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ABSTRACT
When applying optimization method to a real-world problem, the
possession of prior knowledge and preliminary analysis on the land-
scape of a global optimization problem can give us an insight into
the complexity of the problem. �is knowledge can be�er inform
us in deciding what optimization method should be used to tackle
the problem. However, this analysis becomes problematic when
the dimensionality of the problem is high. �is paper presents a
framework to take a deeper look at the global optimization problem
to be tackled: by analyzing the low-dimensional representation of
the problem through discovering the active subspaces of the given
problem. �e virtue of this is that the problem’s complexity can be
visualized in a one or two-dimensional plot, thus allow one to get a
be�er grip about the problem’s di�culty. One could then have a
be�er idea regarding the complexity of their problem to determine
the choice of global optimizer or what surrogate-model type to be
used. Furthermore, we also demonstrate how the active subspaces
can be used to perform design exploration and analysis.
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1 INTRODUCTION
Since the dawn of evolutionary computation, metaheuristics meth-
ods have been widely studied and applied to solve many real-world
optimization problems. Among several advantages of metaheuristic
optimization methods that made them a�ractive are their higher
likelihood to discover the global optimum, gradient-free nature,
and the capability to discover the Pareto front in a single run (for
the multi-objective case). �e most widely used metaheuristic is
arguably evolutionary algorithm (EA) that relies on the principle of
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natural evolution to guide the discovery of the optimum solution.
In spite of these advantages, the main drawback of metaheuristic
methods is still their expensive cost. Typical metaheuristic opti-
mizers might call more than a thousand simulations to locate the
optimum solution(s) or location near the true optimum(s). In cases
with expensive function evaluation such as computer-aided engi-
neering design, direct use of metaheuristics is strictly prohibitive.
Although metaheuristic can still be applied to solve such cases, the
found optimized solution(s) might still be far from the true opti-
mum. �e surrogate model came as a remedy to handle this issue
of computationally expensive function evaluation. �e surrogate
model works by aiding the optimizer through a cheap approxima-
tion of the true function. Regardless of the use of surrogate or
non-surrogate-based optimizer, it is common that one optimizes
the problem without any prior knowledge regarding the problem
being investigated. �e possession of this prior knowledge might
help one to be�er decide the optimization strategy to be applied.

In the �eld of engineering optimization, there were some at-
tempts to analyze the behavior and complexity of the problem
before or during the optimization. �e information gained from
this analysis could be used to reduce the complexity of the problem
or to gain more understanding about the problem being solved.
Jeong et al. applied ANalysis Of VAriance (ANOVA) to analyze the
contribution of each individual output to the objective functions via
a Kriging surrogate model [9]. ANOVA also allows one to reduce
the number of design variables to reduce the complexity of the
problem beforehand. However, ANOVA cannot give a clue about
the complete picture of the problem being solved. For example, it
is di�cult to infer the information about the non-linearity or the
multi-modality behavior of any function by using ANOVA. �e use
of ANOVA comes with a warning where optimum design might
not be achieved by merely reducing the number of design variables.
In this regard, Ghisu et al. enhance the multi-objective Tabu search
with principal component analysis to transform the original coor-
dinate into a more optimum representation of the design space [6]
which does not need to be aligned with the original coordinate.
More recently, Deb applied the high-dimensional model represen-
tation (HDMR) framework to narrowing the search space of the
problem [16].

In solving a real-world global optimization problem, it is impor-
tant to properly select the type of optimizer to be employed. Local
optimizer such as sequential quadratic programming is e�ective to
solve global optimization with only one global optimum. However,
local optimizer is not suitable to solve the multi-modal problem,
instead, multi-start local search should be utilized. On the other
hand, global optimizer such as metaheuristics methods has a higher
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likelihood to discover the true optimum of the multimodal prob-
lem at the expense of computational cost. �e right choice of the
optimizer mainly depends on the complexity of the problem itself.
It is relatively easy to analyze the problem’s complexity in one or
two-dimensional problem since it can be plo�ed in an informative
visual way. �is kind of analysis can also aid the decision process
of what type of surrogate model to be used to solve the problem.
However, it is worth noting that such analysis becomes problematic
in high-dimension since it is not possible to visualize the problem’s
complexity.

One way to perform this visual analysis is to discover the possible
low-dimensional structure of the problem, where the information
can be embedded into a visualizable lower-dimensional subspace.
Based on some experience and shreds of evidence from experts,
there are many cases where the behavior of the real-world problem
(either optimization, uncertainty quanti�cation, or sensitivity anal-
ysis) is not as di�cult as the test problems widely considered in
metaheuristic-based optimization literature. �ere is a possibility
that the problem’s landscape only exhibits a few important dimen-
sion while the rest of them are relatively unimportant, rendering
the possibility of creating an informative one or two-dimensional
plot. �is kind of plot is even informative in problems that cannot
be compressed to low-dimensional representation. By analyzing
the plot in such cases, one can infer the highly complex structure
of the problem that needs a more special treatment or method to
solve the given optimization problem. Some methods that can be
used to perform such tasks are active subspace method (ASM) [3]
and sliced inverse regression (SIR) [12, 13]. In particular, ASM has
been employed to aid the process of uncertainty quanti�cation, [4]
sensitivity analysis [8], and aerodynamic design optimization in
reduced space [14, 15]. ASM is particularly a�ractive since it is
relevant to the goal of optimization in a computationally expensive
problem in order to solve the problem e�ciently under limited
computational budget. In this paper, we explore the capability of
ASM to perform exploratory analysis of the design space instead of
executing the optimization in the reduced space, which is still an
area of active research. In this sense, we use ASM to be�er inform
us about the complexity level of a global optimization problem.

Our objective in this paper is to introduce and investigate the
usefulness of ASM as a tool to analyze the complexity of the global
optimization problem by discovering the possible low-dimensional
representation of the problem. We demonstrate the framework on
three synthetic and two real-world problems, in which the applica-
tion of ASM reveals some important structures and features that
help us to understand the problem’s complexity.

2 LOW-DIMENSIONAL REPRESENTATION OF
GLOBAL OPTIMIZATION PROBLEM

In this paper, we have the interest to solve an optimization problem
with the gradient-free method. �is can be performed by using
metaheuristics or surrogate-based optimization method. In many
occasions, one directly solves the problem with any optimizer in
possession without making a guess about the complexity of the
problem. �is, in turn, can result in the ine�ciency on the problem
solving itself. For example, using metaheuristic optimizer for the
optimization of a unimodal problem is quite an overkill. On the

other hand, using a one-shot local optimizer for multi-modal prob-
lem results in a huge risk of missing the global optimum. Making
such inference is not di�cult for one and two-dimensional prob-
lem but it becomes troublesome in a higher-dimensional problem.
Before one performs global optimization, it is useful to analyze and
infer the complexity of the problem beforehand. �is information
would be useful when one wants to decide which type of opti-
mizer or surrogate model to be used. For example, one can predict
whether the problem is unimodal or multimodal by using this prior
information. If the problem is an unimodal one, it is be�er to use
simple surrogate-based optimizer or a local search method than the
expensive metaheuristic based optimization. Another example is
to detect the smoothness of the problem’s landscape to investigate
whether the problem is really smooth or exhibits discontinuity to
some degree. Applying polynomial-based surrogate model in a
discontinuous problem is obsolete since polynomial cannot prop-
erly capture discontinuity in the response surface, hence the use
of a non-parametric surrogate model such as Kriging might be
more helpful. �is kind of diagnosis can be performed by �nding
a low-dimensional representation of the problem that allows us
to take a peek on the function’s complexity. In this regard, the
low-dimensional representation of the input-output relationship is
what we seek.

�e key concept to this analysis lies on the concept of low-
dimensional representation, where the problem’s complexity can
be easier to analyze/solve if the problems are transformed into a
low-dimensional subspace that could be�er explain the problem’s
variability. We advocate the use of ASM to perform such task. One
objective of this paper is to further introduce this methodology
to the wider community of optimization, metaheuristics, and also
practitioners alike.

2.1 Active subspace method
�e low-dimensional representation of a problem can also be ex-
pressed in terms of su�cient dimension. Su�cient dimension is the
subspace of a problem that explains most of the variability of the
function. ASM uses the outer product of the gradient information
to discover this low-dimensional representation expressed in terms
of eigenpairs. �e su�cient dimension itself does not need to be
aligned with the original coordinate system since the most active
direction might not lie in the original untransformed coordinate.
We refer to [3] for the following explanation of ASM.

�e �rst necessary step of the ASM is to compute the averaged
outer product of the objective function gradient ∇f , denoted as C.
�is can be computed by averaging over M samples as follows:

C ≈
1
M

ΣMi=1∇f (x
(i ) ) f (x (i ) )T (1)

A�er C is obtained, the next step is to perform the eigendecom-
position of C as follows:

C =WΛW (2)

where

W = [w1, . . . ,wm], Λ = diag(λ1, . . . ,λm ) (3)
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with wj is the eigenvectors which are sorted according to the
descending eigenvalues λj , so λ1 ≥ . . . ,λm , where m is the di-
mensionality of the problem. Reducing the dimensionality of the
problem can then be performed by taking the �rst n eigenvectors
to construct the basis of the n−dimensional active subspace W1 as
a partition of W as follows:

W = [W1,W2], Λ =
[
Λ1

Λ2

]
(4)

where Λ1 contains the �rst n eigenvectors, with n < m and W1
is of m × n size. �e design variables can now be projected onto
the active subspace span(U) to obtain the rotated coordinates xr
de�ned as:

xr =WT
1 x ,xr ∈ R

n (5)
�e objective function can then be expressed in the rotated co-

ordinate as:
f (x ) ≈ д(WT

1 x ) (6)
As one can see from this formulation, the dimensionality n can

be set to either one or two which makes visualization (become) pos-
sible. �e plot might indicate the existence of su�cient dimension
in the problem being tackled if the �rst and second eigenvalues are
signi�cantly large compared to the others. However, a complex be-
havior in the one/two-dimensional plot reduced coordinate might
indicate that the problem is multi-modal and highly non-linear.

Another bene�t of evaluating the active subspace is that we can
compute the contribution of each variable with the global sensi-
tivity metric derived from the active-subspace called the activity
scores [2]. �e activity score α for variable i is computed as follows:

αi = αi (n) =
n∑
j=1

λjw
2
i,j , i = 1, . . . ,m. (7)

�is allows us to rank which variables are the most and least
important, which could give us a further insight relating to the true
complexity of the problem and the physical insight itself. When
n = m, the activity scores become the derivative-based global
sensitivity metric [2]. In this paper, we use the derivative-based
global sensitivity metric by se�ing n equals tom.

2.2 Estimating the Active Subspace with
Surrogate model

�e original active-subspace method needs the gradient information
of the function to �nd the underlying active subspace. Although
in some cases such as computational �uid dynamics (CFD)-based
design this gradient can be computed via adjoint-method, gradient
computation remains a bo�leneck in many engineering problems.
To cope with this problem, one can build a surrogate model of the
function �rst and then estimate the gradient information using this
surrogate model. �is strategy has been investigated in the context
of car aerodynamics in order to discover the existence of the active
subspace [15]. Since surrogate model can be evaluated cheaply,
using �nite-di�erence is an e�ective way to estimate the gradient
based on the surrogate model.

To limit our scope of discussion in this paper, we only used two
types of surrogate models to perform the ASM: Kriging [11] and
sparse polynomial chaos expansion (PCE) [1]. Kriging is a non-
parametric surrogate model that can capture non-linear trend in

the function due to its �exibility. �e drawback of Kriging is that its
training time can be very long especially when the dimensionality
and the number of samples are high. On the other hand, sparse
PCE is very fast but it cannot capture a highly non-linear surface
properly. Kriging is suitable when the number of initial samples and
dimensionality is low since Kriging training time is still reasonable
in this range. However, Kriging training time can be burdensome
when the number of initial samples and dimensionality is high, say
k > 200 and m > 15. Sparse PCE which works by automatically
detecting the important polynomial terms is more suitable for high-
dimensionality problems due to its fast training time.

Brief explanation of each surrogate model is explained below:

2.2.1 Kriging. Kriging approximates the true function with a
combination of the basis functions of:

ψ (i ) = exp
(
−

m∑
j=1

θ j |x
(i )
j − x j |

pj
)

(8)

�e basis of Kriging model is a vector θ = {θ1,θ2, ...,θm }T. �e
exponentp = {p1,p2, ...,pm }T is also tunable but we set a �x value of
p = 2 for simplicity purpose. Here, θ are optimized by maximizing
the likelihood function. A�er the optimum hyperparameters were
found, the Kriging predictor is then as follows:

f̂KRG (x ) = µ̂K +ψ
TΨ−1 (y − 1µ̂K ) (9)

where µ̂K , ψ, and Ψ are the mean of the Kriging approximation,
correlation matrix between the experimental design and x , and the
correlation matrix between all experimental design, respectively.
More detailed implementation of Kriging method can be found
elsewhere (see [7] for example).

2.2.2 Sparse polynomial chaos expansion. PCE approximates the
function with the sum of orthogonal polynomialsΘ = {Θ0, . . . ,ΘP }.
For optimization purpose, Legendre polynomials are used due to
the bounded nature of the optimization problem.

PCE works by approximating f (x ) with:

f̂PC (x ) =
P∑
i=0

αiΘi (x ) (10)

To �nd the optimum set of polynomial bases and compute the
coe�cients, the sparse PCE representation employs least-angle-
regression (LARS) [1].

�e gradient information for the ASM can be simply obtained
analytically or by using �nite di�erence which is now very cheap
since it is computed using the already built surrogate model. �e
pseudocode to �nd the active subspace and plo�ing in reduced
coordinate is detailed in Algorithm 1.

�e take home point is that one should at least take a peek on the
decision variable-objective function relationship by using the ASM
method. We will demonstrate the usefulness of this visualization
framework, and the ASM in general, in the next section.

3 COMPUTATIONAL DEMONSTRATION
In this section, we demonstrate the various usefulness of ASM
on some functions in order to perform preliminary exploratory
analysis of the global optimization problem’s landscape. �e �rst
three problems are algebraic, while the last two problems are the
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Prepare the initial experimental design X;
Evaluate the output y;
Build surrogate model f̂ (x ) using X and y;
Estimate the gradient information ∇f (x ) for each design in X
using f̂ (x ) (i.e. �nite di�erence) ;
Obtain the eigenvectors W and eigenvalues Λ using Eqs.1 and
2;
Obtain the partitioned W1 and Λ1 with n = 1 or n = 2 (Eq.3);
Obtain the rotated coordinate xr ∈ Rn and plot the xr versus
y;

Algorithm 1: Pseudocode of design space visualization using
ASM.

real-world problem which were evaluated using partial di�erential
equation solver.

3.1 Example 1: Zakharov function
�e demonstration was �rstly performed on the Zakharov function.
Here, we want to demonstrate that the ASM has the capability to
visualize the existence of single global optimum in the Zakharov
function. Zakharov function is expressed as:

f (x ) =
m∑
i=1

x2
i +

( m∑
i=1

0.5ixi
)2
+

( m∑
i=1

0.5ixi
)4

(11)

where the function is evaluated on the hypercube xi ∈ [−5,10]
for all i = 1, . . . ,m. �e dimensionality and the number of initial
samples for this problem was set to 20 and 200, respectively.

Since the implementation of Kriging for this problem would be
expensive, we have to rely on PCE to create the surrogate model
for the Zakharov function. We then estimate the active subspace
based on the PCE model where the result is shown in Fig.1. Upon
rotating the coordinate based on the gradient information from the
PCE surrogate model, we are now able to detect the presence of
single global optimum on the Zakharov function. �is informa-
tion is di�cult to observe if we directly plot one original variable
versus the output information. We can then make use of this plot
to decide which optimizer that we should use. For example, the
presence of single global optimum suggests us to use a simple local
search optimization method from the current optimum point to
perform optimization instead of applying expensive metaheuristic
technique.

3.2 Example 2: Hartman-6 function
�e Hartman-6 function is expressed as follows:

y (x ) = −
4∑
i=1

ciexp
{
−

m∑
j=1

Ai j (x j − Pi j )
2
}

(12)

where x = (x1,x2, . . . ,xm )T ,xi ∈ [0,1]. Details of A, P, and c can
be found in [5]. �e dimensionality of this problem is 6 with the
initial sample size was set to 60. Kriging surrogate model was em-
ployed since the training time is relatively fast for this problem. �e
one-dimensional plot in the reduced coordinate is then shown in
Fig.2. In contrary to the previous problem, the plot in the reduced
coordinate does not show any evidence about the existence of the
su�cient dimension. However, the plot indicates that the landscape
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Figure 1: Reduced coordinate versus y on Zakharov func-
tion.
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Figure 2: Reduced coordinate versus y on Hartman-6 prob-
lem.

of the function is probably multi-modal due to the existence of this
complex behavior (indeed, the Hartman-6 function has 6 local min-
ima). Although not shown here, the two-dimensional plot also
reveals similar behavior. Another knowledge that can be inferred
from this plot is the possibility of a highly non-linear behavior of
the function which suggests the use of non-parametric surrogate
model instead of the parametric one (if one wants to employ sur-
rogate model). If no surrogate model is used, it is suggested to
use a metaheuristics global optimizer or a multi-start local search
procedure to ensure that the optimum of this problem is found. A
simple one-shot local optimization should be avoided since there is
a high possibility of missing the true optimum.

3.3 Example 3: Four bar trusses problem
�e third problem is still algebraic but more realistic test problem.
�e problem is four bar trusses which was �rst introduced by [17]
and has been widely used as a test problem for multi-objective
optimization and structural optimization. �e dimensionality and
the initial sample size for this problem were 4 and 40, respectively.
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�e four bar problem is de�ned as follows:

f1 (x ) = L(2x1 +
√

2x2 +
√
x3 + x4)

f2 (x ) =
FL

E
(

2
x1
+

2
√

2
x2
−

2
√

2
x3
+

2
x4

) (13)

where (F/σ ) ≤ x1 ≤ 3(F/σ ),
√

2(F/σ ) ≤ x2 ≤ 3(F/σ ),
√

2(F/σ ) ≤
x3 ≤ 3(F/σ ), and (F/σ ) ≤ x4 ≤ 3(F/σ ). Here, F = 10kN, E =
2 × 105kN/cm2, L = 200cm, σ = 10kN/cm2.

As we can see from the depiction in Fig. 3, both objectives can
be su�ciently approximated by a one-dimensional active subspace
that explains most of the variability of the function. We can infer
from this result that the problem has a high chance of being a
unimodal problem if single-objective optimization is performed for
each objective (Although it is obvious that the �rst objective has
a linear expression, this kind of observation is particularly useful
if the function is a black-box one). For a problem like this, using
metaheuristic optimizer might be an overkill since the problem is a
unimodal function, especially if the function evaluation is not cheap.
It is then be�er to employ local search or gradient-based optimizer
(if the gradient is available) for single-objective optimization. When
one want to employs a surrogate to tackle this problem, a 1st or 2nd
order polynomial might be more suitable than RBF due to the linear
or almost linear behavior of the function. However, it won’t hurt
to apply EA to solve this problem when the function evaluation is
cheap since one now has a higher con�dence of discovering the
optimum solution due to the unimodality of the function.

When concerning multi-objective optimization, Figs. 3 and 4
show some useful information regarding the di�culty of the multi-
objective four bar problem. Firstly, Fig. 4 depicts the component
of the �rst eigenvectors of the plot shown in Fig. 3. Basically, this
�gure tells us the relationship between the objective and the vari-
ables variation. As for example, a high value of the �rst objective
can be achieved by increasing all variables in the �rst eigenvector
direction, with variables 1 and 3 have the highest and the lowest
contribution. �e sign here tells us whether we should increase or
decrease the value of the variables to achieve minimum or maxi-
mum value of the objective. Furthermore, we can see that the �rst
eigenvectors components of both objectives have similar tendency
but mainly di�er on the direction of the third variable. Based on this
plot, we can further make an inference that the two objectives are
indeed con�icting to each other, since decreasing the �rst objective
will increase the second objective.

3.4 Example 4: Viscous Transonic Airfoil
Design Preliminary Analysis

In this case, we wanted to investigate which type of surrogate is
be�er to approximate the given aerodynamic function. �e prob-
lem is the viscous transonic airfoil redesign of RAE 2822 airfoil in
the �ight condition of Mach number (M)=0.729 and angle of a�ack
(AoA) = 2.310, with the maximization of li� to drag ratio (Cl /Cd ) as
the objective function. A Reynolds-averaged Navier-Stokes (RANS)
CFD code was employed to solve this problem. To alter the ge-
ometry of the airfoil, free-form-deformation (FFD) technique was
applied where the depiction of the airfoil’s geometry and the FFD
box are shown in Fig. 5. Only ten FFD points were allowed to move,
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Figure 3: One-dimensional reduced coordinate plot on the
fourbar problem.
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Figure 4: Components of the 1st eigenvector on the fourbar
problem.

and the upper bound and lower bound of the movement in z2 direc-
tion are 0.05 and -0.05, respectively (the movement in z1 direction
was locked). �e dimensionality and the initial sample size for
this problem are 10 and 70, respectively. Kriging surrogate model
was employed to discover the active subspaces in this problem.
�e plot in the one-dimensional active subspace does not reveal
enough information for us to infer since there is no clear trend ob-
served (see Fig. 6a). �e two-dimensional plot in Fig. 6b, however,
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Figure 5: FFDboxused in the viscous transonic airfoil design
problem.

display a clear and interesting trend. Here, we approximated the
response surface in the two-dimensional reduced coordinate with
Kriging regression to be�er depict the underlying trend. �e �rst
eigenvector alone explains 58.62% of the total variance, while both
the �rst and second eigenvector describes 88.98%. From the two-
dimensional plot, we can see that there exists a non-linear trend in
the response surface whose shape is like a combination of the radial
basis function. Indeed, applying Kriging and sparse PCE results in
the mean absolute error of 4.5295 and 7.5023, respectively, when
a test was performed using 30 independent validation samples. In
this regard, the plot in the reduced coordinate had informed us to
utilize Kriging with RBF kernel rather than the sparse PCE (besides
the information that comes from cross-validation).

As an additional information provided by the active subspace,
Fig. 7 shows the component of the 1st and 2nd eigenvectors. �e
barplot mainly tells us that the upper FFD points have the largest
contribution to the objective function variance. �e derivative-
based global sensitivity metrics shown in Table 1 further reveal
that variables 2 and 4, which are located near the leading edge of
the airfoil, are the largest contributors of all. We can also see that
the contribution of variable 7 and 9 are so small that they can be
safely neglected.

3.5 Example 5: Inviscid Transonic Airfoil
optimization

�e last demonstration is the optimization of a transonic airfoil
in inviscid �ow. A CFD code that solves the Euler equation was
employed to solve this problem. �e design condition for the opti-
mization is M = 0.73 and AoA = 20. �e number of initial samples
was 45 and enriched with 10 additional samples. �e de�nition
of the PARSEC parameterization and the optimization bounds are
shown in Table 2.

Our main objective is to minimizeCd/Cl as the measure of aero-
dynamic e�ciency. However, for the sake of brevity we also show
the reduced coordinate plot of the individual objective (Cl and Cd )
besides the main objective function as shown in Fig. 8. Basically,
the �gure tells us that there is a clear trend of linear behavior for
the Cl response surface. �e response surface of Cd and Cd/Cl are
slightly nonlinear and there is a single valley of minimum value near
xr ,1 = −0.5. Two hundred validation samples were also plo�ed to
further show that the discovered active subspace can really explain
the function’s variability. Treating Cd/Cl as the objective function,
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Figure 6: Reduced coordinate plot on the viscous transonic
airfoil problem.
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Figure 7: Components of the 1st and 2nd eigenvectors on the
viscous transonic airfoil problem.

it is clear from this �gure that the problem has a high chance of
being a unimodal function, where we can predict the location where
the optimum lies. It can also be observed that the one-dimensional
active subspace seems to exhibit a quadratic polynomial-like trend.
Based on this information one can opt for using a gradient-based
local search optimizer on the current solution with minimum func-
tion value (such as using adjoint-based gradient), instead of using
expensive global search such as evolutionary algorithm. Another
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No. 1 2 3 4 5 6 7 8 9 10
Score 0.14 1.71 0.09 1.38 0.16 0.55 0.00 0.24 0.00 0.05

Table 1: Derivative-based global sensitivity metrics of all variables on the viscous airfoil problem.

No. Variables Lower bound Upper bound
1. rLE 0.0065 0.0092
2. xup 0.3466 0.5198
3. yup 0.0503 0.0755
4. yxxup -0.5094 -0.3396
5. xlo 0.2894 0.4342
6. ylo -0.0707 -0.0471
7. yxxlo 0.5655 0.8483
8. αte e -0.1351 -0.0901
9. βte 0.1317 0.1975

Table 2: Upper and lower bounds of the variables on inviscid
transonic airfoil problem.

choice is to use a surrogate-based method such as ordinary Krig-
ing or universal Kriging. Here, there is an evidence of a quadratic
behavior of the response surface, which should be well approxi-
mated by a universal Kriging with 2nd order polynomial. Fig. 9a
depicts the component of the 1st eigenvectors for all aerodynamic
coe�cients with the plot of eigenvalues decay is shown in Fig. 9b.
�e �rst eigenvalue explained 93.89, 94.68, and 92.03% of the ex-
plained variance for Cl , Cd , and Cd/Cl , respectively. On the other
hand, the �rst two eigenvalues explain 98.35, 98.48, and 99.24% of
the explained variance for Cl , Cd , and Cd/Cl , respectively. �is
eigenvalue decay indicates that one or two-dimensional plot in the
reduced coordinate is su�cient to explain most of the function’s
variability. Table 3 shows that the �rst and second most important
variables for Cd/Cl are xup and yup with xlo and βte are the two
least contributive variables.

To test our hypothesis regarding the unimodal nature of the
problem, we performed optimization using Kriging-based e�cient
global optimization (EGO) method [10] with 20 di�erent sets of
initial sampling. �e result is then plo�ed again in the previously
computed reduced coordinate and shown in Fig. 10. �e result
shows that the optimized solutions found by EGO in 20 di�erent
runs converged to the same valley of the global optimum. �is
indicates that our unimodal hypothesis for the inviscid transonic
airfoil problem was correct.

4 CONCLUSION
In this paper, we demonstrate a framework to perform exploratory
analysis of global optimization by analyzing the low-dimensional
representation of the problem. �e ASM which works by discov-
ering the most active subspaces that capture a large portion of
function variability is utilized for this purpose. By rotating the
coordinate into the active subspaces, we can take a peek into the be-
havior and complexity of the objective function. Demonstration on
three algebraic and two real-world functions was given to illustrate
the usefulness of the framework. ASM can successfully detect the
presence of single global optimum on the Zakharov function and
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Figure 8: Plot in the reduced coordinate for all aerodynamic
coe�cients on the inviscid airfoil problem.

inviscid transonic problem while it can give a clue regarding the
multimodality of the Hartman-6 function. On the four bar trusses
problem, ASM was able to detect the linear and slightly non-linear
characteristics of the �rst and objective function, respectively. �e
response surface with non-linear behavior was also successfully
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No. 1 2 3 4 5 6 7 8 9
α (Cl ) 0.0002 0.0013 0.0156 0.0007 0.0025 0.0136 0.0010 0.0023 0.0000

α (Cd ) × 104 0.0022 0.5037 1.3926 0.0055 0.0207 0.1236 0.0094 0.0314 0.0007
α (Cd/Cl ) × 104 0.0082 0.9609 1.6111 0.0079 0.0027 0.0533 0.0034 0.0133 0.00001

Table 3: Derivative-based global sensitivity metrics of all variables on the inviscid airfoil problem.
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Figure 9: Eigenpairs information on inviscid transonic air-
foil problem.
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Figure 10: Plot of one set of initial samples and �nal opti-
mized solutions in the reduced coordinate.

observed in the viscous transonic airfoil problem through the ASM.
�e knowledge obtained from the visualization of low-dimensional
representation can then be put to a good use for deciding the type
of optimizer or surrogate model to be employed.
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