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ABSTRACT

Human driving models aim at producing human-like driving strate-
gies by mimicking the behavior of drivers. Drivers optimize sev-
eral objectives when traveling along a route, such as the traveling
time and the fuel consumption. However, these objectives are not
taken into account when building human driving models. To over-
come this shortcoming, we designed a two-level Multiobjective
Optimization algorithm for discovering Human-like Driving Strate-
gies (MOHDS) that combines the human driving models with the
optimization of the traveling time and the fuel consumption. Conse-
quently, MOHDS enables to simultaneously mimic human driving
behavior and optimize relevant driving objectives. MOHDS was
tested on a two-lane rural route and compared to the existing ap-
proaches for human driving modeling. The results show that, unlike
the existing approaches, MOHDS finds the driving strategies with
various tradeoffs between the objectives.
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1 INTRODUCTION

Autonomous vehicle driving consists of monitoring the vehicle and
its surroundings, taking decisions about actions and applying the
selected actions. This is a continuous process that optimizes sev-
eral objectives such as the traveling time and the fuel consumption,
while taking into account a set of constraints, e.g., safety constraints,
route configuration, traffic rules, etc. Many automotive and other
companies, e.g., Toyota [24] and Google [25], have been recently
investigating autonomous vehicle driving. As a result, several dri-
ver assistance systems are already installed in modern vehicles,
such as line assist (see, e.g., Volkswagen [35] and Toyota [32]). In
addition, fully autonomous vehicles are starting to drive in urban
environments [36].

The main focus of the autonomous driving solutions is on deter-
mining the vehicle surroundings, e.g., other vehicles, obstacles, and
pedestrians, in order to increase safety and avoid collisions. The
obtained driving strategy, however, may miss other objectives that
are also important, such as the minimization of traveling time, the
minimization of fuel consumption and consequently the reduction
of pollution, etc. An important objective is also the acceptability
of vehicle behavior by the passengers. More precisely, passengers
do not want autonomous vehicle driving to be too unusual, dif-
ferent from their driving or worse than human driving [26]. For
example, aggressive behavior of the autonomous vehicle is probably
unacceptable for a calm driver. Consequently, the behavior of the
autonomous vehicle has to be similar to human driving behavior.

Several objectives are conflicting, e.g., shortening the traveling
time will result in increasing the fuel consumption. Therefore, all
the objectives need to be considered simultaneously when con-
structing a driving strategy. Single-objective approaches are able
to handle multiple objectives by combining them into a single-
objective function. However, when several objectives have to be
simultaneously optimized, it is preferable to use the multiobjec-
tive approach, since it enables to better explore the multiobjective
search space in comparison to the single-objective approach.

The multiobjective approach finds a set of nondominated driv-
ing strategies, which enables to select a different strategy with-
out restarting the algorithm when the requirements change or
whenever the objectives are a matter of choice [27]. Moreover, Van
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Willigen et al. [34] presented the idea of deploying nondominated
driving strategies in adaptive cruise control of future intelligent
vehicles. In this approach, a user can enter his/her preferences into
the vehicle’s cruise control at real time. Setting preferences cor-
responds to real-time selection of the driving strategy with the
preferred values of the objectives.

Several methods for discovering driving strategies exist, but they
are mostly based on the single-objective approach. In addition,
they do not include driver behavior models, but optimize only the
traveling time, fuel consumption, etc. Consequently, the obtained
driving strategies are not similar to human driving strategies [7].
On the other hand, models that aim to emulate driver behavior
are focused only on the replication of this behavior, while other
objectives are not taken into account. To overcome the shortcom-
ings of the existing methods, we propose a two-level Multiobjective
Optimization algorithm for discovering Human-like Driving Strate-
gies (MOHDS) that mimics human driving behavior and at the
same time minimizes the traveling time and the fuel consumption.
The lower-level algorithm consists of a set of mathematical models
that mimic human driving behavior. The algorithm observes the
vehicle state and the state of neighboring vehicles, and selects the
best control actions. The upper-level algorithm is a multiobjective
optimization algorithm based on DEMO [23, 33] and NSGA-II [6]
that searches for the best values of the input parameters for the
lower-level algorithm.

The paper is further organized as follows. Related work is pre-
sented in Section 2. Section 3 introduces the driving simulation
environment. The MOHDS algorithm is described in Section 4.
Section 5 presents the numerical experiments. Finally, Section 6
concludes the paper with ideas for future work.

2 RELATED WORK

Driving strategies that mimic human driving behavior can be ob-
tained by using appropriate human driving models. Several models
have been developed, where each of them is dedicated to a specific
driving operation, such as car following, free driving, lane changing,
overtaking, etc.

Car following models, a subset of acceleration models, describe
the process of following the preceding vehicle on the same lane. The
relation between the preceding vehicle and the following vehicle
specifies that each individual vehicle always accelerates or decel-
erates as a response of its surrounding stimulus. The types of the
models vary according to the definitions of the stimulus. Generally
speaking, the stimulus may include the velocity and the accelera-
tion of the vehicle, the relative velocity and spacing between the
preceding and the following vehicle, etc. [19]. The Gazis-Herman-
Rothery (GHR) model, also known as General Motors model, is the
best-known stimulus-response model, which was initially proposed
by Chandler et al. [5]. The model specifies the stimulus as the rela-
tive velocity of vehicles, that is, each vehicle tends to move at the
same velocity as its preceding vehicle. Various versions of the model
have been developed, which include distance to the preceding ve-
hicle, velocity of the autonomous vehicle, different parameters for
acceleration and deceleration phases, etc. [19].

Besides GHR, several other models for the car following opera-
tion have been proposed. The linear model relates the acceleration
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of the following vehicle to the desired following distance, velocity
of the following vehicle, relative distance and velocity between
the preceding and the following vehicle, and driver’s reaction de-
lay [38]. The collision avoidance model, also called the safety dis-
tance model, aims to obtain a safe following distance through the
manipulation of the basic Newtonian equations of motion [12]. The
optimal velocity model assumes that each driver tries to achieve
an optimal velocity based on the distance to the preceding vehicle
and the velocity difference between the vehicles. In addition, it
also assumes that each driver seeks a safe following distance to its
preceding vehicle [28]. The psychophysical model, also called the
action point model, abstracts the stimuli to the relative motion of
the fore-and-aft vehicles, including the velocity difference and the
distance. The driver reacts appropriately when these stimuli fall
beyond their threshold values [37]. The cellular automaton model
describes the traffic as a stochastic discrete automaton model [30].
A fuzzy model uses a set of fuzzy rules to make decisions based on
the status messages of the preceding vehicles [17]. Neural networks
use the preceding and the following vehicle data to prescribe the
car following behavior [21].

Lane changing and overtaking models prescribe the decision-
making process of the corresponding driving operations. For ex-
ample, lane changing on a motorway is usually handled with a
lane-changing-desire model, a gap acceptance model and a gap
selection model, while overtaking on a rural route is handled with a
desire-to-overtake model and a gap acceptance model. Kusuma, Liu,
and Francis [18] presented a model for gap acceptance behavior
on the motorway. The vehicle driver may choose an available gap
based on gap utilities and usually chooses a highest utility. Farah
et al. [9, 10] presented overtaking models for two-lane rural routes
including the desire-to-pass model and the passing gap acceptance
model. The desire-to-pass model returns the utility to the driver
from desiring to pass, while the gap acceptance model calculates the
minimal acceptable gap. Toledo, Koutsopoulos and Ben-Akiva [31]
proposed an integrated lane changing model that combines manda-
tory and discretionary lane changes into a single utility model. The
lane changing process consists of two steps: choice of the target
lane and gap acceptance decisions. Ahmed [2] developed a gen-
eral utility-based framework that captures both mandatory and
discretionary lane change situations. The lane changing operation
is performed in three steps: a decision to consider the lane change,
choice of the target lane and acceptance of gaps in the target lane.
Toledo [29] developed a model for motorways, which integrates ac-
celeration, gap acceptance and lane changing, and allows drivers to
accelerate in order to facilitate lane changing. Different acceleration
models apply depending on the target gap choice. The specifica-
tion of acceleration models follows the GHR stimulus-response
framework.

The human driving models aim at mimicking human driving
behavior, however, they miss to achieve other objectives that are
relevant when traveling along a route, such as the minimization of
the traveling time and the fuel consumption. To optimize such addi-
tional objectives, several approaches have been proposed. They aim
to minimize either the weighted sum of the fuel consumption and
the traveling time, or the fuel consumption only, while considering
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the traveling time as a constraint. For example, dynamic program-
ming methods that are based on the black-box approach have been
developed to minimize the weighted-sum of the objectives [13].
Model-based analytical approaches minimize the weighted-sum of
the objectives [15] or fuel consumption only [14]. However, only
few researchers in fields such as racing games have focused on
multiobjective optimization, without including both traveling time
and fuel consumption as objectives. For example, Agapitos et al. [1]
studied the driving strategy optimization of racing game competi-
tors based on several objectives, such as avoiding collisions and
minimizing steering changes. In our previous work, we have devel-
oped a multiobjective algorithm that searches for driving strategies
on an empty route and minimizes the traveling time and the fuel
consumption [8].

The existing methods for discovering driving strategies focus
either on modeling human behavior or on the optimization of the
traveling time, the fuel consumption and/or other objectives. This
paper presents an algorithm that handles both tasks simultane-
ously: it ensures human-like driving strategies by implementing
human driving models, and optimizes the traveling time and the
fuel consumption by tuning the parameters of these models.

3 DRIVING SIMULATION

Vehicle driving is simulated on a two-lane rural route where over-
taking is permitted. The simulated scenario includes an autonomous
vehicle that is controlled by the autonomous driving algorithm, and
a set of traffic vehicles that are controlled by the simulation. The
simulation is performed step-wise until the entire route is simulated
by the autonomous vehicle or the simulation becomes infeasible.
When the simulation concludes, it returns the values of the objec-
tives, i.e., the traveling time t and the fuel consumption ¢, and the
driving feasibility.

3.1 Autonomous Vehicle

The autonomous vehicle has to be controlled with control actions
defined as acceleration a, vehicle angle with respect to the route
direction «, and the gear. The current gear is determined by consid-
ering the previous gear and the engine speed limits (n,; and ne,u)
as described below. In addition, when selecting the acceleration,
the vehicle constraints have to be considered.

The vehicle constraints are determined with a vehicle driving
simulator that calculates the wheel friction force, aerodynamic drag
force and tangential component of the g-force. These forces are
combined in the engine moving force in case of acceleration, or tire
braking force in case of deceleration. If the engine moving force
exceeds the maximum engine moving force with respect to the
current vehicle and route state (i.e., if the engine torque exceeds
the maximum engine torque), the actual acceleration is decreased
to meet the vehicle constraints. Similarly, if the tire braking force
exceeds the maximum tire braking force with respect to the current
vehicle and route state, the actual deceleration is decreased to meet
the vehicle constraints.

To determine the current vehicle constraints, the current gear
has to be selected. The vehicle driving simulator enables to select
the current gear by defining the engine speed lower limit n, ; and
the engine speed upper limit ne . These limits are used to shift the
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gears: when the current engine speed exceeds the upper limit, the
gear is shifted up; when the current engine speed drops below the
lower limit, the gear is shifted down.

The vehicle driving simulator also returns the instantaneous
fuel consumption that is obtained by taking into account the en-
gine moving force and the specific fuel-consumption diagram. The
vehicle driving simulator is described in detail in [8].

3.2 Traffic Vehicles

The driving simulation also includes a set of traffic vehicles. On the
right, i.e., main lane, the traffic vehicles drive in the same direction
as the autonomous vehicle, while on the left, i.e., overtaking lane,
they drive in the opposite direction. The behavior of traffic vehicles
changes with respect to the position of the autonomous vehicle. To
that end, a set of action points has to be defined, where each action
point determines the absolute position of the autonomous vehicle
on the route. When the autonomous vehicle passes the action point,
a new target velocity and/or distance between the traffic vehicles
are assigned to traffic vehicles. The target velocity is not achieved
immediately, but smoothly by applying a predefined acceleration.

3.3 Feasibility Checking

Feasibility checking is performed after each simulation step. The
driving is not feasible if the autonomous vehicle stops/drives with a
negative velocity, or if there is a collision between the autonomous
vehicle and a traffic vehicle. In addition, the route has a velocity
limit that must not be exceeded. Besides collision, vehicle stopping
and velocity limit detection, the feasibility checking includes also
the evaluation of the objective values. More precisely, the upper
bounds for all the objectives (that are minimized) are given in
advance. Afterwards, the simulation checks whether the current
objective values exceed the upper bounds. If an upper bound is
exceeded, the driving becomes infeasible. When this happens, the
simulation stops. In this case, the distance to the end of the route is
also returned in addition to the objective values.

4 ALGORITHM FOR DISCOVERING
HUMAN-LIKE DRIVING STRATEGIES

This section presents the two-level Multiobjective optimization
algorithm for discovering human-like driving strategies (MOHDS)
that simultaneously mimics human driving behavior and minimizes
the traveling time and the fuel consumption. The human driving
behavior is obtained with the lower-level algorithm, LL-MOHDS,
which applies a set of human driving models to determine the
vehicle’s control actions. The input parameters for the lower-level
algorithm are searched by the upper-level algorithm, UL-MOHDS,
which is a multiobjective optimization algorithm that minimizes
the traveling time and the fuel consumption. The final result is a
set of nondominated human-like driving strategies.

4.1 Lower-Level Algorithm for Discovering
Human-like Driving Strategies

The lower-level algorithm (LL-MOHDS) consists of mathematical
models that mimic human driving behavior and are able to handle
the following driving operations: (a) car following, (b) free driving,
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(c) emergency deceleration, and (d) overtaking. The car following,
free driving and emergency deceleration models determine the
vehicle acceleration a, while the overtaking models determine the
vehicle angle with respect to the route direction a.

4.1.1  Acceleration Selection. The car following model is based
on the GHR models [5, 19] and handles two phases: the acceleration
phase and the deceleration phase as shown in Equation (1):

ket a0()ketav As(t)Retas Av(t — ) 5 Av(t—1) > 0
ace(t) =\ kep qu(O)fetavAs(tkeasAv(t —7);  Av(t—1) <0
0 ;0 Av(t—-1)=0

(1

where Av(t — 1) = vp(t — 1) —v(t — 1), 7 is the human reaction time,
vp is the velocity of the preceding vehicle, As(t) is the distance to
the preceding vehicle, and kp are model parameters.

The free driving model handles acceleration when there is no ve-
hicle to follow. In this case an appropriate acceleration is used until
the target velocity v is achieved. This acceleration is calculated as
a function of the current velocity [22] as shown in Equation (2):

kfd,av(t) + g4 ‘U(l‘) < vt
agy(t) = 0 ;o U=t 2)
kfd’d'U(t) +ng44; ’U(t) > vt

where kg and ng are model parameters.
The emergency deceleration model is applied when the auto-
nomous vehicle is too close to the preceding vehicle [22] and is

defined as shown in Equation (3):
aog(t) = min {afdd(t), ap(t) — 0.5 AsD)
min {afd’d(t), ap(t) + 0.25af¢d(t)} ;0 Ao(t—-1)=20
®3)

where agg () = kgq,qv(t) + ngq q and ap, is the acceleration of the
preceding vehicle.

At each time step, only one of these models defines the vehicle ac-
celeration, apy. The model selection is based on the time headway h
to the preceding vehicle. If the time headway is larger than the
upper threshold hy, the vehicle is not constrained by the preceding
vehicle and the free driving model is applied. If the time headway is
between the upper threshold hy, and the lower threshold Ay, the car
following model is applied. If the time headway is smaller than hj,
the vehicle is too close to the preceding vehicle and the emergency
deceleration model is applied to extend the headway [22]. This
procedure is summarized in Equation (4).

Av(t_r)z} i Aou(t—1)<0

agg(t); h>hy
am(t) =1 ace(t); hu2h>h 4)
aed(t); h< hl

The selection of vehicle acceleration based on car following, free
driving and emergency deceleration models has been enhanced
in our algorithm to take into account the target velocity vy in all
three modes. Although the existing models include the target veloc-
ity, this is applied for free driving only [22]. Consequently, when
a vehicle follows the preceding vehicle (by applying the car fol-
lowing model), the target velocity is not considered and can be
exceeded. LL-MOHDS, on the other hand, applies the target veloc-
ity limit during the entire driving. More precisely, at each step the
acceleration to achieve the target velocity, a;(t), is calculated using
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Equation (2). Finally, the vehicle acceleration a(t) is calculated as
shown in Equation (5).

a(t) = min {am(t), ar(t)} ®)

LL-MOHDS applies two target velocities, one for the main lane,
vt,m, and one for the overtaking lane, vt o.

Although LL-MOHDS selects the vehicle acceleration as shown
in Equation (5), the actually applied acceleration can be lower due to
the vehicle constraints. For example, the vehicle might not be able to
achieve a very high acceleration defined by LL-MOHDS. The vehicle
constraints are taken into account as described in Section 3.1.

4.1.2  Handling Overtaking. The overtaking operation is hand-
led with two decision-making models, i.e., the desire-to-pass model
and the gap acceptance model. The desire-to-pass model returns
the utility to the driver from desiring to pass [10] as shown in
Equation (6):

udp(t) = kap + kdp,avAoe(t) + kap, dsAs(t) (6)

where Avt = vt — vp and kg are model parameters. If ugy(t) > 0,
the vehicle desires to pass.

The gap acceptance model calculates the minimal gap that has
to be available in order to start the overtaking operation [10]. The
minimal acceptable gap is calculated according to Equation (7):

Gga(t) = kga + kga vo(t) + kga, vpUp(t) + kga,vo0o(t) (7)

where kg are model parameters and v, is the velocity of the vehicle
on the overtaking lane which drives in the opposite direction. If
9o(t) > gga(t), the gap is accepted, where go(t) is the current gap
on the overtaking lane.

In addition, the autonomous vehicle starts to overtake the pre-
ceding vehicle only when the gap to the preceding vehicle, gp(t), is
bellow the threshold g;. Equation (8) shows the decision-making
process for the overtaking operation.

yes; gp(t) < gt AND udp(l’) > 0 AND
OVERTAKE(t) = go(t) > gga(t)
no ; otherwise

®)

While overtaking, the autonomous vehicle has to change the lane
twice (from the main, i.e., right lane to the overtaking, i.e., left lane
and vice versa). While the beginning of overtaking is determined
with Equation (8), the overtaking conclusion, i.e., lane changing
again to the main lane, is performed only when the autonomous
vehicle is in front of the overtaken vehicle and the distance between
them is above the rear gap threshold g o.

Each lane change is performed by controlling the vehicle angle a.
To this end, LL-MOHDS applies quadratic Bézier curves [3] and De
Casteljau’s algorithm [4]. The vehicle position y. during the lane
change is calculated from the starting position ys on the current
lane, the target position y; on the target lane (i.e., the middle of the
target lane), and the lane change percentage p;. [16] as shown in

yc(t) _ (1 _plc)2 (1 _plc)z

Equation (9):
=Y+ |1-5——|u )
Pl (=) ( pfc+(1—plc)2)

where y is the lateral position of the vehicle with respect to the
route direction.
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The difference in lateral position during one step is calculated
as Ayc(t) = yc(t) — yc(t — 1), and the traveled route in one step is
calculated as As(t) = s(t) — s(t — 1). Finally, the vehicle angle is
calculated as shown in Equation (10).

Ayc(t)
As(t)

4.1.3  Gear Shifting. The autonomous vehicle is controlled also
by gear shifting, in addition to the vehicle acceleration and driving
angle. As described in Section 3.1, gear shifting requires to define
the engine speed lower limit n, ) to shift the gear down, and the
engine speed upper limit ne y to shift the gear up. LL-MOHDS
defines the engine speed limits for the main lane, i.e., ne 1 and
Ne,mu, and for the overtaking lane, i.e., ne ] and ne ou.

(10)

a(t) = arcsin

4.2 Upper-Level Algorithm for Discovering
Human-like Driving Strategies

The upper-level algorithm (UL-MOHDS) is a multiobjective opti-
mization algorithm based on DEMO [23, 33] and NSGA-II [6]. It
searches for the best values of the input parameters for LL-MOHDS
by optimizing two objectives: the traveling time ¢ and the fuel con-
sumption c¢. While LL-MOHDS assures that the obtained driving
strategy is human-like due to the usage of appropriate human driv-
ing models, UL-MOHDS enables to find the driving strategies with
short traveling time and low fuel consumption.

The set of input-parameter values is stored in an upper-level
solution and encoded as a vector of numeric values forming a
chromosome. The chromosome encodes the following parameters:

o Target velocities for main and overtaking lanes: vy, and vy o

Free driving model parameters for acceleration phase: kg , and
nfd,a

Free driving model parameters for deceleration phase: kgy 4
and ned,d

Car following model parameters for acceleration phase: ks, ,,

ke a,v and kef, o s

Car following model parameters for deceleration phase: kf g,
ket q,v and kg g s

Time headway upper and lower thresholds: h, and h;

Gap acceptance model parameters: kga, kga, v, kga,vp, and kga, vo
Desire-to-pass model parameters: kqp,, kap, dv and kqp, ds

Rear gap threshold: g; o

Engine speed upper and lower limits for main lane: ne my and

Ne ml
Engine speed upper and lower limits for overtaking lane: ne o4
and Ne ol
In addition to boundary constraints for the parameters, the follow-
ing constraints are also to be satisfied:
® Utm < Vo

h < hy
Ne ml < Me,mu
Ne ol < Me,ou
kfq,aUMAX + Nfda = 0
kg, aomax + neg,d < 0
where v)pax is the maximum vehicle velocity.

UL-MOHDS operates with a set of solutions called the popula-
tion, which is improved through a number of generations. At each
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Table 1: Traffic Vehicle Parameters

Name Description Unit Values
S Distance between vehicles 150
™ on the right lane
Distance between vehicles
So on the left lane [300, 800, 1500]
Vin Velocity on the right lane ~ km/h [80, 50, 20]
Vo Velocity on the left lane km/h [90, 60, 30]

generation, for each solution, i.e., parent S; in the population, a
new candidate solution is created using the scheme DE/rand/1/bin
as follows [23]:

o Randomly select three solutions S;,, Sj,, Si, from the population,
where i, i1, ip and i3 are pairwise different.

Calculate candidate C as C = S;; + F(S;, — Si,), where Fisa
scaling factor.

Modify the candidate with the parent S; using the binary cross-
over with crossover probability pe.

e Repair the candidate if it falls out of the decision space bounds.

Afterward, the candidate solution is evaluated by applying LL-MO-
HDS and:

e The candidate solution replaces the parent in the population if
it dominates the parent.

o The candidate solution is discarded if the parent dominates it.

e The candidate solution is added to the population if the candi-
date solution and the parent are incomparable.

After each generation, the best solutions are selected for the pop-
ulation in the next generation in order to maintain a constant
population size between the generations. This is carried out using
the Fast Nondominated Sort and Crowding Distance mechanisms
from the Nondominated Sorting Genetic Algorithm (NSGA-II) [6].
Finally, the UL-MOHDS algorithm returns a set of nondominated
driving strategies.

5 EXPERIMENTS AND RESULTS

MOHDS was tested on a two-lane rural route and the results were
compared with the results of the existing models for human driving.
The route and traffic definition, parameters for the algorithm and
the results are presented in the following subsections.

5.1 Experimental Setup

The length of the test two-lane rural route was 46 km. The veloc-
ity limit along the entire route was 90 km/h. The velocity of the
traffic vehicles and the distance between the traffic vehicles on
the same lane varied as described in Section 3.2, where the sets of
velocities and distances are shown in Table 1. In particular, all the
combinations of velocities and distances were applied on the route.
Therefore, for all s, € S, each combination {vn, Vo }, vm € Vi and
Vo € Vo, was applied for a distance of 2s,. Consequently, the action
points were defined as twice the distances between the vehicles
on the overtaking lane. Such a fixed configuration was selected
to enable a fair comparison between the driving strategies with
respect to the objective values.
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Table 2: Decision Space Bounds

Parameter Unit Initial During
population evolution
Vm km/h  [85,90] [40, 90]
Vo km/h  [85, 90] (70, 90]
ke a [05,0]
nfg.a [5. 10]
kea,a [0, 0.5]
nfd,d [-10, -5] [-10, 0]
kcf,a [-10, 10]
kef.av [-0.8,25]  [-10, 10]
kcf,a,s [-3, 0] [-10, 10]
ked [-10, 10]
kcf,d,v [0, 2] [-10, 10]
ke d.s [3.0]  [10,10]
hu, s [0.1, 3]
kga [24, 34] [0, 50]
kea,v [-0.5,-0.1]  [-10, 10]
kga,vp [0.3,0.6] [-10, 10]
kga,vo [-0.2, 0] [-10, 10]
kdp [-0.7,-0.3] [-10, 0]
kdp,dv [0,0.2] [0, 10]
kdp,ds [-0.1, 0] [-10, 10]
Jt,o m [5,50]
Ne,mu> Ne,ml> Me,ous Me,ol  /Min [960, 6000]

Table 3: UL-MOHDS Parameters

Parameter Value
Population size 50
Number of generations 50
Crossover probability p. 0.9
Scaling factor F 0.5

The parameters of UL-MOHDS are shown in Tables 2 and 3.
Table 2 presents the bounds of the decision space, while Table 3
presents the parameters of the UL-MOHDS algorithm. Note that
the bounds for the initial population and during the evolution were
different. For the initial population we used the intervals covering
the values from related work. For the evolution wider intervals were
used in order for the algorithm to consider the traveling time and
the fuel consumption in addition to mimicking the human driving
behavior.

5.2 Experimental Results

MOHDS is a stochastic algorithm, therefore, it was run 10 times
to obtain the driving strategies. The obtained strategies were com-
bined in attainment curves! that divide the objective space in attain-
ment surfaces [11] as shown in Figure 1. These results show that
the quality of the driving strategies obtained in various algorithm
runs was similar. In addition, the objective values of the discovered

IThe attainment curves were obtained using the PISA library, available online: http:
/[www.tik.ee.ethz.ch/pisa/.
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Figure 1: Driving strategies in objective space, obtained in 10
runs of the MOHDS algorithm.

driving strategies show that the fuel consumption can be reduced
by up to 73 % with respect to the maximal fuel consumption of
nondominated driving strategies. Similarly, the traveling time can
be reduced by up to 55 % with respect to the maximal traveling
time of nondominated driving strategies.

Figure 2 shows the comparison between the MOHDS driving
strategies obtained in various simulation runs and the driving stra-
tegies with similar parameter values as the existing human driving
models that are presented in [2, 10, 19]. These results indicate that
the existing driving models can result in either low fuel consump-
tion when only the car following operation is applied (right-hand
side of the figure) or short traveling time when overtaking is also
applied (left-hand side of the figure). On the other hand, MOHDS
enables to find a large set of nondominated driving strategies with
various tradeoffs between the traveling time and the fuel consump-
tion. This enables, e.g., to shorten the traveling time without sig-
nificantly increasing the fuel consumption. The results also show
that MOHDS (on average) finds better driving strategies than the
existing human driving models.

Examples of the vehicle’s behavior obtained when applying a
selected number of driving strategies (marked as s1, sz and s3 in
Figure 2) can be seen in Figure 3. Driving strategy s; has a short
traveling time, s3 has low fuel consumption, while s, has a good
balance between both objectives. The first (top) subfigure shows
the lateral position, which is 0 in the center of the main lane, and
3.5 in the center of the overtaking lane. The second subfigure shows
the vehicle velocity. Note that the velocity limit is 90 km/h along
the entire route. The third subfigure shows the distance from the
autonomous vehicle to the vehicle in front of it on the same lane.
During overtaking, this is the distance to the vehicle on the over-
taking lane driving in the opposite direction. The fourth subfigure
shows the difference between the velocity of the vehicle in front
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Figure 2: Comparison of driving strategies in objective space
between the MOHDS algorithm and existing human driving
models.

of the autonomous vehicle and the velocity of the autonomous
vehicle. Finally, the fifth (bottom) subfigure shows the cumulative
fuel consumption. These results show that s3 (the driving strategy
with low fuel consumption) never overtakes and consequently al-
ways follows the preceding vehicle. Its traveling time represents a
lower bound for the traveling time of driving strategies that never
overtake. As can be seen in Figure 2, other driving strategies with
similar traveling time exist, which vary in fuel consumption. As a
consequence, MOHDS enables to optimize the fuel consumption
even when applying the car following operation only. These results
also show that driving strategies s; and s; combine the overtak-
ing and the car following operations. Among them, s; has lower
traveling time due to performing the overtaking operation more
frequently, and applying higher target velocities on the main and
overtaking lanes.

The obtained results can be potentially applied in the fields of
autonomous vehicle driving and evaluation of drivers. As suggested
by Van Willigen et al. [34], nondominated driving strategies can be
deployed in adaptive cruise control of future intelligent vehicles,
where a user will be able to select the driving strategy according to
his/her preferences. The evaluation of drivers consists of determin-
ing the quality of their driving (e.g., near or far from nondominated
driving strategies) or classifying the drivers (e.g., fast drivers, low-
consumption drivers, far-from-optimal drivers). For example, Lin
et al. [20] suggested to use driver models for classifying the drivers
into three skill levels: lower, typical, and expert.

6 CONCLUSIONS

We have designed and tested a Multiobjective Optimization algo-
rithm for discovering Human-like Driving Strategies (MOHDS) that
applies human driving models and minimizes the traveling time
and the fuel consumption. MOHDS is a two-level algorithm, where
the lower level consists of a set of human driving models handling
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various driving operations, and the upper level is a multiobjective
evolutionary algorithm that searches for the best input parameters
for the lower level algorithm by minimizing the traveling time and
the fuel consumption. MOHDS returns a set of nondominated driv-
ing strategies with short traveling time and low fuel consumption,
which mimic the human driving behavior due to the use of human
driving models.

The driving strategies found with MOHDS were compared to
driving strategies obtained by applying the existing approaches
for obtaining human-like driving strategies. The results show that
MOHDS is beneficial since it simultaneously optimizes the human
driving models for various driving operations, while, in addition,
minimizing the objectives that are relevant when driving along
a route. Moreover, MOHDS enables to find the driving strategies
with various tradeoffs between the objectives in comparison to the
existing approaches.

In our future work we will extend MOHDS to handle additional
driving operations, such as lane changing on the motorway which
requires dedicated human driving models. In addition, we will test
the algorithm on various routes. It would be also interesting to
obtain data on human driving and compare them with the driving
strategies found with MOHDS. Consequently, a third objective
could be added to MOHDS, i.e., similarity with human driving
behavior.
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