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ABSTRACT
Based on previous results on language games here I study cultural
dynamics extended in spatial environments. �e underlying model
makes assumptions regarding cognitive aspects of the individuals
based on the Neuronal Replicator hypothesis. Although I assume a
simple and minimal version of cultures, this model allows exploring
the e�ects of idiosyncratic as well as externally, environmentally,
imposed preferences on cultural traits. I also study the case of
dispersal of individuals and �nd that this factor is key for the rapid
spread of cultural traits.
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1 INTRODUCTION: CULTURES AND
MULTI-CULTURES

Evolutionary biologists have long recognised that culture evolves in
a way analogous to biological evolution [2]. However, the mathema-
tisation of cultural evolution has remained elusive partly because
(a) the mechanisms of cultural transmission have remained largely
inaccessible to evolutionary biologists and (b) the units that are
evolvable have been hard to identify.

A central question in cultural evolution is: how to model culture
[2, 10, 11]. But the complication is twofold becaiuse the de�nition
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of what culture is remains a subject of constant debate [8, 9]. Al-
though culture is a multifaceted human trait that can be hardly fully
described mathematically, it is feasible to adopt working de�nitions
that will facilitate understanding some aspects of its dynamics. �e
sole identi�cation of what aspects are prone to be modelled by using
relatively simple formal techniques of mathematics or computer
science is already an advance.

In my proposed framework I employ a broad and simple def-
inition of culture: a culture is the set of concepts that individuals
share in a population. While I agree that this de�nition is open
to discussion, I will adhere to it with the aim of modelling how
concepts originate and spread in a population.

Unlike problems in other �elds such as statistical physics and
evolutionary genetics, it is not obvious what aspects to choose to
be modelled and which are the units of evolution. But once having
commi�ed to a framework to describe and study cultural evolution
in the space of concepts and tags (see below) I ask:

(1) Do some cognitive aspects limit or facilitate multicultural
mixability?

(2) What limits the speed of spatial spread of cultures: popu-
lation di�usion or e�ciency of cultural transmission?

I make a distinction between “implied concepts” and their expres-
sions through actions, u�erances or tags [11, 14]. Implied concepts,
I assume, remain mental and abstract to each individual or agent.
Actions or ‘tags’, are explicit forms that are transmissible across
agents (i.e. can be copied) and make reference to the actual, implied
meaning. While the tags are transmissible, the implied concepts
have to be developed and implied by each individual.

However, culture is changeable, partly because di�erent social
groups have di�erent cultures, and across-group communication
brings novelty to the populations [8]. In our contemporary highly
mobile societies populations are constituted by individuals of di�er-
ent cultures. What are the features of these multi-cultural societies?
�e approach that I present assumes a population sub-structuring
where part of it has one (sub)set of concepts that is disjoint from
the (sub)set of concept of the other part. By assuming basic aspects
of cognitive processes that are universal to humans based on the
Neuronal Replicator hypothesis, thereby I take the �rst steps in the
construction, description and implementation of cultural dynamics.
In this �rst work I use a space of only two concepts. With this
model I draw implications and consequences for multi-cultures to
provide partial answer to questions 1 and 2 above.
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Figure 1: Spread of a new tag in a homogeneous population.
(A) Low preference, ω = 0.01. (B) No preference, ω = 1/2.
(C) High preference ω = 1. �e original tag σ1 is in red, the
coloured region indicates where the new tag σ2 is known but
used with certain preference indicated in the colour bar.

2 LANGUAGE GAMES AS A FRAMEWORK
FOR CULTURAL EVOLUTION

Based on previous frameworks of arti�cial intelligence originally
devised to study language [11] and advances in Darwinian neu-
rodynamics [4, 12] I propose a way to study cultural dynamics in
terms of evolutionary concepts and of neurobiological mechanisms.

�e approach consists of, �rst, identifying a sensible way to de-
scribe what culture is. Second, it requires an implementation of cog-
nitive processes that allows copying certain pa�erns across agents
or individuals and making an inference of what these pa�erns mean.
�ird, the agents must be capable of choosing, idiosyncratically,
what to transmit to others. �is choice must be cognitively based.

�e details of the architecture will be published somewhere else
[5]. Here, we use a mathematical model and simulations based on
Markov chains which is derived from general properties of cogni-
tion based on the Neuronal Replicator hypothesis (NRH) described
in the next section.

�is paper presents advances regarding cultural dynamics by
using simpli�ed models of culture. �ese models consist of a popula-
tion of agents that interact pair-wise under a variety of conditions.
�e di�erences between the general framework and the simple
model are that, in the former, we aim at dealing with a relatively
complex models of culture, with a variety of features and where
di�erent populations can interact. In contrast, in the simpler ver-
sion, culture is represented only by a set of two possible contrasting
concepts, and the interactions are only pairwise across individuals.

With the description of the general framework we are able to
advance some important analogies with evolution (e.g. the Wright-
Fisher model which is central in evolutionary genetics [3, see Ap-
pendix A]). With this general model we derive the simpler one
which we implement to study some interesting scenarios.

3 THE NEURONAL REPLICATOR
HYPOTHESIS

Building up the original Neuronal Replicator Hypothesis (NRH) [6]
we have developed a cognitive framework for problem solving. In
our framework, hypotheses or candidate solutions to a problem
play the role of evolutionary units: they are selected based on
their �tness just like in evolution and also multiply with heredity
(though learning) and introducing variation, virtually becoming
an evolutionary search. In last year’s GECCO ’16 we presented
an instance of said cognitive architecture [4]. In that work we
showe how the synergy between learning and selection can �nd
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Figure 2: Change in frequency of the alternative tagσ2 in the
population. (A) Di�erent preference values. Solid lines: sim-
ulation average; dashed lines: theoretical prediction. (B) Dy-
namics with time scaled by preference and population size.
Dashed black-white: theoertical expectation (identity line).
�e bar indicates the preference values for both panels.

optimal pa�erns in a roughed �tness landscape [12]. Now, I make
use of these ideas an apply them as a basic milieux to study cultural
transmission across agents. �e central goal is to implement the
NRH in language games as a cognitive framework in the agents to
construct, store and retrieve concepts and forms.

However, a full implementation of Language Games in terms
of the NRH is in progress and will be published elsewhere [5].
�e mathematical model presented in this paper derives directly
from 2-player naming games that implement this NRH. �is model
properly describes the dynamics for competing tags, constituting an
ideal tool to explore cognitive cultural dynamics and state precise
hypotheses that are more cumbersome to implement with other AI
platforms and embodied agents. However, ultimately the idea is to
achieve such computational implementation.

�e connection to the NRH here is as follows. In the full im-
plementation, each agent is initialised with one of two di�erent
competing tags, and also with a larger concept space that is not
explicitly employed for anything else. (�is is important since the
agents need to discover that the alternative tag can refer to the same
concept as their cognate one.) �e preference to chose a given tag
σ1 over another σ2 is given by a scoring mechanism that weights
the success of having used each tag. �ese preferences are de�ned
as the probability of choosing a particular tag given the agent’s
knowledge for other tags i.e. ωi = Pr[σi |{σ1, . . . ,σk }]. In other
words, it is the probability that an agent decides to transmit tag σi ,
amongst its alternative possibilities. Appendix B gives more details
about the preference scoring system and argue that, in many cases,
these can be constant, result we apply in this work.

4 RESULTS: A SIMPLE MODEL FOR
CULTURAL EVOLUTION

In this section I assume a population of N individuals that is struc-
tured in space; in this case, along a line. Each individual can interact
as a hearer or as a speaker only with any of its two neighbours.
�e update is done in an asynchronous way, that is, the order in
which individuals interact is randomly chosed, but making sure
that each pair does so only once. Another assumption is that there
is only one cultural a�ribute for which there are two instantiations
of referents represented by the tags σ1,σ2 with preferences 1 − ω
and ω respectively. �ese preferences are individually based and
constitute an important link with the NRH and/or other cognitive
strategies. �erefore, this preference can change across individuals
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Figure 3: (A) Mean time to �x a new concept as a function
of its preference ω for di�erent population sizes. (B) If ini-
tial conditions are arbitrary, the �xation time falls, as pre-
dicted between the bounds. In this example N = 100. Lines:
�eory; symbols: numerical averages over 100 randomised
simulations with the same initial conditions.

and/or environments. In each iteration, the agents exchange con-
cepts by u�ering σ1 or σ2 according to their preference. In some
simulations I allow for random spatial movement. �is is imple-
mented by randomly choosing pairs (not necessarily the same pairs
that interacted) and swapping their position. �is swapping occurs
only a�er all interactions in one round have taken place.

In the Appendices A and C I explain in detail the algorithm with
which the population is iterated; in this part I concentrate on the
results.

Spread of preferred concepts. One of the simplest scenarios is that
where almost all individuals express a pre-established concept, say
σ1, and one individual expresses an alternative concept σ2. When
will σ2 become �xed in the population? Note that I do not allow
for forge�ing, so individuals will still be able to express σ1 even
if they would prefer σ2. Here I assume that the preferences are
�xed. �is assumption is clearly an idealisation since preferences
are themselves evolvable. Nevertheless, keeping preferences �xed
will allow us to understand in a simple way the kind of dynamics
that result, which will facilitate a be�er understanding of the more
complex and realistic case of evolving preferences.

Figure 1 shows the spread of σ2 in the population under di�erent
preference values. In this plot, every horizontal cut is the state of
the population at a given time, with each colour representing the
likelihood of expressing of each individual. �ere are three states of
an individual according to their knowledge: they can know only one
concept or both. However, even if they know both, the preference
ω dictates the likelihood of expressing σ2 over σ1, as indicated in
the colouring in Fig. 1.

We can appreciate that the higher the preference is, the larger
the angle between the boundaries. Also, we see that the spread
of σ2 is linear with time. It can be shown (see Appendix A) that
spread of the σ2 is given by

x± (t ) = (N − x0) ±
ω

2 t , (1)

where x± describe the (+) upper and (−) lower boundaries of the
region where σ2 has been adopted. Note that the slope is ω/2; thus,
the angle between the two boundaries increases with preference.

�e frequency of σ2, denoted by p (Fig. 2A) follows directly from
this relationship and it gives

p =
ω

N
t . (2)
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Figure 4: (A) Preferences are distributed as β (4, 1.5), which
places most of the mass towards large values; small values
are very unlikely. (B) Preferences are distributed as U (0, 1),
which assigns equal probability to any preference. �e black
dashed lines are the expected trajectory according to the
mean preference value. Otherwise as in Fig. 1.

Clearly, p is bounded at time τf which is the time for σ2 to �x in the
population. �is formula implies that if time is scaled with ω/N all
the dynamics will fall over a straight line of slope 1. Figure 2 shows
that this is approximately true. Deviations are due to the stochastic
nature of the process.

From the formula of the linear spread the mean time to �xation
of σ2 can be estimated. �at is, the time τf when p = 1:

τf =
N

ω
. (3)

Figure 3A compares this prediction with some simulations. Al-
though in the �gures we assume that the new concept is introduced
by an individual at the centre of the space, this need not be the
case. �e formulas are rather similar and although �xation time
increases slightly, it can be shown that, independently of where
the new concept is introduced, τf ≤ 2N

ω . Moreover, it is possible
to show that, irrespective of where the new concept is introduced,
the expected time to �xation lies between these two boundaries:

N

ω
≤ τf ≤

2N
ω
. (4)

Figure 3B shows some results on this bound.
Summarising, in these analyses I have characterised how the

preferences a�ect the mixing of a simple culture. �e central �nding
is that the time that is expected to achieve a mix (i.e. the �xation of
a new concept) decreases with the inverse of the preference. If the
individuals have a strong preference, then it takes N units of time,
which is the number of interactions required for each individual
to adopt the new concept. If preferences are intermediate, then it
takes longer, but (except if ω = 0), �xation is always reached in
linear time.

I have analysed only the case where only one individual intro-
duces a new concept; it could be that several individuals introduce
it at the same time, that there are di�erential preferences, and/or
that individuals can move across the space. �e results of the next
sections reveal that these factors a�ect the speed of the spread.

Heterogeneous preferences. Now I allow each individual to have
a di�erent preference which remains constant in time but intro-
duces spatial heterogeneity. In general lines, the adoption of the
new concept spreads according to the average preference (e.g. Fig.
4A). �ere will be higher variance on the distribution of �xation
times, though. However, this is approximation is best when the
distribution of preferences does not have extremely small values.
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Figure 5: Spread of a new concept in a cline of preferences.
�e cline ranges linearly from ω = 0 at x = 0 to ω = 1 at at
x = 200. (A) spatial spread of σ2. Otherwise as in Fig. 1. (B)
Population frequency of concept σ2.

However, if there are individuals with very low preferences, they
will act as a barrier and stop the spread (e.g. Fig. 4B). Actually,
in the long run, the average still holds (unless a preference that
is in�nitely small occurs), but as the distribution of preferences is
more spread, the variance of �xation time increases (Fig. 6).

Clines of preference. Another perspective that can be addressed
is that when the heterogeneity in preference is not dictated individ-
ually but is externally �xed in a gradient. �is mimics a geographic
situation where there are smooth changes in concepts not because
idiosyncratic preferences but rather because of externally set cul-
tural or environmental predispositions.

In addition, I will assume that the concept σ2 exists close to one
of the borders of the cline. �is is not a necessary assumption, since
it does not a�ect the results, but is a seemingly convenient initial
condition to assume.

Figure 5 reveals that under these conditions the spread is sub-
linear. Whether �xation �nally occurs or not depends on the cline
values. In the example of Fig. 5 it spans, linearly, from 0 to 1,
therefore as the new concept progresses it encounters more and
more resistance for further spread. In this case it cannot, strictly
speaking, �x, but only asymptotically increases to ρ = 1. �at is
because the preference at one of the boundaries is zero, absolutely
rejecting the new concept. However if the cline does not go all the
way to zero, the concept σ2 can of course fully spread.

A subtle aspect is that σ1 will also spread into the sub-population
that only had σ2, even though this ‘deme’ will be unlikely to use
the concept σ1.

Dispersing populations. As a �nal experiment I study what hap-
pens when individuals disperse. �is is a crucial aspect of this
research because human populations are inherently mobile. Disper-
sion happens at di�erent time scales, all of which are important for
cultural and human evolution. For now I focus on dispersal within
structured populations which mimics within-lifetime migrations,
e.g. Silk Route journeys carrying new artefacts and ideas.

Figure 7 shows that dispersal has a dramatic e�ect on the �xation
of new ideas. �e overall e�ect is that dispersal increments the
speed of �xation. Without dispersal, spread of the ideas occurs only
at the cultural interface, which in the model above is always driven
by at most two individuals –one at each interface.

In this model dispersal is implemented by randomly swapping
the positions of individuals. �erefore individuals that are at the
interface can be moved away from it. �us individuals that carry
the concept σ2 are sometimes placed beyond the cultural interface.
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Figure 6: �e variance in �xation time increases with the
variance of the preferences (in log-log scale). Average prefer-
ence is set to 1/2. Each point computed from100 simulations.
Preferences drawn froma β (α ,α ) distribution, α = 1, 3, 5, 7, 10.
Population size N = 100. σ2 is introduced at position xo = 50.

At the same time individuals that were beyond the interface are
placed inside the range where σ2 has been adopted.

As a consequence, there are more than two agents that are e�ec-
tively spreading the new concept. How many individuals sca�er
the interface, depends on the amount of dispersal 7A-C.

�e e�ect of dispersal is stronger for populations with lower
preferences (Fig. 7D), which suggests that mixability is facilitated
by mobility.

5 DISCUSSION
One of the seminal contributions in cultural evolution [2] was the
prediction of the rate of spread of an innovation. In the original
proposal Fisher waves were predicted and used to study the spread
of cultural traits mapped with objects and languages in the earlier
periods of the cultural history of our species. However, in that
approach the speed of spread (a traveling wave) [1] is a parameter
set in the model. �e model here presented is consistent with
these results and it is possible to derive a traveling wave from it
(unfortunately space limitations do not allow developing this line
here). Like in those previous works, speed of spread is determined
by the preference ω which I have set to a constant. However, the
crucial factor is that, unlike in the previous approaches, this factor
directly derives from a cognitive model.

�is merits some discussion from the Language Game perspec-
tive. �ese AI systems to study language and cognition typically
focus on a di�erent kinds of problems as those addressed here, in
evolutionary biology, anthropology or cognitive psychology. How-
ever, I have shown that there is consistency and convergence of
these approaches. �e implication is that it is not only possible
but desirable to use grounded agents to study some aspects of cul-
ture, as it is done with language [11]. Moreover, this work shows
that there is a direct analogy between selection on variation and
preferences (closing the circle with the previous traveling-wave
cultural models). In the Naming Game [14], this cognitive step em-
ploys a scoring mechanisms where constructions are rewarded by
a �xed amount γ upon communicative success. �is score system
is ω ′ ∝ ω (1−γ ) +γ . �is necessarily converges to ω → 1 implying
that if a construction is used very o�en its use is reinforced, becom-
ing more prone to be used. �e same scoring mechanism is used for
every construction, therefore what determines which construction
is adopted by the population is of a stochastic nature. Yet, this
ensures that a population of agents converge to a common lexicon
(alignment). Using the NR this system is replaced by a cognitive
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Figure 7: Spread of a novel concept σ2 under di�erent values
of individual dispersion (A) 10%, (B) 50% and (C) 100% In this
example neutral preference is assumed (ω = 1/2). Otherwise
as in Fig. 1. (D)E�ect of dispersal probability in the �xation
time if the new concept σ2. Note the graph is in semi-log
scale. Pink: ω = 0.1, orange ω = 0.5, yellow ω = 1, N = 100.

version that allows each agent to score di�erent tags (constructions)
di�erentially, based on the properties of the networks (e.g. quality
of the output or energy of the a�ractor) and which allow tuning of
this preference (see Appendix B).

6 SUMMARY AND CONCLUSIONS
I have introduced a spatial version of the imitation game with the
aim to study cultural dynamics and cultural mixability. Although
I have taken a very minimal culture cased in two concepts, this
has allowed understanding how (a) cognitive restrictions a�ect
the spread of cultures and (b) how individual dispersal facilitates
cultural mixability.

With this simple model I have shown a connection between cog-
nitive factors and the speed of evolution of culture. Even though
in this model said connection �gures only through a parameter, ω,
I remind that this simpli�cation results from a more comprehen-
sive AI model that takes into consideration a broader dimension of
interesting factors that range from neuronal and learning models
to complexity and richness of cultures. Despite the exciting nature
of this complexity, a simpler and more conservative approach al-
lows making precise quanti�cations and harder to make with more
complex and realistic scenarios.

Naturally, it desirable to develop models for several concepts and
with populations structured in demes, so that each deme has its
own cultural dynamics (i.e. sub-populations, rather than only indi-
viduals in an array) and, in that sense, truly address multi-cultural
dynamics. �is constitutes the following steps of this work. As
mentioned above, the ultimate goal is to have a richer implemen-
tation on cognitive agents with NRH architecture, so that we can
address complex cultural traits instead of only two competing tags.
Nevertheless, the resultspresented in this paper has demonstrated
that there is a precise analogy between cultural dynamics and other
models of culture and of genetic evolution, which sets an important
agenda to further understand cognition, its applications in AI and
the origins and evolution of the Homo genus.

A MATHEMATICAL MODEL
Markov model of transmission. �e derivation of the mathemat-

ical model is based on properties of language games. I assume a
population of N individuals spatially arranged in an array. Each in-
dividual can be in one of three states according to their knowledge,
namely (σ1), (σ2) or (σ1,σ2). Interactions occur amongst pairs of
individuals which can be occur in the six possible combinations of
these states, namely:

X1 = (σ1) , (σ1)
X2 = (σ2) , (σ2)
X3 = (σ1) , (σ2)
X4 = (σ1) , (σ1,σ2)
X5 = (σ2) , (σ1,σ2)
X6 = (σ1,σ2) , (σ1,σ2)

(order is ignored). �ese are the states that will be described since
they represent the cultural pool of a population. �e transition
between each of these states for a pair of individuals represents the
acquisition of a new concept by one of the agents resulting from
their interaction. Despite the elaborate computational nature of the
agents, it is simple to describe the space of u�erances by using a
Markov Chain that has a transition matrix:

M =

*.........
,

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1

2
1
2 0

0 0 0 1 − ω
2 0 ω

2
0 0 0 0 ω+1

2
1−ω

2
0 0 0 0 0 1

+/////////
-

(5)

�is transition matrix contains the probabilities of going from an
actual state Xi to another state X j . In a real cognitive system
the value of ω is expected to change as individuals interact and,
idiosyncratically, develop preferences for σ1 or σ2 (see Appendix B).
However, in this case ω is kept constant. �is transition matrix is
derived from naming games that implement a Neuronal Replicator
dynamics [5]. In that caseω is not constant, but is given by cognitive
dynamics. Here we take ω �xed on each individual.

Boundary expansion. �e expected trajectory can be predicted
on the basis of these elements, assuming that the preferences are
homogeneous in space. First note that if interacting neighbours
have the same concepts their state remains unchanged because
they can only choose to express this single one. For example, in Fig.
1 there are two regions, the yellow where neighbours are in state
X1. In the yellow region the neighbouring states will be X6. In the
matrixM we can see that these are absorbing states, that is, they
cannot change. �erefore, changes can only happen at the interface
between the two regions. Here a pair of individuals are always in
state X4. �is either they remain in the same state because σ1 is
expressed (with prob. M4,4 = 1−ω/2), or σ2 is expressed (with prob.
M4,6 = ω/2) (Fig. 8A). �erefore, the interface never shrinks and it
either stays at the same point, or increases by one step. �is means
that we only need to take into account the position of the interface
which is a directed random walk with probability of advancing of
ω/2 (Fig. 8B). A�er n iterations the average number of successes
is, following a binomial distribution, nω/2. �us, the average slope
a�er n steps is (nω/2)/n = ω/2.
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Figure 8: Tag transmission in time and space at the cultural
boundary. (A) Only two transitions are allowed: First, with
probability ω the tag σ2 is transmitted to an individual (red)
that only knows σ1 increasing the boundary (yellow). Sec-
ond, with probability 1−ω the tag σ1 is transmitted, but since
this agent already has knowledge of σ1 there is no change in
state and the boundary does not expand. (B) Successive iter-
ations result in a stochastic increase of the boundary. �e
black arrows delineate the boundary between the two cul-
tures. (C) A�er n iterations, the average increase is given by
ωn/2 (yellow dotted arrow).

Fixation probability. if the new concept is introduced at a location
xo that is far from the boundaries, the spread is given by the line

x+ (t ) = xo +
ω

2 t . (6)

�ere is another boundary that decreases on a similar way:

x− (t ) = xo −
ω

2 t . (7)

�is allows calculating the frequency of concepts at each time,
given by the proportion of the two regions. Calling ρ the propor-
tion of individuals that know σ2, ρ (t ) = (x+ (t ) − x+ (t )) /N , giving
ρ (t ) = ω

N t , as reported in Eq. 2.
From this last equation we compute the �xation time τf as the

moment when the frequency of σ2 is 100%, which is directly ρ (τf ) ≡
1 = ω

N τf ,⇒ τf = N /ω, as indicated in Eq. 3.
However, note that this equation is assuming an underlying

symmetry, which is that both interfaces cover equal areas. �is
is not true because the population is �nite and once one of the
interfaces hits a boundary (either N or 0) then said boundary stays
at that value. In other words, these are absorbing boundaries for
the random walk that describes the interface. �e time at which
each interface is expected to hit the boundaries are

τ+ =
2
ω
(N − xo ) and τ− =

2
ω
xo

and because �xation requires that both interfaces have been ab-
sorbed it implies that the �xation time is the largest of both, or

τf = max{τ−,τ+} =
2
ω

max{xo ,N − xo } , (8)

which implies Eq. 3 if the new concept is introduced at the centre
of the space. Moreover, for any 0 < N < ∞ we can bound below

τf ≥
2
ω

min
xo ∈[0,N ]

max{xo ,N − xo } =
N

ω

and, similarly, from above:

τf ≤
2
ω

max
xo ∈[0,N ]

max{xo ,N − xo } =
2N
ω

Both inequalities together imply Eq. 4.

B PREFERENCES AND THE NEURONAL
REPLICATOR HYPOTHESIS.

Language Games in AI [11] use a speci�c scoring system for agents
to determine which u�erances or constructions to employ when
communicating. �ese are ad hoc updates that reward construc-
tions that are used more o�en, but otherwise make no use of any
cognitive property. I have taken a di�erent stance for this, coupling
the reward system to cognitive aspects. In short, the update of the
weight for a given construction is implemented through a Bayesian
learning scheme, namely,

ω ′i ≡ Pr[σi |V] = ωi
L (σi )∑
j ωjL (σj )

(9)

whereωi ≡ Pr[ωi ], is the weight before the update and L (σi ) is the
likelihood of choosing σi amongst other possibilities. �is Bayesian
learning is itself a closer step to cognition [7, 13]. However, the real
twist comes by making L (σi ) a function of cognitive parameters.

For instance for two tags or u�erancesωi = ωk (1−ω)1−k where
k = 0 if σ1 is chosen and k = 1 if σ2 is chosen. We are free to use
any L (σi ) we want, as for example a beta distribution of the form

L ∝ ωα+S∆V1−1 (1 − ω)β+S∆V2−1,

where ∆V1 = −δV2 = V1 −V2 is the di�erence in the energy of the
a�ractors and S is a parameter tuning the initial bias. �is leads to
an update rule of the form

ω ′ =
α + S∆V1 + k
α + β + 1 . (10)

As the a�ractors learn, ∆V1 → 0 (in average), so the NR converge
to a simple Bayesian scheme. However at early stages of learning
S∆V1 introduce a bias toward the cognate concepts. Under this
scheme, the preferences can converge to any value 0 ≤ ω ≤ 1, with
the outcomes probabilistically depend on S . �us, except for an
initial period of learning, the games proceed as if ω were �xed in
each agent.

C SIMULATIONS.
�e simulations are numerical realisations based on the model
above and proceed executing the following steps:

(1) Assign a preference and an initial state (σ1 or σ2) to each
individual.

(2) Draw a random permutation Ω of 1 . . .N which denotes
the order in which interactions occur.

(3) Compute the outcome of each interaction. For this, note
that a focal pair i , i.e. individuals at positions x = Ωi ,Ωi +1
unambiguously determine the state X ; from this state com-
pute usingM the new state X ′ and update the individual
states.

(4) If dispersion is implemented, a�er all interactions occurred
draw another random permutation Ω′ of 1 . . .N − 1 and
swap sequentially individuals at positions x = Ω′i ,Ω

′
i + 1.

Depending on the model preferences are also swapped or
not.

(5) Go back to Step 2 for T times or until there is no further
population change.
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