
A Baseline-Realistic Objective Open-Ended Kinematics
Simulator for Evolutionary Robotics

Riley Konsella
Union College
807 Union St

Schenectady, New York 12308
konsellr@union.edu

Frank Chiarulli
Union College
807 Union St

Schenectady, New York 12308
chiarulf@union.edu

John Peterson
Union College
807 Union St

Schenectady, New York 12308
petersoj@union.edu

John Rieffel
Union College
807 Union St

Schenectady, New York 12308
rieffelj@union.edu

ABSTRACT
Most modern applications of Evolutionary Robotics (ER) rely upon
computer-based physics simulations in order to model the behavior
of the systems in question. One of the greatest challenges in the
field of ER, therefore, is the development of robust, high-precision
and accurate physics simulators that can model all necessary and
relevant real-world interactions in an computationally efficient
manner. Up until now, most popular ER simulators are nonetheless
deficient in one or many of these properties. Here we introduce a
new competitive simulator, the Baseline-Realistic Objective Open-
Ended Kinematics Simulator (BROOKS) that outperforms other
off-the-shelf simulators in most criteria. Our simulator is free, open-
sourced, and easy to modify. It can model a wide range of robotic
platforms, substrates and environments. Moreover, we claim so-
lutions produced within the BROOKS simulator perform almost
identically in the real-world, thereby helping to address one of the
most challenging aspects of simulation in Evolutionary Robotics:
the Reality Gap. Ultimately, we believe that BROOKS will estab-
lish a new baseline against which all other simulators should be
compared.

KEYWORDS
Evolutionary Robotics, Simulation, Reality

ACM Reference format:
Riley Konsella, Frank Chiarulli, John Peterson, and John Rieffel. 2017. A
Baseline-Realistic Objective Open-Ended Kinematics Simulator for Evolu-
tionary Robotics . In Proceedings of GECCO ’17 Companion, Berlin, Germany,
July 15-19, 2017, 4 pages.
https://doi.org/http://dx.doi.org/10.1145/3067695.3082164

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-4939-0/17/07. . . $15.00
https://doi.org/http://dx.doi.org/10.1145/3067695.3082164

1 INTRODUCTION
The field of Evolutionary Robotics has always been deeply tied to
the use of realistic physics simulators. One of the earliest exam-
ples is certainly the work of Karl Sims, whose evolved embodied
agents were evolved (and even co-evolved) within a compellingly
realistic simulation that modeled both ground-based and fluidic
interactions [16]. The impact of this paper effectively launched the
field of Virtual Creatures. An exhaustive list of simulation-based
Evolutionary Robotics papers would be incredibly long, however
some notable landmarks in simulation-based Evolutionary Robotics
include Hornby’s generatively-encoded robots [11], Bongard’s early
GRN-based robots [2], and Hiller’s VoxCAD-based soft robots, [10].

Throughout the history of Evolutionary Robotics, many research-
ers have developed their own physics engines (such as Sims, Hornby,
and Hiller) in order to perform their research. The advantage of
home-grown simulators lies in the ability to fine-tune characteris-
tics to the problem at hand, and choosing tomodel only those factors
deemed relevant. The downside, however, is that, even when open-
sourced, these engines are rarely scrutinized by large developer
communities, and are rarely easily extended by outside developers.
Alternatively, more recent ER research has been based upon upon
off-the shelf physics simulators, such as the Open Dynamics En-
gine (ODE) (used in work on evolved tensegrities by Rieffel [14, 15]
among others), PhysX (Glette et al. [8]), and Bullet Physics (used
as the basis for Sunspiral et al’s NTRT tensegrity robot research [4]
, among others). The advantage of these simulators is that they are
generally developed by large communities, and can have relatively
fast development cycles and longer lists of features. However, this
comes at the cost of incorporating features in the physics engine
which a particular ER researcher may not require.

When used to answer abstract research questions about morphol-
ogy or control, simulated solutions are often sufficient. However, if
researchers are interested in transferring evolved results into the
physical world they face an additional challenge. Typically, solu-
tions evolved in simulation often struggle when transferred to the
real world – Jakobi termed this disparity between simulated and
evolved solutions the "Reality Gap" [12]. Several approaches exist
to trying to "cross" the reality gap - beginning with Jakobi’s own
modeling of sensor noise [12], and including more sophisticated

1113

https://doi.org/http://dx.doi.org/10.1145/3067695.3082164
https://doi.org/http://dx.doi.org/10.1145/3067695.3082164

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany R. Konsella et al.

techniques such as Bongard’s co-evolutionary self-modeling [1],
Cully et al.’s Bayesian-Optimization approach [6], and Mouret’s
transferability approach [13].

Regardless of the choice of simulator, most approaches to mod-
eling real-world physics have weaknesses and drawbacks. One of
the most significant in the context of evolutionary robotics is the
handling of collisions between complex geometries. Further, if a
simulator’s time-step is too large, then colliding bodies may lead
penetrate, requiring a large restitution force to correct – leading to
the common evolutionary exploitation of robots optimizing "move-
ment" by shooting rapidly into space. Using a smaller time-step
can reduce (but not eliminate) this type of problem, however, this
in turn leads to increased computational effort and longer overall
simulation times. Other challenges include numerical instabilities
and unexpected oscillations.

Of course, others have decided to eschew simulation entirely
and, inspired by the embodiment philosophy of Rodney Brooks
(who quipped that "the world is its own best model" [3]), have
evolved solutions directly in the real world, without resorting to
simulation. This trend began with the "Sussex Approach" of Harvey
et al [5, 9, 17], and encompasses the Embodied Evolution of Watson
and Ficici [18], Floreano and Mondada [7] and Zykov et al [19].

This diversity of simulator choice in Evolutionary Robotics presents
an obstacle to further progress in the field. There are compelling
arguments towards finding a common simulation environment, or
at the least finding a solid and reliable baseline evolutionary robot-
ics simulator against which others can compared and contrasted.
In this work we present one such candidate system.

2 THE BROOKS PHYSICS ENGINE
Here we introduce a new cutting-edge physics simulator for evolu-
tionary robotics that, for the first time, has sufficient fidelity to the
real world to resolve the "reality gap", thereby setting a new gold
standard for evolutionary robotics simulators, and a firm baseline
against which others can be measured. We have named this the
Baseline Realistic Objective Open-Ended Kinematics Simulator, or
BROOKS. By "baseline realistic" we mean it provides a complete set
of necessary (although not necessarily minimal) features required
of evolutionary robotics simulators.

3 FEATURES OF THE BROOKS SIMULATOR
The BROOKS environment has been under development for quite
some time, and can be considered both widely accessible and open-
sourced (although some might argue that the source code is some-
what inscrutable). At our web page we offer a simple cross-platform
download that can be easily installed by novices within a matter of
minutes. We will describe several of the features of BROOKS that
distinguish it from competing robotics simulators in the section
below. This is far from an exhaustive list, but should nonetheless
be compelling.

A Diversity of Terrain models
BROOKS offers a wide range of ground plane and surface textures
(with a variety of frictional coefficients), and can even model ther-
mal environments such as snow and ice, as demonstrated by Fig-
ure 1. Most of these terrains can be easily installed by the end-user,

Figure 1: BROOKS can also simulate a variety of complex
surface textures and frictional coefficients that are often
challenging for competing simulators to model, including
material such as snow and wood mulch.

although some models, such as persian carpet, may require addi-
tional costs. Similarly, certain regional and localization restrictions
makes it difficult for all users to model environmental thermal
features such as snow. Typical simulations involve temperatures
between 10°C and 30°C, however a limited number of users have
reported environments much more extreme than these.

ROS Compatable
BROOKS has been compatible with the popular ROS Robotic oper-
ating system since the launch of ROS. BROOKS plugins exist for
all ROS-compatible robots, such as the TurtleBot - however many
of these modules must be purchased separately from the robot
manufacturer.

Sensor Models
BROOKS contains a wide range of sensors models, from LiDAR to
ultrasound to simple acoustic microphones. Moreover, the noise
models for these sensors are guaranteed to be accurate simulacra
of their real-world counterparts. BROOKS even models more over-
looked sensor failure modes, such as those caused by loose or dam-
aged cabling, or unanticipated reflections. Again, specific sensor
module plug-ins can be purchased at additional charge from the
sensor retailer.

1114

A Baseline-Realistic Objective Open-Ended Kinematics Simulator for Evolutionary RoboticsGECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

Figure 2: OurBROOKS simulator can simulatemultiple com-
plex robotic morphologies with a high degree of accuracy.
Shown here are two wheeled educational robots on the de-
fault texture surface.

Figure 3: Dynamic collisions between multiple rigid bodies
are handled smoothly, without any errors caused by restitu-
tion forces or ground-plane penetration.

Mutiple Materials
The BROOKS simulator can handle a variety of materials for mod-
eled objects – not just conventional rigid body dynamics and kine-
matics, but also soft-body, fabric, fluid, and even plasma-based
materials. This is particularly valuable for the emerging field of
soft robotics, which often struggles to find suitable simulators. An
example of a soft-bodied robot is shown in Figure 5

Complex Morphologies and Robust Collision
Models
BROOKS can handle a variety of morpologies - from simple Platonic
solids to more convoluted morphologies. Moreover, as shown by
Figure 3, the simulator can handle collisions between objects quite
well, with little risk of unrealistic penetrations.

Inherently Parallelized
Not only is BROOKS cross-platform and freely available, it is cheaply
and inherently parallelized. Simulating a system of 1000 robots
causes no slow-down to the system, beyond initial setup time. This
opens the door to a variety of interesting multi-robot and multi-
agent evolutionary robotics experiments. It is hypothesized that

Figure 4: The BROOKS simulator can model a wide variety
of robots, such as this dexterous manipulator arm. Realis-
tic high-resolution graphics rendering, including shadows,
adds to the veracity of the simulation and aids in debugging.

multiple parallel instantiations of BROOKS can exist simultane-
ously, however this has yet to be proven - and the transfer of data
between instances is particularly difficult.

Integrated Graphics and Sound
The graphics library built into BROOKS is optimized for speed,
and hyper-realistic. In fact, it has been hardware-optimized in such
a way that using the graphics engine contributes no latency to
the simulation in any way, so there is no incentive to disable the
graphics functions to speed processing. The graphics library can
closely replicate all components and joints within a structure, as
well as realistic shadows, textures, and even lens flare – all of which
are helpful in debugging. Similarly, BROOKS capably models the a
wide range of realistic sounds.

4 CURRENTWEAKNESSES OF BROOKS
Unfortunately, as with all simulators, BROOKS has some notable
trade-offs, shortcomings, and undesired features that are the cost
for all of the features described above.

Fixed Timestep
The time-step of BROOKS is effectively hard-coded, and cannot be
effectively changed – although a built-in "strobe" feature can have
the effect of slowing down a variety of phenomena. There exist a
few theoretical methods of altering the length of time passed in
some locations within BROOKS relative to the operator of the simu-
lation. However, these methods are unlikely to be practical in most
situations. Advancements in the navigability of the space within
a BROOKS simulation, which are required to make this change to
the timestep possible, are not expected to become available in the
near future.

1115

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany R. Konsella et al.

Figure 5: The BROOKS simulator can model the dynamics
of soft-bodied robots with amultiple degrees of freedom, in-
cluding this model of a completely soft 3D-printed robot.

Region and Locale Specific
Some BROOKS modules may not work in all regions or locales
and highly specific environments will not be available in most
simulation settings.

Hard-Coded constants
Many of the fundamental constants, including gravity, are either
hard-coded or vary regionally , and can be complex to overcome
(although in some cases different gravity settings can be modeled
in aquatic and high-altitude settings). Simulating environments
on frictionless surfaces, for instance, is difficult. This is in part
due to the fact that BROOKS is fine-tuned to correspond directly
to real-world results. As real-world technology expands in a way
that requires new options for environments and the gravitational
constant, new settings will become available to some specific users.
Rather than attempt to change these setting directly, users are
encouraged to leave most default settings, like Earth gravity and
the speed of light, untouched. Measurements within BROOKS work
best with the standards set by the International System of Units.

Infrequent Updates
The BROOKS simulator does not appear to have been updated at any
point since its inception, and it is unlikely to receive an update in the
foreseeable future. In fact, any update to the physics engine would
dramatically alter the accuracy of previous BROOKS simulations
to the real world. For this reason, updates are discouraged.

5 CONCLUSIONS
Our claim is that the BROOKS simulator sets the standard for high-
precision and realistic physics simulators, capable of high-fidelity
modeling of a diverse range of robot morphologies and environ-
ments. Although other simulators may have the edge in some fea-
tures, particularly in terms of being able to speed up evaluation at
the expense of fidelity, we argue that our simulator should serve as
a type of baseline, against which most other simulators should be
compared.

ACKNOWLEDGMENTS
The authors would like to thank the undergraduate research as-
sistants of the Union College Computer Science Department. The
authors would also like to thank the workshop organizers for their
open-minded inclusivity. Finally, and above all, we would like to
thank the readers for their sense of humor and tolerance for satire
(granted, satire with a serious agenda).

REFERENCES
[1] Josh Bongard, Victor Zykov, and Hod Lipson. 2006. Resilient machines through

continuous self-modeling. Science 314, 5802 (2006), 1118–1121.
[2] Josh C Bongard and Rolf Pfeifer. 2003. Evolving complete agents using artificial

ontogeny. In Morpho-functional Machines: The new species. Springer, 237–258.
[3] Rodney A Brooks. 1990. Elephants don’t play chess. Robotics and autonomous

systems 6, 1-2 (1990), 3–15.
[4] Ken Caluwaerts, Jérémie Despraz, Atıl Işçen, Andrew P Sabelhaus, Jonathan

Bruce, Benjamin Schrauwen, and Vytas SunSpiral. 2014. Design and control of
compliant tensegrity robots through simulation and hardware validation. Journal
of The Royal Society Interface 11, 98 (2014), 20140520.

[5] Dave Cliff, Philip Husbands, and Inman Harvey. 1993. Evolving visually guided
robots. In From Animals to Animats 2. Proceedings of the Second International
Conference on Simulation of Adaptive Behavior, Jean-Arcady Meyer, Herbert L
Roitblat, and Stewart W. Wilson (Eds.). MIT Press, Cambridge MA, 374–383.

[6] Antoine Cully, Jeff Clune, Danesh Tarapore, and Jean-Baptiste Mouret. 2015.
Robots that can adapt like animals. Nature 521, 7553 (2015), 503–507.

[7] Dario Floreano and Francesco Mondada. 1994. Automatic creation of an au-
tonomous agent: Genetic evolution of a neural network driven robot. In From
Animals to Animats 3: Proceedings of the Third International Conference on Sim-
ulation of Adaptive Behavior, Dave Cliff, Philip Husbands, Jean-Arcady Meyer,
and Stewart W. Wilson (Eds.). MIT Press, 421–430.

[8] Kyrre Glette and Mats Hovin. 2010. Evolution of artificial muscle-based robotic
locomotion in PhysX. In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ
International Conference on. IEEE, 1114–1119.

[9] Inman Harvey, Phil Husbands, and Dave Cliff. 1994. Seeing the light: artificial
evolution, real vision. In From Animals to Animats 3:Proceedings of the Third
International Conference on Simulation of Adaptive Behavior, Dave Cliff, Philip
Husbands, Jean-Arcady Meyer, and Stewart W. Wilson (Eds.). MIT Press, Cam-
bridge MA, 392–401.

[10] Jonathan Hiller and Hod Lipson. 2012. Automatic design and manufacture of
soft robots. IEEE Transactions on Robotics 28, 2 (2012), 457–466.

[11] Gregory S Hornby and Jordan B Pollack. 2001. Body-brain co-evolution using
L-systems as a generative encoding. In Proceedings of the 3rd Annual Conference
on Genetic and Evolutionary Computation. Morgan Kaufmann Publishers Inc.,
868–875.

[12] Nick Jakobi, Phil Husbands, and Inman Harvey. 1995. Noise and the reality gap:
The use of simulation in evolutionary robotics. Advances in artificial life (1995),
704–720.

[13] Jean-Baptiste Mouret, Sylvain Koos, and Stéphane Doncieux. 2013. Crossing the
reality gap: a short introduction to the transferability approach. arXiv preprint
arXiv:1307.1870 (2013).

[14] John Rieffel, Francisco Valero-Cuevas, and Hod Lipson. 2009. Automated dis-
covery and optimization of large irregular tensegrity structures. Computers &
Structures 87, 5 (2009), 368–379.

[15] John A Rieffel, Francisco J Valero-Cuevas, and Hod Lipson. 2010. Morphological
communication: exploiting coupled dynamics in a complex mechanical structure
to achieve locomotion. Journal of the royal society interface 7, 45 (2010), 613–621.

[16] Karl Sims. 1994. Evolving virtual creatures. In Proceedings of the 21st annual
conference on Computer graphics and interactive techniques. ACM, 15–22.

[17] Adrian Thompson. 1996. An evolved circuit, intrinsic in silicon, entwined with
physics. In Proceedings of the First International Conference on Evolvable Systems:
From Biology to Hardware, Tetsuya Higuchi, Masaya Iwata, and Weixin Liu (Eds.).
Springer, 390–405.

[18] Richard A Watson, Sevan G Ficici, and Jordan B Pollack. 2002. Embodied evolu-
tion: Distributing an evolutionary algorithm in a population of robots. Robotics
and Autonomous Systems 39, 1 (2002), 1–18.

[19] Viktor Zykov, Josh Bongard, and Hod Lipson. 2004. Evolving dynamic gaits
on a physical robot. In Proceedings of Genetic and Evolutionary Computation
Conference (GECCO), Late Breaking Paper, GECCO, K. Deb, R. Poli, W. Banzhaf,
H.-G. Beyer, E. Burke, P. Darwen, D. Dasgupta, D. Floreano, J. Foster, M. Harman,
O. Holland, P.L. Lanzi, L. Spector, A.G.B. Tettamanzi, D. Thierens, and A. Tyrrell
(Eds.), Vol. 4. Springer.

1116

	Abstract
	1 Introduction
	2 The BROOKS Physics Engine
	3 Features of the BROOKS Simulator
	4 Current Weaknesses of BROOKS
	5 Conclusions
	Acknowledgments
	References

