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ABSTRACT
We introduce a new cybersecurity project named RIVALS.
RIVALS will assist in developing network defense strategies
through modeling adversarial network attack and defense
dynamics. RIVALS will focus on peer-to-peer networks and
use coevolutionary algorithms. In this contribution, we de-
scribe RIVALS’ current suite of coevolutionary algorithms
that use archiving to maintain progressive exploration and
that support different solution concepts as fitness metrics.
We compare and contrast their effectiveness by executing a
standard coevolutionary benchmark (Compare-on-one) and
RIVALS simulations on 3 different network topologies. Cur-
rently, we model denial of service (DOS) attack strategies
by the attacker selecting one or more network servers to
disable for some duration. Defenders can choose one of three
different network routing protocols: shortest path, flooding
and a peer-to-peer ring overlay to try to maintain their per-
formance. Attack completion and resource cost minimization
serve as attacker objectives. Mission completion and resource
cost minimization are the reciprocal defender objectives. Our
experiments show that existing algorithms either sacrifice
execution speed or forgo the assurance of consistent results.
rIPCA, our adaptation of a known coevolutionary algorithm
named IPCA, is able to more consistently produce high qual-
ity results, albeit without IPCA’s guarantees for results with
monotonically increasing performance, without sacrificing
speed.

CCS CONCEPTS
•Computer systems organization → Embedded systems; Re-
dundancy; Robotics; •Networks → Network reliability;
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1 INTRODUCTION
Cyber attacks continue to increase in frequency and severity
and have been the cause of numerous disruptions in both
industry and politics. With more and more critical infor-
mation moving through networks, it is important to make
sure that defenses are in place to help keep these networks
secure. When an attacker is deterred by a specific defense,
the attacker usually changes strategies and is then able to
wreak havoc once again. Defenders are then forced to adjust
to these new attacks and an entire adversarial process iterates
and escalates. In today’s landscape, there are many networks
that are set up without adequate capability to fend off such
adaptive attacks.

We introduce a new cybersecurity project named RIVALS.
Rather than manually tune and conjure up defenses for a
network every time an attacker adapts and acts in a novel
way, RIVALS is intended to use coevolutionary algorithms to
determine the best defense for a network amidst constantly
changing cyber attacks, see Figure 1. In particular, RIVALS
will focus on how a peer-to-peer network can be deployed as a
robust and resilient means of securing mission reliability in the
face of extreme distributed denial of service attacks. RIVALS’
premise is that leveraging the decentralized properties of
peer-to-peer networks with enhanced capabilities will allow a
mission to complete despite sustaining an attack.

RIVALS will eventually include a peer-to-peer network
simulator that runs an extended version of the Chord [19]
peer-to-peer protocol. In this contribution, because of the
early point in the project’s course, RIVALS operates with
the original Chord protocol. We model simple attacks and
defenses on a network. We measure the performance of at-
tackers and defenders through the concept of a mission. A
mission, for our purposes, represents a set of tasks to be

1455



GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

Figure 1: RIVALS system overview.

completed. These tasks rely on the network’s health for their
success. An attacker’s goal is to degrade the network such
that the tasks, and ultimately the mission, fail. Meanwhile,
a defender’s goal is to ensure the success of the mission.
This setup is useful as it allows us to abstract and simu-
late a real-world adversarial environment. To model the
co-adaptive behavior of adversaries, we regard our attacking
and defending algorithms as populations under the direction
of a coevolutionary algorithm such as IPCA[11]. Over the
course of many generations, a co-evolutionary optimization
process reveals strong defender and attacker strategies in
juxtaposition as well as dynamics. This rich history can then
be reviewed to determine an effective defensive protocol for
a given network. Multiple runs of coevolutionary algorithms,
started from different initial conditions, can provide further
insights when their outcomes significantly differ.

In this contribution, we present (1) RIVALS’ current co-
evolutionary algorithms, (2) the grammatical representation
we intend to exploit to model attacker and defender behavior,
and (3) Chord, the peer-to-peer network protocol RIVALS
will eventually leverage for defensive strategies. One coevolu-
tionary algorithm, rIPCA, is new. It is a modified version
of IPCA in which we apply a non-dominated filter to both
coevolving populations, learners (defenders) and tests (at-
tackers), as opposed to just the learner population in IPCA.
This filter, presented in IPCA, extracts the individuals of
a population which are not dominated by other individuals
within the population, thus selecting a pareto front of the
filtered individuals.

Through experiments, we examine the performance of the
different archive-based coevolutionary algorithms by using
RIVALS’ current network simulator. To obtain a baseline,
we preliminarily compare them using the Compare-on-one
problem. Our metrics for Compare-on-one are execution
time and final performance. For network simulations, we
determine the usefulness of rIPCA and the other coevolu-
tionary algorithms by comparing how they each perform if
only one of the attacker or defender population evolves and if
both populations evolve with coevolution. This comparison
is conducted on 3 different network topologies.

The rest of this paper is organized as follows. In section § 2,
we introduce similar work as well as necessary background
information on peer-to-peer attacks and coevolutionary algo-
rithms. Next, in section § 3, we present a brief overview of

our method. Section § 4 presents the results from our exper-
imentation. Section § 5 concludes the paper and discusses
potential future directions of the project.

2 RELATED WORK
RIVALS is an example of the study of adversarial dynamics.
Multiple sub-fields within Artificial Intelligence study this
topic with different approaches: (A) Evolutionary Compu-
tation uses its biologic metaphor to focus upon adaptation,
e.g. botnet detection system analysis and the effect of bot-
net evolution [7], infrastructure resilience through compet-
itive coevolution [18], and a critical infrastructure model
analyzed via coevolutionary strategies [10]. (B) Machine
Learning relies upon observational data and is often foren-
sic rather than anticipatory, e.g. email spammers gaming
against email spam-filters as in [4] (C) Game theory is used
to find optimal strategies in an adversarial setting, e.g the
study of autonomous, collaborative control for resilient cy-
ber defense [20] which employs a distributed, game-theoretic
approach to apportion computational loads in an efficient,
prioritized, Pareto-optimal fashion among geographically dis-
persed clouds. (D) AI-Planning realizes autonomous agent
strategies defined by goals, e.g. UAV path re-planning under
critical situations [3].

Moving target defenses (MTD) in cybersecurity have drawn
noteworthy attention because they aim to keep an adversary
off guard by system state changes that do not allow attackers
time to focus on a vulnerability or a complete multi-step plan.
The challenge is to make the movement without excessively
disrupting normal operations and interactions. RIVALS bears
similarity to MTD systems because it adapts defenses, though
it uses evolutionary computation as its adaptive mechanism
rather than stochasticity, making it responsive to attack
strategies. Evolutionary computation has been used in MTD
research. In [22] for example, attackers (not the defense) are
evolved with a genetic algorithm.

RIVALS aims to be original by occupying an underrepre-
sented niche that combines coevolution and network modeling
and simulation. It focuses on anticipatory insights as opposed
to reactively mining a historical dataset once a type of attack
has been discovered. It sets up a realistic model of cyber’s
asymmetric competitor action spaces. Specifically, attackers
compete and adapt with one action repertoire and defenses
use with another. We can think of only a few modest paral-
lels of this model. In baseball, a player bats offensively and
fields defensively using distinctly different competitive skills.
Throughout the course of a game, as one side’s offense is pit
against the other’s defense, there is an evolution and adap-
tation of strategies by both sides. The CANDLES system
bears close resemblance to RIVALS [17]. CANDLES, Coevo-
lutionary Agent-based Network Defense Lightweight Event
System, is a framework designed to competitively coevolve
both attacker and defender agent strategies. Like RIVALS, it
employs coevolutionary genetic algorithms and its competitor
action space is asymmetric. In contrast, it is a quite abstract
network security simulation. Attacker solutions consists of
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a list of target machines, reconnaissance techniques, and
exploits while defender solutions use a paranoia threshold,
a budget, a list of suspected targets, detection systems and
dynamic mitigations. Surprisingly, a survey of literature in
coevolutionary computation (not confined to cybersecurity
applications) only yields one such asymmetric setup: that of
coevolving programs and unit tests from their specification,
e.g. [1].

Finally RIVALS is the successor to STEALTH (Simulating
Tax Evasion And Law Through Heuristics) [9]. STEALTH is a
coevolutionary and modeling methodology for exploring how
non-compliant tax strategies evolve in response to abstracted
auditing and regulatory attempts that evolve to detect them.

The next section describes coevolutionary search in ad-
versarial cybersecurity, coevolutionary algorithms based on
archives, how to represent solutions with grammars, and the
Chord protocol.

3 METHOD
In this section, we present RIVALS with respect to the fol-
lowing topics: coevolutionary algorithms, grammars, and the
Chord protocol.

3.1 Coevolutionary Algorithms
Coevolutionary algorithms explore domains in which the
quality of a solution is determined by its performance when
interacting with some set of tests. Reciprocally, a test’s
quality is determined by its performance when interacting
with some set of solutions. For example, the tests of a network
attack strategy are different network routing behaviors that
could repel the attack, and reciprocally the tests of a network
behavior are different attack strategies that could disrupt the
network.

3.1.1 Solution Concepts. Because a solution’s performance
is measured over multiple tests, its fitness can be quantified
in a number of ways and may change depending on what
tests it faces. This complexity has been addressed in coevo-
lutionary literature, e.g. [2, 16] and RIVALS adopts solution
concepts [16].

RIVALS integrates 4 solution concepts in total, mixed
across different coevolutionary algorithms: (1) Best Worst
Case A solution’s fitness is its worst performance measure
against the fittest test in the set of tests that it tries to
solve (2) Maximization of Expected Utility A solution’s fit-
ness reflects that its tests are of equal importance. (3) Nash
Equilibrium favors solutions which lead to stable solution
states in which no sole actor can their improve their state
unilaterally. (4) Pareto Optimal Set Every possible test (so-
lution) is an objective and the subset of solutions (tests) are
the pareto set of this multi-objective space.

3.1.2 Coevolutionary Algorithms with Archives. Pathologies
arise in coevolutionary optimization due to its complex dy-
namics, [12]. These include: (1) Intransitivity, e.g. (a) Red
Queen Effect (b) Cycling (c) Transitive dominance, and,
(2) Disengagement (loss of gradient), e.g. (a) solution fails

to perform in any way on a test (b) inability to discover a
test to efficiently search for solutions.

One general remedy for these coevolutionary search patholo-
gies is to support memory so that useful solutions are not lost
and re-found. Memory is implemented using an archive. An
archive is a repository of solutions that is maintained outside
the algorithmic cycle of generational selection and variation.
It retains the best solutions ever found [5, 11, 12, 14] thus
serving as a source of genetic material that persists longer
than a generation and as a source of individuals with histori-
cal performance characteristics that are saved from being lost
due to genetic variation. Coevolutionary algorithms have an
archive for one or each of their populations.

RIVALS includes as baselines (1) a simple coevolutionary
algorithm that does not use an archive and (2) an imple-
mentation of IPCA, Pareto-Coevolution Archive,[11]. IPCA
archives previous tests and only replaces them with new tests
which are different and more competitive than those in the
archive. The learner (a.k.a. solution) archive is maintained
by selecting learners that are not dominated by other learners
in terms of which tests they solve. That is, if a learner, X,
only solves tests A and B, and learner, Y , only solves test
A, then learner X dominates Y and Y is removed from the
learner archive. This strategy fosters monotonic evolutionary
progress.

Coev, a.k.a Algorithm 1, is pseudocode of our simple co-
evolutionary algorithm [9]. It can be configured to use either
the maximum expected utility solution concept or the best
worst solution concept. IPCA and rIPCA, a.k.a. Algorithm 2,
use archives and the Pareto Optimal Set solution concept.
rIPCA applies the Pareto Optimal Set solution concept to
both populations, as opposed to just the learner population
as done in IPCA(see ALG.2 line 9). MaxSolve, a.k.a. Algo-
rithm 3 from [5] uses the maximum expected utility solution
concept and archives.

Algorithm 1 Coev
1: procedure Coev(populations, generations)
2: t← 0
3: best_individuals← ∅
4: while t < generations do . run for # generations
5: pop′ ← Generate(populations)
6: if BestWorstCase then
7: pop′ ← EvalBestWorstCaseFitness(pop′)
8: if MaximumExpectedUtility then
9: pop′ ← EvaluateMEUFitness(pop′)
10: populations← Merge(populations, pop′)
11: populations← SortPopulations(populations)
12: best_individuals← ExtractBest(populations)
13: t← t + 1
14: return best_individuals . Returns best solutions found

3.2 Grammatical representation for
coevolutionary search

RIVALS will eventually exploit complex grammars to fa-
cilitate the expression and exploration of complex attack
sequences and defender strategies. This will also help with
incorporating domain knowledge. It uses Grammatical Evo-
lution (GE) as its method. GE uses a variable length integer
representation that maps from a grammar[15]. An example
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Algorithm 2 IPCA, rIPCA
1: procedure IPCA(populations, generations)
2: t← 0
3: L0 ← populationslearners
4: T 0 ← populationstests
5: best_individuals← ∅
6: while t < generations do . run for # generations
7: T t ← NonDominated(Lt, T t ) . extract pareto-front
8: if rIPCA then
9: Lt ← NonDominated(T t, Lt ) . extract pareto-front
10: Lt+1 ← Lt
11: T t+1 ← Tt
12: NL← GenerateLearners(Lt )

13: NT ← GenerateTests(T t )

14: T S ← UsefulTests(NT, T t, NL, Lt )

15: T t+1 ← T t+1 ∪ T S
16: for i = 1..|NL| do
17: if Useful(Li, Lt+1, T t+1 ) then
18: Lt+1 ← Lt+1 ∪ Li
19: if Lt+1 , Lt then
20: t← t + 1
21: best_individuals← ExtractBest(populations)
22: return best_individuals . Returns best solutions found

Algorithm 3 MaxSolve
1: procedure submit(LN, TN)
2: L← L ∪ LN
3: T ← T ∪ T N
4: n_solved← {}
5: for l ∈ L do
6: n_solved[l]← NumberSolved(l, T )

7: for (li, lj ) ∈ L2, i < j do
8: if ∀t ∈ T : G(li, t) = G(lj , t) then n_solved[lj ]← 0
9: Sort(LN, n_solved)
10: for l ∈ L do
11: if n_solved[l] > 0 then
12: Select(l)
13: for t ∈ T do
14: if ∃l ∈ L : Solves(l, t) then
15: Select(t)
16: for t ∈ T do
17: for t′ ∈ T, t′! = t do
18: if ∀l ∈ L : G(l, t) = G(l, t′ ) then
19: Deselect(t)
20: return L, T . Returns updated populations

of GE and competitive coevolution is in the investigation of
spatial coevolution of age layered planes in robocode[8]. The
ease of use of GE currently outweighs our concern regarding
the low locality of GE operators, e.g. [21].

The current RIVALS attack grammar is simple. Given
start symbol <Attacks> , it is:
〈Attacks〉 ::= DOSAttack(〈node〉, 〈start_time〉, 〈end_time〉)

| DOSAttack(〈node〉, 〈start_time〉, 〈end_time〉), 〈Attacks〉

〈node〉 ::= 0 | 1 | 2 | 3 | 4 | 5 | 6

〈start_time〉 ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

〈end_time〉 ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

The nodes that an attacker can attack and the duration of
the attacks vary between different topologies. The grammar
is recursive, allowing multiple nodes to be attacked without
pre-specifying how many. The representation for the defense
is currently a simple choice of one of three functions each
implementing a different routing protocol.

3.3 Peer-to-Peer Network
As mentioned in § 1, RIVALS will focus on defensive strategies
based upon a peer-to-peer network. A peer-to-peer network
has no single point of failure and thus is inherently more
robust to defend against DDoS attacks than other types

Figure 2: Physical network on the left and its virtual Chord
overlay representation on the right. Also shown are the finger
tables for nodes A, G, and F.

of networks. While there are other peer-to-peer protocols
that RIVALS could have used, we chose Chord because it
is efficient and extensible. Chord is also documented with
pseudocode making it easier to implement a model of it that
runs on our network simulator.

We now briefly describe important elements of the Chord
protocol (for more details see [19]) and our implementation of
it. At its core, Chord relies upon distributed hashing via node-
based finger tables. These tables hold information that helps
logarithmically decrease the cost of finding which node holds
a queried key. Each key is associated with some information.
Chord assigns each node and key m-bit identifiers and places
each identifier in an identifier circle. We illustrate this process
in Figure 2: each node in a physical network is given an
identifier and logically placed, i.e. becomes a virtual node,
in a location in the identifier circle, i.e. overlay network.
Each key in the identifier circle is assigned a node. The key’s
identifier is either equal to that of the node or the node that
immediately follows the identifier of the key in the circle.

For example, in Figure 2, if a key were given the identifier
of 2, the node responsible for this key would be the node
at identifier 3. Each node maintains extra information in
its finger table that it uses to direct key queries efficiently
along the circle. A lookup sends the query at least halfway
to its destination by taking advantage of finger table infor-
mation. Chord handles nodes entering and dropping off the
network by updating node finger tables periodically as well as
reapportioning keys around the network as needed. This sta-
bilization naturally lends itself to adversarial situations where
an adversary intentionally forces nodes out of availability.

We currently simply model Chord on a single workstation.
Upon nodes leaving or joining the network, the original
Chord protocol eventually stabilizes itself through periodic
actions. In contrast, in RIVALS’ implementation every time
a node leaves or joins the network, successor and predecessor
pointers as well as the finger tables are immediately repaired.
Another contrast is that nodes in the Chord network become
part of the circle by receiving an m-bit identifier obtained by
hashing the nodes with SHA-1. In RIVALS’ implementation,
Python’s builtin random library is used instead.

1458



Investigating Cyber Security with Coevolutionary Algorithm GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

Table 1: Algorithm Settings

Parameter Setting Compare-on-one Network Simulations
Population size 10 40 (10 for Topology 2)
Archive size 10 20
Generations 1000 20
Max length 10 20
Parent archive probability 0.9 0.9
Crossover probability 0.8 0.8
Mutation probability 0.1 0.1
Mutation bias low -0.15 NA
Mutation bias high 0.1 NA
Generation loop breakout 500 NA
Grammar No Yes

4 EXPERIMENTS
Our experiments seek to understand the capabilities of our
coevolutionary algorithms. They help us start to examine
and interpret the dynamics that result from them in the
context of network security.

4.1 Setup
We first benchmark the algorithm suite using the Compare-
on-one problem. Next, we apply it in a simple RIVALS
context by setting up 3 different network topologies run with
network simulation.

Settings of the parameters for the algorithms used for the
experiments are in Table 1. The settings for Compare-on-
one are taken from [11] for standardization and comparative
reference. The settings for the network simulations are chosen
as an initial exploration. We present average results over 30
runs.

4.1.1 Compare-on-one. In the Compare-on-one problem [11],
each population is made up of individuals that are represented
as real valued n dimensional vectors. We compare one in-
dividual, test A, against an individual, solution B, of the
opposing population by determining which dimension in B’s
vector has the highest value and if A’s corresponding value
(by dimension) is greater than or equal to B’s. Performance
of a population is then measured, at each generation, by tak-
ing the minimum of the minimum values of each individual’s
vector representation. Note that we use competitive fitness
sharing as in the IPCA paper[11]. The mutation bias settings
are included in Table 1.

4.1.2 Network Simulations. We give an overview of the
context, terms and components of the network simulations
including: the network topology, missions, attacker goals and
capabilities, and defender goals and capabilities.

Context: DDoS attacks are a common way to disrupt cer-
tain network resources and are accomplished by flooding the
target with a high volume of traffic. For example, like a SYN
FLOOD1 attack. The attack grammar, § 3.2, allows nodes
to be selected and flooded.

Network Topology We start with a simple topology (Fig-
ure 3, Topology 0) as a benchmark that allows us to explore
simple mission scenarios exhaustively before scaling up to

1https://en.wikipedia.org/wiki/SYN_flood
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Figure 3: Topology 0, simple network, used to benchmark
the defensive actions for routing of Shortest-path, Flooding
and Chord
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Figure 4: Topology 1, larger network providing more nodes
and a different topology
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Figure 5: Topology 2, possible network for a more realistic
mission

larger and more realistic topologies (Figures 4 & 5, Topolo-
gies 1 and 2) that are too large to conveniently enumerate
all the combinations of attacks.

Missions: A mission will eventually be comprised of a se-
quence of tasks where each task has a start node, an end
node, and a maximum duration after which it fails. Tasks are
meant to simulate different parts of a mission, the parts rele-
vant to a network could be e.g. coordination via chat between
two users, using Internet Relay Chat (IRC), or transfer of a
file using File Transfer Protocol (FTP) from one user to a
server. A mission is successful if every task is completed one
after the other in the time allowed per task. It is unsuccessful
if any of the tasks of the mission fail. Currently, missions are
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limited to one task to allow us to reason about the results
obtained.

Attacker: The goal of the attacker is to disrupt the net-
work, with as little effort as possible, directing its DOS
attacks in a way that causes mission failure. The attacker
is quite powerful and can do this through its capability of
being able to specify any node or set of nodes in the network
to launch DDoS attacks on. The attacker has the ability to
cause failure in these nodes and specify for how long it wants
the DoS attack on each node to last. (See grammar in § 3.2)

Defender: The goal of the defender is to ensure mission
success. The defender currently does this by choosing among
3 different routing protocols that use different techniques to
deal with the nodes being out of service (attacked): Shortest
path protocol At the beginning of a task, the network calcu-
lates the shortest path from a start node to an end node, and
attempts to send the packet along this path. If at any point
along the way the path becomes blocked due to node failure
caused by an attacker, the network waits for the blocked
node to become free before continuing. This protocol is more
expensive in terms of time when a network is under attack. It
is also more vulnerable to single nodes being attacked. Flood-
ing protocol The flooding protocol works by sending multiple
copies of the packet along all available paths and completes
the task when the first packet reaches its destination through
any of these paths. This is more expensive in hops but could
be cheaper in time when under an attack.

Chord protocol Chord chooses paths using its finger tables.
Even under attack, its routing persists due to its reconfigura-
bility when a node is lost or returns to service (see § 3.3).

Fitness Functions: We defined fitness functions that reflect
the goals of the attacker and defender. We reward attackers
for being able to disrupt a mission by attacking very few
nodes for a short amount of time and punish attackers as the
number of nodes and for how long they attack them increases.
The fitness function for the attacker is

fa =
1−mission_success

(n_attacks · total_duration) + n_attacks

where mission_success is describing whether the entire mis-
sion succeeded(1) or failed(0), n_attacks is the total number
of nodes attacked in the network, and total_duration is the
aggregated amount of time nodes were attacked. We include
an additional n_attacks term in the denominator so as to
prefer solutions with least amount of attacks. Note that
with the grammar used (Section § 3.2), the fitness function
rewards attacker that attack fewer nodes, even though the
recursive grammar allows any number of them.

Similarly, we reward defenders that complete the mission
quickly and with a short amount of hops and punish those
that take longer and use more network resources. For exam-
ple, the flooding routing mechanism gives a better guarantee
that the mission will be completed than the shortest path
protocol, but floods the network and thus uses many hops
around the network to do so. This behavior is taken into
account into the fitness function and punished. The fitness

Table 2: Execution time and performance results (higher is
better) for Compare-on-one for the different coevolutionary
algorithms.

Algorithm Exec Time(s) Final Perf.
Coev 7.115± 0.219 0.538± 0.297
MinMax 7.370± 1.962 0.481± 0.281
MaxSolve 13.901± 1.044 0.530± 0.295
IPCA 335.742± 114.220 0.870± 0.225
rIPCA 54.479± 47.474 0.806± 0.257

function for the defender is

fd =
mission_success

overall_time · n_hops

where overall_time is the total time a specific routing proto-
col took to complete the mission and n_hops is total number
of hops taken by the protocol to complete the mission.

In order to keep the network simulation simple, we assume
that every edge is unit-length.

4.2 Results
In terms of the performance of the different algorithms on
the Compare-on-one problem, we expected the rIPCA algo-
rithm to be the most promising as rIPCA builds upon the
algorithms mentioned in this paper and also aims to elimi-
nate redundancies within archive populations thus decreasing
overall runtime. In terms of running the algorithms on our
simulated scenario, we expected to see the algorithms name
the Chord protocol implementation as the network defense
mechanism that is best able to handle network attacks.

4.2.1 Compare-on-one. Table 2 show results for Compare-
on-one on different algorithms. The IPCA and rIPCA algo-
rithms have the better performance. This is expected as they
both maintain archives with monotonically increasing fitness
throughout their execution. We also note that rIPCA’s ex-
ecution time is notably shorter than the execution time for
IPCA. It follows from the implementation of rIPCA as rIPCA
implements IPCA but also applies the non-dominance filter
on its test individuals. This works to limit the size of the
test population. With the size of the test population limited,
rIPCA is able to run a modified IPCA algorithm with similar
performance but many less operations.

4.2.2 Network Missions. Prior to running the experiments
regarding network missions, we established a baseline by an
exhaustive search of Topology 0 (Figure 3). We set attacks to
last the full duration of a task and saw that Chord only fails
if all the nodes are attacked, shortest path fails if any node on
the shortest path is blocked, and flooding is blocked if start,
end or when all paths contain a node that is blocked. We
performed this exhaustive search so we could later verify the
correctness of both the algorithms and the defense protocols
in the network and to show that this is possible in topolo-
gies with a small number of nodes but becomes increasingly
difficult for a topology as large as the ones in Figures 4, 5.
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Table 3 shows our results over 30 runs. They are average
fitness of final generation over 30 runs. The columns labeled
“Attack” show average fitness of final generationon a fixed
defense protocol (Chord). They are 30 run average of average
fitness of final generation. Similarly, the columns labeled
“Defense” show results where we instead fix the attack on the
network and evolve the defense. They are average fitness of
final generation over 30 runs. Finally, we truly coevolve the
populations of attackers and defenders and report average
defender population fitness over 30 runs in the “Coevolution”
columns.

We first consider Topology 0. When fixing the defender as
the Chord protocol (column “Attack”) the attack population
of the simple coevolutionary algorithm, COEV, as expected, is
the least able to disrupt the mission. IPCA and rIPCA are the
most able. When fixing the attack (column “Defense”), most
algorithm runs converge to the Chord protocol which has a
fitness of 0.250. When the attack and defense populations
coevolve (column “Coev”) the algorithms differentiate with
IPCA and rIPCA being superior. We conjecture this is due to
the test archives for both IPCA and rIPCA as these archives
help enforce monotonic performance increases.

We next consider Topology 1. We first note that the aver-
age fitness values of the defender populations are lower across
the entire attack column than they were under Topology 0.
This is not because of the performance of the algorithms but
because of the increase in the number of nodes in the topol-
ogy. The defenses’ fitness function is inversely proportional
to the number of hops needed to reach its goal. Thus, an
increase in the size of the topology will lead to an overall
decrease in fitness values for the defense population. The
defense column for Topology 1 is similar to that of the defense
column for Topology 0 as they all converge on Chord. As
for the coevolutionary results, we note that both IPCA and
rIPCA converged on a solution as evidenced by their low stan-
dard deviations. The other three algorithms show moderate
performance, but produce results with more variance.

Finally, Topology 2 – the largest of the topologies. When
fixing the defender, we notice the same decreasing trend
of Topology 0. This helps reinforce our claim that IPCA
and rIPCA produce better results in general. While the
results of fixing the attack closely resemble those of the other
topologies, MaxSolve was unable to converge on a solution.
The coevolution results are much like the ones of Topology 1.

In Figure 6, we examine the average fitness values for
both attack and defense populations from one Coev run over
Topology 0. In the attacker’s average fitness plot, the average
fitness for the attack population experiences a short increase
in performance then quickly drops to 0.00. It then oscillates as
the defense population converges on Chord. The variation in
the algorithm allows non-optimal (i.e. non-chord) solutions to
form part of the defense population. This, in turn, increases
the average fitness of attacks as they face defenses which they
can succeed against. Additionally, the attacks introduced
may force Chord to explore paths which are shorter than
its original path, thus increasing the performance of Chord
occasionally.

Figure 6: Results from a COEV run on network topology 0.
Top: Median and best fitness results for attacker population
over 20 generations. Bottom: Median and best fitness results
for defender population over 20 generations.

Overall, the results for both the Compare-on-one experi-
ments as well as the network mission experiments show that
IPCA and rIPCA perform better in either scenario but are
better suited at handling tasks where execution time isn’t
as important. We also show through our implementation of
these coevolutionary algorithms that it is possible to model
adversarial behavior on a network simulator. As expected,
coevolution does not give as strong defenders as for a fixed
attack.

5 CONCLUSIONS & FUTURE WORK
We have made progress in creating an end-to-end system
where we have shown the ability to test the effectiveness of the
different coevolutionary algorithms on simulated networks.
We plan to continue this work and have ambitious goals
laid out for future versions of RIVALS. In particular, we are
interested in defending against low intensity DDoS attacks[13].
Attacks like these are hard to detect because they can be
sent in small waves and thus are not easy to spot amongst
regular traffic patterns. On our task list is to extend the
Chord protocol and test the effect of more topologies. We
plan to generate missions with different number of tasks.
Furthermore, we will continue to improve the performance
and speed of the coevolutionary algorithms as well as try
algorithms with all different solution concepts, e.g. Nash
Equilibrium [6].
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