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ABSTRACT
In this paper we propose a termination mechanism and the initial

step-size control mechanism for restart strategies in the CMA-ES.

The proposed mechanism utilizes a history of the distribution pa-

rameters from past restarts to early terminate an overlapping ex-

ploitation of the search domain. The initial step-size is controlled

so that the next restart will not overlap with past restarts. The pro-

posed mechanism is combined with a simple restart, IPOP restart

and BIPOP restart strategies. The effectiveness and the drawback

of the proposed mechanism is demonstrated on the BBOB noiseless

testbed.
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1 INTRODUCTION
Restart strategies are almost necessities for the Covariance Ma-

trix Adaptation Evolution Strategy (CMA-ES) to find the global

optimum on multimodal black-box functions. The IPOP restart

strategy [4] that doubles the population size every restart improves

the performance on well-structured (big-valley structured) multi-

modal functions, whereas a simple random restart [3] sometimes

performs better on weakly-structured multimodal functions and

deceptive functions. The BIPOP restart strategy [6] that is com-

posed of the IPOP regime and the local search regime achieves a

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany
© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-4939-0/17/07. . . $15.00

https://doi.org/http://dx.doi.org/10.1145/3067695.3084203

nearly best performance for medium to large budgets of function

evaluations in BBOB 2009. The IPOP scheme is effective on well-

structure multimodal function, while the local search scheme with

a relatively small population size and a small step-size helps on

weakly-structured functions.

In this paper we introduce a search history to efficiently termi-

nate each restart and to control the initial step-size of the search

distribution. The distribution parameters are recorded, and are com-

pared to the parameters in the history to check whether the current

search distribution is so close that the search area is overlapped

with past restarts. The initial step-size is controlled on the basis

of the history. The algorithm is combined with the simple random

restart, the IPOP restart, and the BIPOP restart where the initial

step-size is controlled by the proposed mechanism. The bench-

marking reveals a goodness of the proposed mechanism on e.g. f22,

where the number of local minima is a relatively small constant

over dimensions, and a weakness on e.g. f13, f17 and f18, where

undesired termination of restart is observed.

2 ALGORITHM DESCRIPTION
The base line algorithm for this paper is the so-called CSA-CMA-

ES, the covariance matrix adaptation evolution strategy with the

cumulative step-size adaptation. We apply restart strategies such as

a random restart, a restart with incremental population size (IPOP),

and a restart with two regimes that combines the IPOP scheme and

a restart with a small initial step-size.

2.1 Basic Idea
The proposed algorithm consists of two components, a novel ter-

mination criterion and a mechanism to control the initial standard

deviation. We record the distribution parameters such as the mean

vectorm and the covariance matrix σ 2C of the Gaussian sampling

distribution N (m,σ 2C). If the current search distribution is close

enough to a distribution stored in the history of past restarts, the

current restart is terminated as the current search is overlapping

with a past search. If successive restarts have stopped due to the

newly introduced termination criterion with a similar σ 2C, we
regard that the initial step-size is too large to escape from a big

valley and decrease next initial standard deviation. We expect it

will be useful when optimizing a weakly-structured or deceptive

functions. Note that the above idea is for weakly-structured mul-

timodal functions such as the double-sphere function described

in Section 2.6. If the objective function is globally well structured

but highly rugged such as the Rastrigin function, a larger step-size
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helps to find a better local minimum. On such functions restarts

are barely terminated with our novel stopping mechanism since

they often search different local minima. Then, the initial step-size

will not be decreased.

To solve multimodal functions, an incremental population size

scheme such as IPOP or BIPOP is often required. It is known from

[1, 2] that the optimal standard deviation of the distribution is pro-

portional to µw = 1/
∑λ
i=1

w2

i if µw is sufficiently smaller than the

dimension N , where λ is the population size andwi is the recombi-

nation weight, and is roughly proportional to λ in case of the default
wi or the truncationweight. Provided that a nearly optimal standard

deviation of the distribution is adapted, the current distribution

will not be sufficiently close to the distributions in the history that

are recorded from restarts with different population sizes, even if

their search areas are overlapped. To adapt our termination and

restart scheme, we introduce the following normalization of the

covariance matrix of the sampling distribution

Σ =
σ 2

α2
C where α =

µw
N − 1 + µw

. (1)

This normalization reflects the fact that the optimal standard de-

viation is proportional to µw when µw ≪ N and the empirical

knowledge that the optimal value tends to level out when µw ≫ N .

We record the normalized parameters and compare the normalized

parameters to check the termination condition.

The pseudo-code of the proposed termination mechanism using

the search history combined with the restart strategy controlling

the initial step-size is provided in Algorithm 1. The single run of

the CMA-ES with the proposed termination mechanism is written

in lines 11–27. The proposed termination mechanism is in lines

15–26. The next step-size is determined in line 30–36.

2.2 History of Normalized Parameters
We predefine multiple targets for the standard deviation of the nor-

malized sampling distribution N (m, Σ). In this paper, we mean by

the term normalized standard deviation (normalized std.) the geo-

metric average
1

2N ln det(Σ) of the square roots of the eigenvalues
of the normalized covariance matrix. Given the initial population

size λ(0) and the initial normalized std., the target for the normalized

std. is defined as

Tσ = initial normalized std. × [1, 10
−1, . . . , 10

1−ntarget

σ
] .

When the normalized std. crosses a target Tσ [j] from above, we

record the current normalized parameters to the history TN [j]. To
prevent the history from growing too much, we record only the last

normalized parameters for each entry for each restart. Therefore,

the history size will grow by at most one for each entry for each

restart.

2.3 Termination Based on KL-divergence
We measure the similarity between two normalized sampling distri-

butions N (m0, Σ0) and N (m1, Σ1) in terms of the KL-divergence

DKL (N0 ∥ N1) =
1

2

{(m1 −m0)
TΣ−1

1
(m1 −m0)

+ Tr(Σ−1

0
Σ1) − N + ln det(Σ−1

0
Σ1)} . (2)

Algorithm 1 Proposed Restart Scheme

Require: N ≥ 1, nrestart ≥ 1, n
target

σ ≥ 1, ncheck

KL
≥ 1, ndec

σ ≥ 1,

σ (0) > 0, λ(0) ≥ 1, δ thre

KL
> 0

1: α ← compute normalization factor by (1)

2: Tσ [j]← (σ (0)/α ) · 10
−j

for all j = 0, . . . ,n
target

σ − 1

3: TN [j]← [] for all j = 0, . . . ,n
target

σ − 1

4: Jstop ← []

5: CMAES.initialize(N , λ(0) ,σ (0) )
6: σ̄ ← Tσ [0]

7: for r = 0, . . . ,nrestart − 1 do
8: fstop ← False, fKL−stop ← False
9: J

reach
← []

10: SN [j]← ∅ for all j = 0, . . . ,n
target

σ − 1

11: while fstop= False and fKL−stop = False do
12: CMAES.onestep()

13: fstop ← CMAES.CheckStoppingCriteria()
14: (m, Σ) ← compute normalized parameter by (1)

15: j ← −1

16: if 1

2N ln(det(Σ)) ≤ ln(Tσ [0]) then
17: j ← max{j ∈ ⟦0,n

target

σ − 1⟧ |
ln(det(Σ))

2N ≤ ln(Tσ [j])}
18: end if
19: if size(J

reach
) = 0 or J

reach
[−1] < j ≤ n

target

σ − 1 then
20: SN [j]← N (m, Σ)
21: Dmin ← minN ∈TN [j] DKL (N ∥ N (m, Σ))

22: J
reach
.append(j ) if Dmin ≤ δ thre

KL
else J

reach
← []

23: else if J
reach

[−1] > j then
24: J

reach
← [j]

25: end if
26: fKL−stop ← size(J

reach
) ≥ ncheck

KL

27: end while
28: TN [i].append(SN [i]) for all i = 0, . . . ,n

target

σ − 1

29: λ ← NextPopSize()
30: Jstop.append(Jreach

[0]) if fKL−stop = True else Jstop ← []

31: if size(Jstop) ≥ ndec

σ and Jstop[−i] = Jstop[−1] for all i =

1, . . . ,ndec

σ then
32: σ̄ ← Tσ [Jstop[−1]]

33: Jstop ← []

34: end if
35: α ← compute normalization factor by (1)

36: σ ← min(σ (0) , σ̄α )
37: CMAES.initialize(N , λ,σ )
38: end for

Note that if the population size is fixed and the same normalization

factor α is applied for both distributions, only the first term is

affected by the normalization, which is α2
times smaller than the

KL-divergence between non-normalized distributions.

The similarity check is performed every time the normalized

std. of the current sampling distribution crosses a target Tσ [j]
from above. The KL-divergence between the current normalized

distribution and each normalized distribution in the history TN [j]
of length at most the number of restarts. We check if there exists

an entry inTN [j] such that the KL-divergence between the current

normalized distribution and the entry is less than or equal to the
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predefined threshold δ thre

KL
. The above conditions are satisfiedncheck

KL

times in a low, we terminate and restart the run.

The threshold is derived on the basis of the quality gain anal-

ysis. Suppose that the objective function is the sphere function

f (x ) = ∥x ∥2, the covariance matrix is proportional to the identity,

and µw ≪ N . Then, the optimal standard deviation is given by

βµw
√
f (m)/N , where β = −

∑λ
i=1

wiE[Ni :λ] and is roughly

√
π/2

for the default weight in the CMA-ES. In the optimal situation,

two distributions with the same std. reach the upper bound of the

KL-divergence whenm0 andm1 are symmetric around the optimal

solution. Then,

DKL (N0 ∥ N1) =
1

2

(m1 −m0)
TΣ−1

1
(m1 −m0)

=
N 2α2∥m1 −m0∥

2

2β2µ2

w f (m1)
=

2N 2α2 f (m1)

β2µ2

w f (m1)
=

2

β2

N 2α2

µ2

w
≈

4

π
. (3)

Based on this derivation, we set δ thre

KL
= 2. That is, if the global

structure of the objective function of interest is similar to that of

the sphere function and a reasonable std. is adapted in the past and

current restarts, the current restart will be terminated with high

probability.

To prevent premature termination on globally well-structured

functions such as Rastrigin function, we terminate the run if the

KL-divergence between the current distribution and the history is

smaller than the threshold for multiple normalized std. targets in a

row (line 26).

2.4 Initial Normalized STD Selection
At each restart, the initial normalized std., σ̄ , is taken from the

normalized std. target list Tσ . The actual step-size σ is then the

product of σ̄ and the normalization factor α in (1). We start with

σ̄ = αTσ [0], which corresponds the given initial step-size σ (0)
.

If ndec

σ successive restarts have terminated due to the proposed

termination criterion and all these restarts have started overlapping

the distribution with the history at the same normalized std. target

Tσ [j], next restart will be performed with σ̄ = Tσ [j].

2.5 Demonstration on Double-Sphere
The efficiency of the proposed mechanism is demonstrated on the

double sphere function defined as follows

f (x ) = min(a2∥xo ∥
2, ∥xl ∥

2 + 1.0) , (4)

where xo = x − [2.5, . . . , 2.5] and xl = x + [2.5, . . . , 2.5]. The global

optimum is located at xo and the radius of the basin of attraction of

the global optimum is controlled by a constant a = 1.5. The initial

step-size for the first (re-)start is σ (0) = 10, which is too large to find

the basin of the global optimum. Figure 1 shows the evolution of

the step-size σ for the simple restart, the restart with the proposed

termination mechanism, and the restart with the proposed termi-

nation and initial step-size selection mechanism. Compared to the

simple restart, the restart strategy with the proposed termination

can perform more restarts by early stopping runs searching the

same basin of attraction. The proposed restart mechanism can make

the initial step-size smaller so that the valley of the global optimum

will be more easily found. Only the last restart of the proposed

mechanism could find the global optimum. Note that on functions
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Figure 1: Step-size dynamics of the simple restart, restart
with the proposed termination criterion (KL Termination),
restart with the proposed termination and initial step-size
selection (Proposed).

such as the double-sphere function, a too large step-size results in

sampling points away from local optima. In such cases the function

values are almost identical to the sphere function 1+ ∥xl ∥
2
centered

at the local (and not the global) optimum. The CMA-ES then tends

to converge towards the local optimum.

2.6 Restart Scheme
We combine the proposed mechanism with the simple random

restart, the IPOP restart, and the BIPOP restart strategies. The

parameters for the CMA-ES is set to their default values, and the

parameters for the proposed mechanism are as follows:nrestart = ∞,

n
target

σ = 11, ncheck

KL
= 2, ndec

σ = 2, δ thre

KL
= 2, λ(0) = 4 + ⌊3 ln(N )⌋.

The initial mean vector is drawn uniform randomly from [−4, 4]
N

at each restart, and the initial step-size is σ (0) = 2 for all cases.

The simple random restart strategy with the fixed population size

λ = (λ(0) )2 combined with the proposed termination and initial

standard deviation selection mechanism is denoted by KL-Restart.

The proposed mechanism with IPOP mechanism (double the popu-

lation size for each restart) is called KL-IPOP. The proposed mecha-

nismwith BIPOP (the initial step-size is determined by the proposed

mechanism) is called KL-BIPOP. For KL-IPOP and KL-BIPOP, the

maximum population size is set to 2
8λ(0) .

3 CPU TIMING
In order to evaluate the CPU timing of the algorithm, we have run

the KL-Restart, KL-IPOP, KL-BIPOP on the BBOB noiseless suite

[10] with restarts for amaximumbudget equal to 400(D+2) function
evaluations according to [11]. The Python code was run on a Mac

Intel(R) Core(TM) i7-3615QM CPU @ 2.30GHz with 1 processor

and 4 cores. The time per function evaluation for dimensions 2, 3,

5, 10, 20 equals 107, 97.2, 86.5, 63.3, 67.1 microseconds respectively

for KL-restart, 351, 329, 339, 354, 457 microseconds respectively

for KL-IPOP, 357, 378, 394, 416, 471 microseconds respectively for

KL-BIPOP.

4 RESULTS
Results from experiments according to [11] and [7] on the bench-

mark functions given in [5, 10] are presented in Figures 2, 3 and

4. The aRT graphs for selected functions of each dimension are

1782



GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany T. Yamaguchi and Y. Akimoto

displayed in Figure 5. The experiments were performed with the

old BBOB code version 15.03 to compare BIPOP-CMA-ES, the plots

were produced with version 2.1 of COCO [9].

The average runtime (aRT), used in the figures and tables,

depends on a given target function value, ft = fopt + ∆f , and is

computed over all relevant trials as the number of function eval-

uations executed during each trial while the best function value

did not reach ft, summed over all trials and divided by the number

of trials that actually reached ft [8, 12]. Statistical significance is
tested with the rank-sum test for a given target ∆ft using, for each
trial, either the number of needed function evaluations to reach ∆ft
(inverted and multiplied by −1), or, if the target was not reached,

the best ∆f -value achieved, measured only up to the smallest num-

ber of overall function evaluations for any unsuccessful trial under

consideration.

5 DISCUSSION
KL-IPOP vs IPOP. We observed that the KL-IPOP found the opti-

mum with less number of function evaluations than IPOP on f22,

and f24 of dimension less than 5. Since f22 has a small and con-

stant number of local optima, the proposed termination and initial

step-size control mechanism are expected to work effectively. The

reason of the superior performance of KL-IPOP on f24 to IPOP is

because the IPOP strategy does not decrease the initial step-size,

which is required to solve it.

On the other hand, the IPOP showed better performance for

f13,f17 and f18. On f13, the CMA-ES needs a restart, even though

the function is unimodal. In such cases the proposed termination

mechanism tends to stop a restart despite that it is searching the

right big valley. The Schaffer functions f17 and f18 are globally well-

structured multimodal functions with many local optima having

relatively good function values around the global optimum. The

proposed mechanism fails to distinguish the traces of the search

distributions that approach the global optimum and a local optimum.

We did not observe a similar premature termination on the Rastrigin

function f15, another well-structured multimodal function.

KL-BIPOP vs BIPOP. The difference betweenKL-BIPOP and BIPOP
is similar to the difference between KL-IPOP and IPOP. KL-BIPOP

showed better performance on f21 and f22, while BIPOP performed

better on f13, f17 and f18. On f23 and f24, where we did not observe

significant difference between IPOP and KL-IPOP, we observed a

superior performance of BIPOP to KL-BIPOP. KL-BIPOP shrinks the

initial step-size only when overlapping restarts have been observed,

while BIPOP starts with a randomly generated step-size. Since both

f23 and f24 have many local minima in each big valley, it is not

likely that a restart is regarded as overlapping. Figure 6 compares

BIPOP, KL-BIPOP, and KL-BIPOP* which is the BIPOP strategy

with the proposed termination mechanism. It shows that f21 and

f22 can be optimized by KL-BIPOP*, implying that the problem on

these functions are due to the initial step-size selection mechanism.

KL-Restart vs KL-IPOP vs KL-BIPOP. The differences between
IPOP and BIPOP are simply inherited to the comparison between

KL-IPOP and KL-BIPOP. For globally well-structured functions, the

IPOP strategy tends to be better, whereas on weakly-structured

functions BIPOP tends to be better.

KL-Restart spent more function evaluations to solve unimodal

functions due to the fixed large population size. On f13, f17 and f18,

where KL-IPOP and KL-BIPOP suffered from premature termination

as discussed above, KL-Restart often finds the target function value

at the first (re-)start, hence it works better than KL-IPOP and KL-

BIPOP. However, it is definitely not a fundamental solution to the

defect of the proposed mechanism.

6 SUMMARY AND FUTUREWORK
We proposed the termination criterion and the initial step-size con-

trol mechanism for the restart CMA-ES by introducing the history

of the distribution parameters and detecting overlapping search.

The proposed mechanism is combined with the simple restart, the

IPOP restart, and the BIPOP restart scheme and they are compared

with the IPOP and the BIPOP restart CMA-ES on the BBOB noise-

less testbed. A promising performance has been observed on f22,

that has a relatively small number of local minima with a weak

global structure. Meanwhile, a drawback has been delighted on the

Schaffer functions and the sharp ridge function. The comparison

between the BIPOP strategy and the BIPOP strategy combined with

the proposed initial step-size control mechanism revealed the short-

coming of the proposed initial step-size control mechanism, on e.g.

the Katsuuras function f23. Improvement both on the termination

criterion and the initial step-size control is necessary in the future

work.
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Figure 2: Average running time (aRT in number of f -evaluations as log
10

value), divided by dimension for target function
value 10

−8 versus dimension. Slanted grid lines indicate quadratic scaling with the dimension. Different symbols correspond
to different algorithms given in the legend of f1 and f24. Light symbols give the maximum number of function evaluations
from the longest trial divided by dimension. Black stars indicate a statistically better result compared to all other algorithms
with p < 0.01 and Bonferroni correction number of dimensions (six). Legend: ◦: BIPOP-CMAES, ♢: IPOP-CMAES,⋆: KL-CMAES,
▽: KL-IPOP-CMAES, 9: KL-Restart
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Figure 3: Bootstrapped empirical cumulative distribution of the number of objective function evaluations divided by dimen-
sion (FEvals/DIM) for 51 targets with target precision in 10

[−8..2] for all functions and subgroups in 5-D. The “best 2009” line
corresponds to the best aRT observed during BBOB 2009 for each selected target.
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Figure 4: Bootstrapped empirical cumulative distribution of the number of objective function evaluations divided by dimen-
sion (FEvals/DIM) for 51 targets with target precision in 10

[−8..2] for all functions and subgroups in 20-D. The “best 2009” line
corresponds to the best aRT observed during BBOB 2009 for each selected target.
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Figure 5: Results on f17, f21, f22, f23 and f24 (from top to bottom) of dimension 3, 5, 10, and 20 (from left to right).
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Figure 6: Results on f23 and f24 (left top to right) of dimension 10, and 20 (from left to right).
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