
gaming industry; Virtual Reality for in-stance; or military
programs. However, achieving such levels is faced with several
difficulties. A real-time BCI is characterized to be highly time
dependent and captured signals may vary in a milliseconds scale.
Also, using many sensors not only raises the amount of recorded
data but also question the accuracy rate of each sensor when their
manufacturing is not the same. Additionally, captured signals are
noised by non-brain electrical sources which affect further the
accuracy and augment the processing time. These difficulties can
define the 4’v characterizing the Big Data concept [4], which
leads to considering the EEG signals as an instance of Big Data.
In the Optimization of Big Data 2015 Competition [5] [6], the
problem is modeled as an NP-Hard Big Data optimization
problem (Big-Opt). The dimensionality of this problem can be
very high as the number of handled variables can reach the
multiple of the length of EEG signals by the number of channels
used in the capture operation. Besides handling such high
dimensionality, the optimization solving algorithm should also

1357

GECCO’17, July 2017, Berlin, GERMANY M. A. El Majdouli et al.

2

have a rapid convergence time, as EEG signals require a real-time
processing.
 Many real world optimization problems like Big-Opt are
naturally complex and hard to solve using mathematical exact
approaches, as they involve complex structures and a very large
search space, in which, even exhaustive and random heuristic
approaches fails to provide the optimal solution in an acceptable
time. Meta-heuristics suggest a compromised approach aiming to
deliver good solutions in a reasonable time. This approach is
mainly ruled by two mechanisms in order to discover promising
regions in the search space: Exploration of the search space and
Exploitation of the local space nearby a given solution. Nature has
been a great source of inspiration to implement these mechanisms.
The evolutionary process of beings reported in the Darwin
principles that suggest the survival of the fittest using mutation,
crossover and reproduction, started a wide track of optimization
known as evolutionary computation. Another important model of
optimization solving is the swarm computation. In this approach,
the optimization task takes advantage of the group intelligence
developed by beings like ants and birds. Memetic computation is
the most recent model in optimization. It somehow takes
advantage of the evolutionary and swarm computation without
being limited to the natural phenomenon. It mainly consists on
imitating any real life phenomenon that might serve as a good
optimization process that efficiently implements the exploration
and exploitation mechanisms. It is mostly represented as an
incorporation of a local search method into a global search
optimization method such us an evolutionary algorithm.
 The goal of this paper is to study the performance of several
NP-Hard optimization techniques on solving the Big-Opt
problem. As only few works have tackled Big-Opt, this paper
delivers a comparative study using some relevant algorithms in
the evolutionary, swarm and memetic computation fields, notably
Clonal Selection, Particle Swarm Optimization, Firefly
Algorithm, Harmony Search and Fireworks Algorithm. The paper
will help to provide researchers with a ground truth about the
performance of these algorithms to solve Big-opt and also a
starting point to ameliorate and enhance the solving process using
these algorithms. Additionally, this paper intends to strengthen the
motivation for solving Big-OPT-like instances and to help other
researchers from outside the optimization field, e.g. medical field
researchers, on choosing the appropriate optimization method.
 The rest of the paper is organized as follows: Section 2
provides a description of the Big-Opt problem. Section 3
describes the algorithms used in the comparative study. Section 4
details the used solution encoding and initialization. The
experimental results are reported in Section 5 at which we
conclude right after.

2 BIG-OPT PROBLEM: BACKGROUND &
RELATED WORKS

Although several methods to monitor and record the brain activity
has been proposed like functional magnetic resonance imaging
(fMRI) and magnetoencephalographic signal (MEG), the EEG
signal is still the most used because of its convenience to the

patients and its economic cost [7]. The challenge in EEG signals
analysis lies in successfully recovering true brain signals of a
given activity that is noised by some artifacts due to both internal
and external factors. While external factors can be summarized in
non-brain electric activity sources, the internal factors concern
involuntary movements such as eyes blinking or undesirable
imagined movements that generate an undesirable electrical brain
activity. To remove these artifacts, the signals data is passed
through an Independent Component Analysis [8]. The
reconstruction is supposed to be performed in real time with the
sensors’ recording. Considering the high dimensionality of the
signals, the reconstruction becomes a time-consuming task. To
automatize the noise cleaning process, the problem is
mathematically expressed as a Big Data optimization problem.
 Let X a matrix of dimension N x M, where N is the number of
inter-dependent time series (signals), and M is their length.
Assume S, an N x M matrix with N independent time series of
length M such that:

𝑋𝑋 = 𝐴𝐴	. 𝑆𝑆 (1)

where A is a linear transformation matrix of N x N dimension. The
problem is to decompose S into two matrices S1 and S2 of the
same dimensionality as S such that:

𝑆𝑆 = 	 𝑆𝑆� + 	𝑆𝑆� (2)

𝑋𝑋 = 𝐴𝐴	. 𝑆𝑆� + 𝐴𝐴	. 𝑆𝑆� (3)

The Pearson correlation matrix C between S1 and X is given by:

𝐶𝐶 = 	 ���(�,�.��)
��� � .���(�	.��)

 (4)

where cov(.) is the covariance matrix and var(.) is the variance.
 The goal is to find S1 similar to S where the distance between
the two matrices is as minimal as possible. Also, the off-diagonal
elements of C should be minimized while the on-diagonal
elements have to be maximized. This mathematical expression
gave two formulations of the problem. The first one is a multi-
objective optimization problem that maximizes two functions f1
and f2 such that:
Given S, X and A, find S1 that minimizes:

𝑚𝑚𝑚𝑚𝑚𝑚 	 𝑓𝑓� = 	 �
�.�

(𝑆𝑆�� − 	𝑆𝑆�,��)²�,� (5)

𝑚𝑚𝑚𝑚𝑚𝑚 	 𝑓𝑓� = 	 �
����

(𝐶𝐶���) + 	 �
�

(1 −	𝐶𝐶��)²��,��� (6)

The second formulation is a single objective optimization problem
that optimizes:

𝑓𝑓 = 	𝑚𝑚𝑚𝑚𝑚𝑚 	(𝑓𝑓� + 	𝑓𝑓�) (7)

 In order to solve the single objective problem of Big-Opt,
some techniques have been used. For instance, Zhang et al. [9]
proposed a multi-agent genetic algorithm with redesigned
competition and self-learning operators to solve the single
objective Big-Opt problem. They combined them with crossover
and mutation operators to simulate the learning behavior of
agents. An adaptive configuration of differential evolution
algorithms (DEA) was introduced in [10]. The idea proposed to

1358

A Comparative Study on Solving the EEG Signals Big Optimization GECCO’17, July 2017, Berlin, GERMANY

 3

run three variants of DEA in parallel, and evolve only the best
performing variant. Elsayed et al. [11] extended the same idea to a
differential evolution framework to achieve better results. They
mainly focused on analyzing and tuning the differential evolution
algorithms parameters.

3 EVOLUTIONARY, SWARM AND MEMETIC
COMPUTATION FOR OPTIMIZATION
PROBLEMS

In this section, we describe the Immune Clonal Selection
algorithms as an evolutionary computation algorithm, Particle
Swarm optimization and the Firefly Algorithm to represent the
Swarm intelligence computation and Fireworks Algorithm along
with Harmony Search for the Memetic computation.

3.1 Immune Clonal Selection
The clonal selection algorithm “CSA” [12] is inspired by the
clonal selection theory of the natural immune system to perform
an optimization process. This latter is mainly based on the idea of
proliferation of the B cells depending on their maturity degree
called affinity. That means the higher the affinity the more clones
are produced. Additionally, the mutation rate that a given
antibody could suffer is inversely proportional to its parent
affinity. In this paper, a fix number of clones is used to preserve a
search diversity, along with an inversely proportional hyper-
mutation operator, allowing B cells with low affinity which is a
fitness function value to undergo a high mutation rate. The
pseudo-code of the implemented clonal selection algorithm is
given below.

3.2 Particle Swarm Optimization
The Particle Swarm Optimization “PSO” is a very popular
technique in stochastic optimization [13]. Developed by Eberhat
and Kennedy, PSO essentially imitates the birds flock and
simulates their flying pattern. It exploits the swarm information to
update a position X of each particle of the swarm. Indeed, each
particle updates its velocity V according to its best known location
Pbest and the best known location found by the whole swarm Gbest

as described in eq.8 and eq.9 where 𝛼𝛼, C1 and C2 are weighting
parameters. In this study, the implemented pseudo-code of PSO is
described below.

𝑉𝑉��� 	= 	𝑉𝑉� 	+ 	𝛼𝛼	. (𝐶𝐶�	. 𝑃𝑃���� − 𝑋𝑋�	 + 𝐶𝐶�	. (𝐺𝐺���� − 𝑋𝑋�)) (8)

𝑋𝑋��� = 	𝑋𝑋� + 𝑉𝑉��� (9)

3.3 Firefly Algorithm

Presented by Yang [14], the Firefly Algorithm “FA” is another
swarm intelligence algorithm based on imitating the fireflies’
patterns and social behavior. Roughly speaking, FA is ruled by
two essential ideas. The first one develops the attractiveness
between fireflies. As fireflies are unisex, each firefly is
proportionally attracted to another depending on its brightness
only. In other words, less bright fireflies will update their position
by moving towards brighter ones using. The algorithm defines the

Begin
Initialize a population of n fireflies.
Define maximum number of iterations Max iterations
Calculate the light intensity If for each Firefly f.
Define light absorption coefficient γ	
While t < Max iterations do:
 For i = 1: n do:
 For j = 1: n do:
 If (Ij > Ii)
 Move firefly i towards j.
 End if
 Evaluate new fireflies’ found solutions.
 Update light intensity.
 End for j
 End for i
 Update the best firefly.
End while
End

Begin
 Initialize a Memory Set M with initial Antibodies.
 Initialize the number of clones k.
 While Stopping condition is false do:
 For each Antibody in M do:
 Determine the affinity of the antibody.
 Generate k clones of the current antibody.
 Mutate attributes of these clones.
 End for
 Replace the n lowest affinity antibodies in M with n highest
aaffinity mutated antibodies.
End while
End

Begin
 Initialize c1, c2 and α
 Initialize Swarm
 While stop criteria is false do:
 For each particle P in the Swarm do:
 Evaluate P.
 Update the best known location of P. (Pbest)
 Update the best known location of the Swarm. (Gbest)
 End for
 For each particle P in the Swarm do:
 Calculate the new velocity using eq.8.
 Calculate the new position using eq.9.
 End for
 End while
End

1359

GECCO’17, July 2017, Berlin, GERMANY M. A. El Majdouli et al.

4

brightness of a firefly by using the fitness function value of the
current firefly position. The second idea is the attractiveness
variation which depends on the separating distance between two
fireflies. The algorithm above describes the pseudo-code used in
our comparison study.

3.4 Harmony Search
Harmony Search “HS” algorithm described in the pseudocode
below is a metaheuristic based on the concept of mimicking a
skilled musician improvisation [15]. Indeed, three possible
choices are available to the improvising musician: 1. Playing an
already memorized tone, 2. Playing something similar to the
memorized tone or 3. Composing a random tone. HS introduce the
notion of the Harmony Memory HM. In order to store a harmony
in the HM, an accepting rate raccept in [0,1] is used. To formalize a
similar tone improvising, a pitch adjustment component is defined
by using the brange and a pitch adjusting rate rpa. Now, if the
harmony is to be modified, eq.10 is used to update it.

𝑥𝑥��� = 	 𝑥𝑥��� + (𝑏𝑏�����	×	𝜀𝜀) (10)

3.5 Fireworks Algorithm
Fireworks Algorithm (FWA) [16] is a memetic approach inspired
by fireworks and their explosion process. Actually, the resulted
sparks generated by the explosion process are interpreted as
solutions revealed by a search mechanism over the local space
nearby the explosion’s location. During each generation of an
explosion, n locations (solutions) are selected wherein n fireworks
are set off. Sparks locations are calculated after the explosion

triggering. The next generation explosion locations are selected
from the generated sparks and the current fireworks locations
relatively to their fitness value. The process runs iteratively until a
stopping criterion is satisfied.
 To correctly mimic the sparks generation process, many
control parameters are defined such as the number of generated
sparks for each firework, and the explosion amplitude.

 These parameters control the search process and the
explorative behavior of the algorithm. The FWA algorithm used in
our study, a fix number of sparks is defined for all fireworks in
order to promote diversity. As for the explosion amplitude for
each firework, the equation is given by:

𝐴𝐴� 	= 		 𝐴𝐴		×		 		� �� 		�		����		�		�
	� �� 		�		����		�		��

���
 (11)

where 𝐴𝐴 is the maximum explosion amplitude, and represents the
best value of the objective function:

y��� = min 𝑓𝑓 𝑥𝑥� ; i = 1, 2, 3,…,n (12)

Begin
Initialize Harmony Memory HM with random harmonies
Initialize harmony memory accepting rate raccept
Define pitch adjusting rate rpa and brange
While Stopping condition is false do:
 Initialize an empty harmony h
 For each dimension i in h
 Generate a random number Nrand
 If (Nrand < raccept),
 Choose the ith value of the best harmony in HM
 If (Nrand < rpa),
 Adjust the value using eq.10
 End if
 Else Choose a random value from HM
 End if
 End for
 Evaluate h
 Rank HM Harmonies
 Find the 1st harmony k in HM with a lower fitness than h
 If found
 Replace k with h in HM
 End if
End while
End

Begin:
Initialize the set of Fireworks
Initialize the best location 𝑆𝑆𝑜𝑜𝑙𝑙����
While Stopping condition is false do:
 Initialize Â
 Initialize the number of sparks 𝑺𝑺𝒏𝒏	to generate for all
fireworks
 For each Firework 𝒙𝒙𝒊𝒊 do:
 Calculate the amplitude 𝑨𝑨𝒊𝒊 of 𝑥𝑥� using eq.11
 For 	j ∶ 	1 …	𝑆𝑆� do:
 Initialize a Spark location 𝒚𝒚 with 𝒙𝒙𝒊𝒊
 Calculate the displacement 𝒉𝒉𝒊𝒊 using 𝒙𝒙𝒊𝒊 amplitude:
 𝒉𝒉𝒊𝒊 = 𝑨𝑨𝒊𝒊	 . rand (-1,1)
 Generate uniformly a random 𝒌𝒌 : 1 < 𝑘𝑘 < 𝑑𝑑
 For 𝑗𝑗 ∶ 1… 𝑘𝑘 do:
 Select a random dimension 𝒕𝒕.
 𝒚𝒚𝒕𝒕	 = 𝒙𝒙𝒕𝒕	 + 𝒉𝒉𝒊𝒊
 End For
 End for
 End for
 Evaluate all Fireworks and generated Sparks.
 Update the best location 𝑆𝑆𝑜𝑜𝑙𝑙����
 Select the best Firework location 𝐹𝐹����
 Select the best Spark location 𝑆𝑆𝑃𝑃����	
 Initialize the next generation starting location:

 𝑆𝑆𝑇𝑇���� = �
				𝐹𝐹����					𝑖𝑖𝑓𝑓		𝑆𝑆𝑃𝑃���� > 𝛼𝛼		.		𝐹𝐹����	

⬚
𝑆𝑆𝑃𝑃����																												𝑂𝑂𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑠𝑠𝑒𝑒

	

 For each next generation Firework 𝒙𝒙𝒊𝒊 do:
 𝒙𝒙𝒊𝒊	= 𝑺𝑺𝑻𝑻𝒏𝒏𝒆𝒆𝒙𝒙𝒕𝒕
 End For
End while
Stop

1360

A Comparative Study on Solving the EEG Signals Big Optimization GECCO’17, July 2017, Berlin, GERMANY

 5

4 SOLUTION ENCODING &
INITIALIZATION
For all algorithms used in this study, solutions are represented
using a matrix scheme where each decision variable is real
encoded and is mapped using a couple (i,j), representing its row
and column position. The size of each solution is the number of
dimensions in the decision space.
The problem of Big-OPT aims to find a matrix S1 similar to S. the
similarity is measured using the second norm distance d2. This
means:

𝑑𝑑� 𝑆𝑆�	, 𝑆𝑆 = 0	 		 𝑆𝑆� ≡ 𝑆𝑆 (13)

 The initialization process is then facing two choices: Random
initialization of solutions with uniformly distributed values in the
decision variables ranges or initialize vectors using the values of
S, as S is the optimal solution of the minimization problem of the
first objective function. The pseudo-code below is used to
initialize each algorithm where 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 −1, 1) returns a
vector of size equal to the number of the problem dimension,
initialized with values in [-1,1] . We distinguish two cases. In the
first case, a starting solution 𝑆𝑆𝑆𝑆 is initialized with random values
in [-1,1]. In the second case, 𝑆𝑆𝑆𝑆 is initialized around the values of
S. In this study, we have tested both scenarios, however, due to
space limitation of the paper, we will present the results collected
by the first case only. The initialization process is described
below.

 During the initialization tests of all algorithms, the successful
parameter initializations are set as reported in the Table 1. It is
noticed that for evolutionary and memetic algorithms, the selected
parameters orient the search to be more exploitative than
explorative. As for swarm intelligence methods PSO and FA,
various configurations have been tested. The best ones essentially
required a weak weighting on the local best position and a strong
weighting on the global best position. We’ve noticed also that the
fitness function minimization is continuously achieved using
infinitesimal changes with small mutation amounts in
evolutionary and memetic methods.

Table 1: Parameters initialization

Algorithm Parameters

CSA Iterations = 10000 ; Memory Set Size = 3 ;
k = 2 ; Hyper-mutation ρ = 2

PSO Iterations = 10000 ; Swarm Size = 5 ;
α = 0.07 ; C1 = C2 = 2

FA Iterations = 10000 ; Swarm Size = 5 ;
β0 = 1 ; γ = 3

HS Iterations = 50000 ; HM Size = 15;
raccept = 0.5 ; rpa = 0.5 ; ε = 0.05

FWA Iterations = 30000 ; Population Size = 2 ;
m = 2 ; Â = 0.02

5 EXPERIMENTAL RESULTS & DISCUSSION

5.1 Datasets & test protocol
To compare each method’s performance, six datasets of different
sizes are used as described in the table below:

Table 2: Big-OPT instances details

Dataset
instance D4 D4N D12 D12N D19 D19N

channels 4 4 12 12 19 19

Data length 256 256 256 256 256 256

Size 1024 1024 3072 3072 4864 4864

Noise No Yes No Yes No Yes

 The experiments are executed on a laptop with a 2.3 GHZ
CPU and 8 GB of RAM. No parallel computing has been
performed. To avoid the “random effect”, experiments are
repeated ten times on each dataset. Each algorithm has been
allowed a maximum of 50000 fitness function evaluations as a
stopping criterion.

5.2 Detailed results
The figures Fig.1.a and Fig.1b below shows respectively the
convergence of the used algorithms in noise-free and noised
datasets. It is clear that both swarm intelligence algorithms PSO
and FA could not converge to a good optimum in comparison to
CSA, HS and FWA.

Begin

Initialize the population (or Memory) with its

corresponding size

Initialize a constant ε

For each solution 𝑥𝑥� do:

 Initialize 𝑥𝑥� : 𝑥𝑥� = 	𝑉𝑉𝑒𝑒𝑐𝑐𝑡𝑡𝑜𝑜𝑟𝑟(rand(−1, 1))	x	ε

End For

End

1361

GECCO’17, July 2017, Berlin, GERMANY M. A. El Majdouli et al.

6

0.0

1.0

2.0

3.0

4.0

5.0

6.0

1 100 1000 10000 20000 30000 40000 50000

FIT
NE

SS
	V
AL
UE

FITNESS	EVALUATIONS

CSA PSO FA HS FWA

Figure 1.a: Fitness convergence of each algorithm on noise-
free datasets.

D4

D12

D19

Figure 1.b: Fitness convergence of each algorithm on noised
datasets.

D4N

D12N

D19N

0.0

1.0

2.0

3.0

4.0

5.0

6.0

1 100 1000 10000 20000 30000 40000 50000

FIT
NE

SS
	V
AL
UE

FITNESS	EVALUATIONS

CSA PSO FA HS FWA

0.0

1.0

2.0

3.0

4.0

5.0

6.0

1 100 1000 10000 20000 30000 40000 50000

FIT
NE

SS
	V
AL
UE

FITNESS	EVALUATIONS

CSA PSO FA HS FWA

0.0

1.0

2.0

3.0

4.0

5.0

6.0

1 100 1000 10000 20000 30000 40000 50000

FIT
NE

SS
	V
AL
UE

FITNESS	EVALUATIONS

CSA PSO FA HS FWA

0.0

1.0

2.0

3.0

4.0

5.0

6.0

1 100 1000 10000 20000 30000 40000 50000

FIT
NE

SS
	V
AL
UE

FITNESS	EVALUATIONS

CSA PSO FA HS FWA

0.000

1.000

2.000

3.000

4.000

5.000

6.000

1 100 1000 10000 20000 30000 40000 50000

FIT
NE

SS
	V
AL
UE

FITNESS	EVALUATIONS

CSA PSO FA HS FWA

1362

A Comparative Study on Solving the EEG Signals Big Optimization GECCO’17, July 2017, Berlin, GERMANY

 7

Table 3: Detailed results on all datasets

 Alg. Best Average SD Avg.
Time (s)

D4

CSA 7.75E-02 7.86E-02 6.34E-04 8.09E+00

PSO 2.86E+00 3.12E+00 1.23E-01 7.82E+00

FA 2.13E+00 2.25E+00 5.34E-02 4.81E+00

HS 6.57E-02 6.59E-02 1.16E-04 1.28E+01

FWA 9.00E-02 9.52E-02 2.31E-03 6.40E+00

D4N

CSA 7.58E-02 7.64E-02 4.62E-04 8.07E+00

PSO 2.89E+00 3.07E+00 1.33E-01 7.81E+00

FA 2.18E+00 2.26E+00 3.85E-02 4.80E+00

HS 6.37E-02 6.39E-02 1.76E-04 1.25E+01

FWA 8.89E-02 9.49E-02 2.93E-03 6.64E+00

D12

CSA 1.18E-01 1.22E-01 3.39E-03 4.01E+01

PSO 3.05E+00 3.15E+00 6.24E-02 4.69E+01

FA 2.25E+00 2.29E+00 2.73E-02 3.04E+01

HS 6.70E-02 7.05E-02 2.58E-03 5.42E+01

FWA 3.12E-01 3.19E-01 5.56E-03 3.28E+01

D12N

CSA 1.17E-01 1.23E-01 2.95E-03 4.02E+01

PSO 2.94E+00 3.15E+00 9.63E-02 4.84E+01

FA 2.24E+00 2.29E+00 2.51E-02 3.13E+01

HS 6.42E-02 7.03E-02 3.27E-03 5.59E+01

FWA 3.09E-01 3.22E-01 6.93E-03 3.40E+01

D19

CSA 2.63E-01 2.72E-01 6.01E-03 9.55E+01

PSO 3.10E+00 3.20E+00 6.16E-02 1.02E+02

FA 2.25E+00 2.30E+00 2.25E-02 7.68E+01

HS 1.80E-01 1.95E-01 7.22E-03 1.15E+02

FWA 4.66E-01 4.77E-01 6.92E-03 7.44E+01

D19N

CSA 2.65E-01 2.69E-01 2.75E-03 9.51E+01

PSO 3.14E+00 3.21E+00 4.68E-02 1.08E+02

FA 2.27E+00 2.30E+00 2.49E-02 7.80E+01

HS 1.89E-01 1.94E-01 5.96E-03 1.20E+02

FWA 4.71E-01 4.77E-01 4.66E-03 7.54E+01

 Indeed, HS and CSA record almost the same performance with
a slight difference to FWA while both PSO and FA suffer from
stagnation. Furthermore, the Table 2 presents the detailed results
of all algorithms in all datasets. CSA and HS show a very stable
performance as the standard deviation SD is very low in the order
of 10-4. FWA also scores the third good performance while PSO
and FA record bad optimums in all datasets. To illustrate the
results presented in Table 1, the figures below compare the
average solutions of all methods.
 As swarm intelligence methods performance is very weak, the
Fig.2 compares only the evolutionary technique “CSA” to
memetic techniques HS and FWA. the HS algorithm has the best
quality performance among all algorithms for all datasets.
However, it is found that HS is computationally expensive as it
takes more time to accomplish the optimization process. CSA and
FWA seem to deliver a good compromise between quality and
computational time as FWA is the most rapid among all methods
followed by CSA, as shown in Fig.3.

Figure 2: Average fitness of CSA, HS and FWA on each
dataset.

 These results are found to be very promising especially when
comparing them with techniques specially developed for Big-OPT
such as the Differential evolution variants. For example, HS can
reach optimums that are near to optimums found by the variant
ACDE in [10]. Additionally, HS is twice as faster as ACDE. Also,
HS, FWA and CSA obtains better results than JADE, SHADE,
DECC and NSGAII [16] in terms of quality and computational
time.
 This is exactly the main purpose of this paper, where the
implementation of simple metaheuristics reported in this study can
be very helpful for readers and relatively fruitful than
implementing adapted or more complex methods to solve Big-
Opt. Moreover, the simplicity of the successful methods in this
study allows a straightforward parallel GPU implementation to
fulfill the very short computational time constraint.

0.0E+00

1.0E-01

2.0E-01

3.0E-01

4.0E-01

5.0E-01

CSA HS FWA

FI
TN

ES
S	
	V
AL
UE
D4 D4N D12 D12N D19 D19N

1363

GECCO’17, July 2017, Berlin, GERMANY M. A. El Majdouli et al.

8

Figure 3: Computational time comparison in all datasets.

6 CONCLUSIONS
This paper introduced a comparative study for the Big-Opt
problem. The comparison involves methods from evolutionary,
swarm and memetic computation fields notably Clonal Selection
Algorithm, Particle Swarm Optimization, Firefly Algorithm,
Harmony Search and Fireworks Algorithm. Intensive initialization
tests conclude that the exploitative configuration of the used
methods is the best adapted to Big-OPT. The reported
experimental results showed that memetic and evolutionary
techniques are much more efficient than swarm intelligence
methods which suffer from stagnation. As perspectives for this
work, a good tuning of the used evolutionary and memetic
techniques in a parallel implementation could be of interest in
order to efficiently solve the problem in real time. Also, it is still a
major work to test back the recorded performance on a real world
application although the used benchmarks have been collected
from real data records.

REFERENCES
[1] S. G. Mason, A. Bashashati, M. Fatourechi, K. F. Navarro, G. E. Birch. A

comprehensive survey of brain interface technology designs. Annals of
biomedical engineering.35 (2) (2007) 137-169.

[2] He, L., Liu, B., Hu, D., Wen, Y., Wan, M., & Long, J. (2015). Motor Imagery
EEG Signals Analysis Based on Bayesian Network with Gaussian Distribution.
Neurocomputing.

[3] Murthy, J. M. K. (2003). Some problems and pitfalls in developing countries.
Epilepsia, 44(s1), 38-42.

[4] Big Data Infographic: Solve your Big Data Problems,
http://www.intel.in/content/www/in/en/big-data/solving-big-data- problems-
infographic.html.

[5] http://www.husseinabbass.net/BigOpt.html. Accessed: 25 April 2016.
[6] Goh, S. K., Tan, K. C., Al-Mamun, A., & Abbass, H. A. (2015, May).

Evolutionary big optimization (BigOpt) of signals. In Evolutionary
Computation (CEC), 2015 IEEE Congress on (pp. 3332-3339). IEEE.

[7] E. Parvinnia, M. Sabeti, M. Zolghadri Jahromi, R. Boostani, (2013).
Classification of EEG Signals using adaptive weighted distance nearest
neighbor algorithm. Journal of King Saud University-Computer and
Information Sciences.

[8] Goh SK, Abbass HA, Tan KC, Al-Mamun A (2015) Decompositional
independent component analysis using multi-objective optimization. Soft
Computing, pp 1–16.

[9] Zhang, Y., Zhou, M., Jiang, Z., & Liu, J. (2015, May). A multi-agent genetic
algorithm for big optimization problems. In Evolutionary Computation (CEC),
2015 IEEE Congress on (pp. 703-707). IEEE.

[10] An adaptive configuration of differential evolution algorithms for big data. In
Evolutionary Computation (CEC), 2015 IEEE Congress on (pp. 695-702).
IEEE. DOI: 10.1109/CEC.2015.7256958.

[11] Elsayed, S., & Sarker, R. (2016). Differential evolution framework for big data
optimization. Memetic Computing, 1-17.

[12] Cutello, V., Nicosia, G., & Pavone, M. (2006, April). Real coded clonal
selection algorithm for unconstrained global optimization using a hybrid
inversely proportional hypermutation operator. In Proceedings of the 2006
ACM symposium on Applied computing (pp. 950-954).

[13] Kennedy, J. (2011). Particle swarm optimization. In Encyclopedia of machine
learning (pp. 760-766). Springer US.

[14] Yang, X. S. (2009, October). Firefly algorithms for multimodal optimization. In
International Symposium on Stochastic Algorithms (pp. 169-178). Springer
Berlin Heidelberg.

[15] Yang, X. S. (2009). Harmony search as a metaheuristic algorithm. In Music-
inspired harmony search algorithm (pp. 1-14). Springer Berlin Heidelberg.

[16] El Majdouli, M. A., Rbouh, I., Bougrine, S., El Benani, B., & El Imrani, A. A.
(2016). Fireworks algorithm framework for Big Data optimization. Memetic
Computing, 8(4), 333-347.

 0.0E+00

2.0E+01

4.0E+01

6.0E+01

8.0E+01

1.0E+02

1.2E+02

CSA PSO FA HS FWA

TI
M
E		
(s)

D4 D4N D12 D12N D19 D19N

1364

