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ABSTRACT
Optimisation problems based upon real-world instances often con-
tain many objectives. Many existing Multi-Objective Evolutionary
Algorithm techniques return a set of solutions from which the user
must make a final selection; typically such a set of solutions may
take the form of a non-dominated set. The size of such fronts, espe-
cially for larger numbers of objectives, can make it difficult for the
user to make a selection of the final solution. This paper outlines an
initial investigation into combining elements of Parallel Coordinate
plots with multi-objective evolutionary algorithms to allow the user
to specify solution areas of interest prior to executing the algorithm.
The algorithm encourages the evolution of solutions in these areas
through selection pressure. The user is presented with one solution
from each area on a Parallel Coordinates plot allowing a simple,
informed decision as to the solution to be chosen. This paper uses a
Workforce Scheduling and Routing Problem (WSRP) to demonstrate
the approach. The WSRP formulation used was previously cited
in literature as a multi-objective problem, we formulate it as a 5
objective problem. Our initial results suggest that this approach has
potential and is worth investigating further.
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1 INTRODUCTION AND MOTIVATION
Many real-world optimisation problems are multi-dimensional, hav-
ing two or more objectives to address. Multiple-Objective Evo-
lutionary Algorithms (MOEAs) can handle multi-objectives using
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techniques such as Pareto dominance to compare and identify po-
tentially useful solutions. MOEAs such as NSGA-II [3] have made
use of Pareto dominance and distance techniques to create a non-
dominated set of solutions which are presented to the user, leaving
final choice up to user. Previous research by the authors has shown
that Pareto Fronts may contain a large number of solutions, which
makes the task of evaluating them and choosing a final solution diffi-
cult. When visualising bi-objective problems, they may be plotted
in two dimensions (see figure 1(a)), tri-objective problems can be
visualised using software tools that plot solutions using the three
objectives as axis’. Many-objective problems can be visualised us-
ing Parallel Coordinates [11], which represent each objective as a
vertical axis and each solution as a polyline, which intersects each
axis at the appropriate values, see figure 1(b). When the size of
the non-dominated front grows, the Parallel Coordinate plots be-
come crowded and difficult to interpret (figure 1(c)). In addition to
using Parallel Coordinates to visualise the output of an algorithm,
this paper proposes that they can also be used to specify areas of
interest to the user and then guide the search, rather than the user
being presented with a potentially large Pareto set of solutions from
which to choose a final solution. We explore these concepts using
a multi-dimensional Workforce Scheduling and Routing Problem
(WSRP).

2 PREVIOUS WORK
This paper formulates the WSRP as a multi-objective problem, with
cost reduction, CO2 reduction and car use reduction as the criterion,
using the problem formulation and instances from [16, 17] with
the addition of extra instances as described in section 3.2. For a
comprehensive introduction to the WSRP and an overview of the
latest developments, the reader is directed towards [2], [1] and [10].
A number of previous researchers have dealt with problems relating
to the scheduling and routing of workforces; [15] deals with home
care scheduling, [13] with security personnel scheduling and [8]
with technician scheduling.

Previous approaches to Multi-Objective Evolutionary Algorithms
(MOEAs) include SEAMO [18], SPEA2 [19] and NSGA-II [3].
SEAMO (Simple Evolutionary Algorithm for Multi-objective Opti-
misation) [18] creates a random population of solutions and records
the best values so far for each objective. New solutions are created
from two parents and a mutation is applied. If the new solution im-
proves on the best-so-far for any of the objectives it replaces one of
its parents within the population; if it dominates one of the parents,
then it replaces that parent. Within each generation, each member is
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(a) A 2D Non-dominated Front

(b) A small 4D Non-dominated Front (c) A large 4D Non-dominated Front

Figure 1: Examples of non-dominated fronts.

selected to become a parent, with the second parent being selected
at random. SPEA2 (Strength Pareto Evolutionary Algorithm for
Multi-objective Optimisation) was first introduced by [19]. SPEA2
maintains an archive of solutions in addition to the main popula-
tion. The archive contains the non-dominated set of individuals from
the main population. Within each generation, a pool of parents is
selected by tournament selection from the population, and a replace-
ment population of children is created by crossover and mutation.
The Non-dominated Sorting Genetic Algorithm II (NSGA-II) [3]
ranks solutions according to dominance, but also assigns a crowd-
ing distance to solutions to highlight areas within the front that are
highly populated. This results in fronts that are more likely to have
solutions distributed evenly between the extreme solutions.

Parallel Coordinates were developed by Inselberg (see [11] for a
comprehensive guide to their use), to allow visualisation in many
dimensions. Each dimension (problem objective) is represented by
a vertical axis. In order to ensure that the axis are all at the same
height, the objectives must be normalised. Each solution may then
be plotted by means of a polyline that intersects each axis at the point
on the scale that represents the solutions’ value on that objective. By
examining the patterns formed by the polylines between the objec-
tive axis it becomes possible to visualise the relationship between
objectives. The ability of a parallel coordinate plot to represent
multiple dimensions in a 2D space makes it a useful technique when
discussing results in non-interactive media such as a printed page.
Parallel coordinate plots can be made interactive the with the user
being allowed to reorder axis in order to explore the relationships
between different objectives. A technique known as brushing may
be used to select areas of interest on one or more axis, and those
polylines that intersect the brushed areas are then highlighted.

3 METHODOLOGY
3.1 A Mobile Workforce Scheduling and Routing

Problem
As a testbed for our algorithm we utilise a Workforce Scheduling
and Routing Problem (WSRP) which was originally described in
[16] and [17]. This particular formulation uses real-world geograph-
ical and transport data, to calculate journey times, CO2 values and
associated financial costs. The problem formulation allows each
worker to utilise public transport or car based travel with consequent
effects on CO2 and other objectives. Car journey paths and times
are determined using the GraphHopper library [12] based on Open-
StreetMap [7, 9] data, public transport times and costs are derived
from the Transport for London (TfL) API [6]

The costs associated with each solution are calculated as follows:
• CO2 emission: for cars we adopt the WebTAG UK transport

assessment mode, for public transport we use the emission
factors published by TfL [5].

• Financial cost: we calculate staff costs based on [14] and
transportation costs based on car travel costs in [4] and
public transport costs based on TfL fare costs.

• Staff: the number of staff required within the solution.

3.2 Problem Instances
In this paper, twenty problem instances based around four geograph-
ical scenarios as follows:

• London (lon): 60 visits at randomly selected locations,
within London, each visit being within a radius of approxi-
mately 16 miles of the agency headquarters.

• BigLondon (blon): 110 visits within a radius of approxi-
mately 23 miles of the agency headquarters.

• Offset: 110 visits set out as per BigLondon, but with the
headquarters located on the outside of the visit cluster.

• Cluster: 60 visits grouped in six clusters. The clusters are
randomly distributed around the headquarters.

For each scenario, we consider five problem instances:
• 1: all visits have a time window of 8 hrs. i.e. the visits can

start any time during the working hours of the employees.
• 2, 4, 8: Each visit has a 4, 2 or 1 hr. time window allocated.

The beginning of the time window is chosen randomly.
• Rnd: The duration of the time window of each visit is

randomly chosen among 1, 2, 4, or 8 hrs.

3.3 Algorithm
The algorithm is based upon conventional EA principles and utilises
the representation, crossover, mutation and fitness operators de-
scribed in [16, 17]. Rather than produce a non-dominated front of
solutions, we allow the user to specify expected performances in
each of the objectives. Each objective may have a higher and lower
performance, set to 0, 0.3, 0.7 and 1 (indicating low, medium or
high) within the axis. Figure 2 shows six highlighted areas of interest.
These were selected at random to represent potential user prefer-
ences. As the performance cannot be predicted these classifications
are not based on absolute values (e.g. CO2) but on the normalised
values within the ranges found within the current population. The
population is normalised, so that each objective within each solution
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is presented in the range 0..1, where a value of 1 represents the high-
est value for that objective within the population and 0 represents
the lowest value for that objective within the population. The four
objectives that are considered as Travel Cost, CO2, number of staff
and total working time (the sum of all the staff shift lengths in the
solution). Time and travel cost were added to the original formu-
lation in order to increase the dimensionality of the problem. In
order to ensure that only one solution is presented for each of the six
classes total financial cost is used as an additional objective in order
to determine the ”best” solution in each class. This ensures that only
one solution is presented within each user specified criterion class.

The algorithm used is shown in Algorithm 1. The parameters used
to obtain the results presented may be seen in table 1, the parameter
values were established through past experience and empirical stud-
ies. Lines 1 to 4 setup the population with random solutions, which
are evaluated, the results of each objective are normalised and each
member of the population allocated a classification based on the user
preferences specified. If the solution fits into one of the highlighted
areas (see figure 2) then it is allocated that classification. Each clas-
sification is checked in the order that the user specified them in, if a
solution fits into more than one classification (a user may potentially
setup overlapping classifications) then it is allocated to the first that
it fits. Solutions that fit none of the user-specified classifications
are marked as unclassified. Thus the current population is classified
according to the preferences set by the user.

The main generational loop is contained in lines 5-23 and it
will loop until the specified number of solutions have been created
and evaluated. The selectParent() function selects a member of
the population at random, but with a bias towards individuals with
a classification. If after 10 attempts an individual has not been
selected with a classification then an unclassified individual is used.
The second parent is selected in a similar manner, but the bias is
towards selecting a parent with the same classification as the first
parent. The new child solution is created randomly by cloning one
parent or by recombination from both parents, as determined by the
crossover pressure.

After a child population has been created, each member of the
child population is added to the main population if the solution does
not already exist in the main population. An individual is selected
to be replaced (line 17) using the getRIP() function. The getRIP()
function selects a solution at random, but with a bias towards unclas-
sified solutions; finally, the child solution replaces the RIP solution
if it has a lower financial cost than the solution that it is replacing.

After each of the children have been considered, the objectives of
each member of the population are normalised and the classification
of each member is determined. If a solution is added to the popu-
lation with a new lowest value in an objective, then the normalised
values for that objective will change. This could potentially lead to
solutions changing classification as the evolution progresses. After
the set number of evaluations have taken place the individual with
the lowest financial cost for each class is printed (line 24).

4 RESULTS
4.1 Comparison With Previous Results
For each problem instance results were produced using the Portfolio
approach described in [16]. The portfolio approach used a group of

Algorithm 1: runGA()

// Initialise Population

1 setup population();
2 evaluate population();
3 normalise population();
4 classify population();
5 while evals<MAX EVALS do

// Execute until a set number of

solutions have been evaluated

6 for ch =0; c <CHILDREN; ch++ do
// Create children, either crossover

from two parents or clone from
one. Add a mutation to every
child.

7 parent1 = selectParent();
8 parent2 = selectParent(parent1.classification);
9 if rnd() <XO PRESSURE then

10 child = new Individual(parent1,parent2);
11 else
12 child = parent1.clone();

13 mutate(child);
14 evaluate(child);
15 children.add(child);

// Add children to the main population,

replacing weaker members

16 if unique(child,population) then
17 rip = getRIP(population);
18 if rip.finCost() >child.finCost() then
19 population.remove(rip);
20 population.add(child);

21 normalse population();
22 classify population();

23 for class = 0 to MAX CLASSIFICATIONS do
24 printBest(class);

Table 1: Algorithm Parameters

Parameter Value
Population Size 500
Children 20
Crossover Pressure 0.8
Maximum Evaluations 1,000,000
Maximum Classifications 6 (see fig 2)

solvers based upon differing configurations of NSGA-II and SPEA
algorithms. Each solver produces a front, which is then combined
into a single front of non-dominated solutions. Due to the stochastic
nature of MOEAs, each solver is executed 10 times and the results
combined into a single front. A summary of the results obtained
using the portfolio are presented in table 2, the values for the three
objectives are the average value across all solutions within the front.
Note the large sizes of the fronts produced, in many cases they are
too large to allow easy selection of a final solution by the end-user,
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(a) Class 1 (b) Class 2

(c) Class 3 (d) Class4

(e) Class5 (f) Class6

Figure 2: The exemplar solution classifications used within this
paper.

samples of the Parallel Coordinate plots produced may be see in
figure 3.

A summary of the results obtained may be seen in table 4; the
values shown are the averages obtained over 10 runs. As the total
cost, CO2 and number of staff are also objectives within the bench-
mark, the % of their benchmark values are shown (values <100%
indicate an improvement and >100 % indicate a worse value). The
results are grouped by the results classes specified by the user (see
figure 2) the final result chosen being the result with the lowest
financial cost. If we consider results of class 1 we note that the
average financial cost is reduced by up to 20 %. We also note that
CO2 does not show a reduction for any of the problem instances, but
reference to figure 2(a) shows that the user has not specified low
CO2 values in problems of this class. Problems of class 2 (see figure
2(b)) are specified to exist within the medium range (0.3-0.7) for
each objective. Table 4 shows that for 11 instances no results could
be found. When the user is specifying the classes there will always
be a risk that they will specify criteria, which cannot be satisfied.
For the problem instances where class 2 solutions could be found
they represent considerable improvements in terms of financial cost,
with a number also showing an improvement in CO2.

Table 2: Benchmark Results. These results are averaged across
the front created using the portfolio.

Problem totalcost co2 Staff Front Size
blon-1 2533.780651 458.44 15 76
blon-2 2729.327875 501.85 19 91
blon-4 2721.989397 584.49 21 126
blon-8 2630.28358 616.28 22 178
blon-rnd 2761.534234 533.21 19 145
cluster-1 1192.113533 197.47 7 57
cluster-2 1302.806602 240.61 9 100
cluster-4 1356.736786 276.71 11 131
cluster-8 1402.91447 288.35 12 100
cluster-rnd 1275.663808 246.64 9 131
lon-1 1028.970327 143.85 6 98
lon-2 1166.20092 149.31 8 136
lon-4 1248.726196 175.73 11 195
lon-8 1244.144208 227.65 13 173
lon-rnd 1135.828493 183.35 9 152
offset-1 2475.971286 675.50 14 53
offset-2 2857.62541 782.65 19 126
offset-4 2937.527205 901.60 22 122
offset-8 2874.870618 982.35 21 101
offset-rnd 2664.177344 785.44 17 51

Class 3 solutions require minimum travel costs and CO2 costs in
the medium and minimum categories (see figure 2(c)). Once more
we note a reduction in the average total cost, an increase in CO2
and a reduction in staff in some instances. When considering class
4 solutions we typically note a reduction in overall cost from the
benchmark and a reduction in staff for all but 3 instances. Within
the class 5 solution instances found, we note the decrease in total
cost, along with a decrease in CO2 for 8 instances and a reduction in
staff in 17 instances.

The only class of solution where an increase in total cost was
noted were those solutions of class 6, where significant increases in
total cost, CO2 and staff were all noted.

4.2 Distribution of Solution Classes
As we have defined 6 possible solution classes of interest to the user
it is useful to note how membership of these classes is distributed
across the 500 members of the population. Table 3 shows the aver-
age membership of each class across the 10 runs of each problem
instance. We note that as the user is free to specify the desired
objectives in any given class there is no guarantee that the algorithm
will generate any solutions that fall into that class. The only class
for which difficulties were experienced in generating solutions for
was class 2.

There may also exist some solutions which do not fit into any
specific classes, once again this is dependent on the choices made by
the user when setting up the classes. We note from the results that
for every instance we have some members of the population who
cannot be classified, which on average range from 7.6 % to 21.6 %.

5 CONCLUSIONS AND FURTHER WORK
This paper presents an initial investigation into combining the prin-
ciples of Parallel Coordinate plots with a basic MOEA. One of the
major difficulties of the Pareto-based MOEAs used in previous work
was their tendency to produce large fronts, thus the user is left with
the task of selecting the final solution. Even visualising such fronts
using Parallel Coordinates does not necessarily ease the problem as
the resulting plot can be difficult to interpret due to the number of
intersecting polylines contained. We propose a solution that allows
the user to specify which areas within each coordinate interest them;
each of these areas defines a solution class (see figure 2). Only one
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(a) blon-2 (b) cluster-2 (c) offset-1

(d) offset-8

Figure 3: Examples of the Parallel Coordinate plots produced by the algorithm, with one solution selected in each class.

Table 3: Distribution of Result Classes

Unclassified 1 2 3 4 5 6
blon-1 14.54% 15.76% 3.32% 15.18% 46.42% 1.38% 3.40%
blon-2 16.26% 17.30% 0.00% 12.54% 51.60% 0.90% 1.40%
blon-4 21.60% 22.38% 9.38% 18.38% 19.12% 6.00% 3.14%
blon-8 9.30% 24.26% 0.00% 14.18% 38.44% 11.96% 1.86%
blon-rnd 9.72% 29.52% 22.74% 6.76% 14.22% 10.56% 6.48%
lon-1 11.86% 20.22% 0.00% 10.38% 56.18% 0.10% 1.26%
lon-2 8.58% 29.92% 0.00% 20.18% 37.00% 3.10% 1.22%
lon-4 15.74% 16.80% 0.00% 14.72% 42.56% 6.28% 3.90%
lon-8 20.80% 18.82% 26.06% 9.08% 10.56% 6.78% 7.90%
lon-rnd 10.52% 22.80% 6.64% 11.04% 42.00% 0.58% 6.42%
cluster-1 12.30% 14.00% 0.00% 14.96% 50.60% 3.70% 4.44%
cluster-2 9.66% 36.06% 0.00% 15.94% 32.14% 2.26% 3.94%
cluster-4 9.40% 23.56% 0.00% 12.10% 40.86% 6.38% 7.70%
cluster-8 7.58% 30.54% 9.96% 5.38% 23.00% 18.38% 5.16%
cluster-rnd 8.86% 33.22% 0.00% 13.76% 35.08% 4.82% 4.26%
offset-1 10.40% 19.48% 0.00% 11.26% 52.36% 1.04% 5.46%
offset-2 17.72% 21.22% 4.16% 6.06% 41.52% 1.26% 8.06%
offset-4 13.24% 22.72% 4.56% 11.76% 37.64% 6.42% 3.66%
offset-8 19.32% 18.30% 9.88% 7.18% 24.02% 14.38% 6.92%
offset-rnd 8.46% 26.50% 0.00% 13.56% 41.86% 1.92% 7.70%

solution within each class is presented to the user, thus the number
of solutions presented to the user is equal to the number of solution
classes. Of the six exemplar solutions classes presented, we note that
in only one case (class 2) is the algorithm unable to find solutions.
It may be significant that class 2 is the only classification which
does not require a normalised value of 0 in at least one objective.
When comparing to the benchmark solutions, we note that the new
algorithm consistently finds solutions with a lower overall cost and
in some cases lower C02 and staff numbers. Although this initial
version of the algorithm does not show large improvements, it finds
enough improved solutions to suggest that the principle of using
a MOEA combined with the principles of parallel coordinates is a
useful concept.

Further development includes the possibilities of using an al-
ternative means to select the final solution in each class. Parallel
coordinates allow a useful means of the user specifying the sorts of

solution that they are interested in, and the ability of this algorithm
to find solutions in 6 classes, suggests that directing the search to-
wards particular areas of the parallel coordinates chart is a viable
methodology. Rather than have the user specify several areas of
interest prior to running the algorithm, it may be feasible to allow
the user to identify areas of interest at runtime, by interacting with
a parallel coordinates plot of some or all of the current population
whilst the algorithm is running. The use of financial cost in order
to select only one solution for presentation, needs further consider-
ation; approaches such as using the lowest average score over all
criteria, or allowing multiple solutions per class (assuming that they
are sufficiently different) require investigation.
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Table 4: A summary of results obtained, by solution class, averaged over 10 runs. The % columns represent the difference from the
benchmark results in table 2 (<100% equates to an improvement, >100 % indicating a worse result). Note that for class 2 there exist
a number of problem instances where no solutions in the final population were allocated to the class.

Class 1 Class 2
Problem Total Cost % CO2 % Staff % Time Travel Cost Total Cost % CO2 % Staff % Time Travel Cost
blon-1 1,884.71 74.4% 678.10 147.91% 10.90 72.67% 4,954.90 233.08 188.10 7.4% 69.40 15.14% 1.10 7.33% 494.30 23.33
blon-2 1,973.57 72.3% 742.86 148.02% 12.80 67.37% 5,140.70 260.00
blon-4 1,998.26 73.4% 799.15 136.73% 17.60 83.81% 5,200.20 264.86 399.52 14.7% 156.73 26.81% 3.40 16.19% 1,040.30 52.76
blon-8 2,546.37 96.8% 1,227.62 199.20% 22.70 103.18% 6,411.10 409.34
blon-rnd 2,085.38 75.5% 816.92 153.21% 16.70 87.89% 5,392.90 287.74 1,672.17 60.6% 665.12 124.74% 13.40 70.53% 4,320.20 232.10
cluster-1 945.14 79.3% 284.15 143.89% 6.10 87.14% 2,565.00 90.14
cluster-2 1,011.85 77.7% 337.23 140.16% 7.70 85.56% 2,704.00 110.52
cluster-4 1,080.06 79.6% 414.32 149.73% 11.40 103.64% 2,855.90 128.10
cluster-8 1,067.17 76.1% 449.09 155.74% 14.90 124.17% 2,835.40 122.04 641.92 45.8% 284.48 98.66% 9.50 79.17% 1,705.40 73.45
cluster-rnd 1,088.30 85.3% 406.01 164.61% 9.60 106.67% 2,873.20 130.56
lon-1 794.70 77.2% 225.00 156.41% 5.00 83.33% 2,204.90 59.74
lon-2 835.26 71.6% 255.40 171.05% 6.30 78.75% 2,291.00 71.60
lon-4 879.30 70.4% 310.00 176.41% 9.40 85.45% 2,386.90 83.67
lon-8 936.04 75.2% 378.70 166.35% 14.60 112.31% 2,514.60 97.84 655.39 52.7% 271.20 119.13% 10.70 82.31% 1,760.40 68.59
lon-rnd 894.78 78.8% 307.70 167.82% 8.80 97.78% 2,417.50 88.95 180.64 15.9% 65.60 35.78% 2.00 22.22% 487.00 18.31
offset-1 2,068.26 83.5% 848.05 125.54% 11.60 82.86% 5,343.70 287.03
offset-2 2,207.25 77.2% 972.41 124.25% 14.20 74.74% 5,642.20 326.52 220.82 7.7% 98.30 12.56% 1.40 7.37% 564.00 32.82
offset-4 2,388.52 81.3% 1,139.61 126.40% 19.90 90.45% 6,043.40 374.05 239.47 8.2% 113.70 12.61% 2.00 9.09% 605.60 37.60
offset-8 2,552.67 88.8% 1,235.16 125.74% 22.20 105.71% 6,412.90 415.04 503.10 17.5% 241.89 24.62% 4.30 20.48% 1,264.70 81.53
offset-rnd 2,318.57 87.0% 1,030.71 131.23% 15.10 88.82% 5,902.30 351.14

Class 3 Class 4
blon-1 1,884.69 74.4% 688.42 150.17% 10.90 72.67% 4,955.50 232.86 1,891.20 74.6% 692.60 151.08% 10.80 72.00% 4,964.70 236.30
blon-2 1,974.46 72.3% 750.05 149.46% 12.80 67.37% 5,142.90 260.16 1,980.15 72.6% 753.59 150.16% 12.80 67.37% 5,153.10 262.45
blon-4 1,997.84 73.4% 809.95 138.57% 17.70 84.29% 5,198.40 265.04 1,409.71 51.8% 564.95 96.66% 12.30 58.57% 3,662.40 188.91
blon-8 2,546.14 96.8% 1,243.51 201.78% 22.80 103.64% 6,414.30 408.04 2,546.57 96.8% 1,247.75 202.46% 22.70 103.18% 6,406.20 411.17
blon-rnd 2,089.43 75.7% 826.44 154.99% 16.90 88.95% 5,411.60 285.57 1,678.96 60.8% 664.99 124.71% 12.90 67.89% 4,339.10 232.59
cluster-1 942.78 79.1% 291.26 147.50% 6.10 87.14% 2,558.40 89.98 945.90 79.3% 292.98 148.37% 6.10 87.14% 2,564.30 91.14
cluster-2 906.84 69.6% 303.82 126.27% 6.80 75.56% 2,424.60 98.64 908.10 69.7% 304.72 126.65% 6.70 74.44% 2,426.40 99.30
cluster-4 1,080.19 79.6% 417.52 150.89% 11.40 103.64% 2,856.30 128.09 973.21 71.7% 375.32 135.64% 10.10 91.82% 2,571.40 116.08
cluster-8 959.36 68.4% 413.39 143.36% 13.90 115.83% 2,549.90 109.40 960.74 68.5% 407.49 141.32% 13.30 110.83% 2,552.30 109.98
cluster-rnd 874.65 68.6% 330.51 134.01% 7.90 87.78% 2,307.50 105.48 1,090.08 85.5% 410.71 166.52% 9.60 106.67% 2,876.30 131.31
lon-1 794.80 77.2% 228.90 159.12% 5.00 83.33% 2,205.00 59.80 797.08 77.5% 230.30 160.10% 5.00 83.33% 2,209.50 60.58
lon-2 835.02 71.6% 258.20 172.93% 6.30 78.75% 2,290.50 71.52 836.56 71.7% 259.00 173.47% 6.30 78.75% 2,293.00 72.23
lon-4 878.68 70.4% 314.20 178.80% 9.40 85.45% 2,385.20 83.61 879.41 70.4% 314.20 178.80% 9.40 85.45% 2,386.20 84.01
lon-8 935.27 75.2% 385.50 169.34% 15.20 116.92% 2,512.40 97.80 843.71 67.8% 345.10 151.59% 12.70 97.69% 2,264.80 88.78
lon-rnd 894.38 78.7% 311.60 169.95% 8.80 97.78% 2,417.10 88.68 896.50 78.9% 312.10 170.22% 8.60 95.56% 2,420.70 89.60
offset-1 2,071.11 83.6% 857.54 126.95% 11.60 82.86% 5,353.50 286.61 2,074.07 83.8% 859.95 127.31% 11.60 82.86% 5,355.50 288.90
offset-2 2,213.74 77.5% 983.64 125.68% 14.40 75.79% 5,662.20 326.34 2,213.89 77.5% 983.61 125.68% 14.30 75.26% 5,655.10 328.85
offset-4 2,392.14 81.4% 1,149.64 127.51% 19.80 90.00% 6,056.10 373.44 2,391.38 81.4% 1,152.56 127.84% 19.80 90.00% 6,046.10 376.01
offset-8 2,555.86 88.9% 1,250.60 127.31% 22.30 106.19% 6,424.40 414.40 2,301.39 80.1% 1,127.98 114.82% 20.10 95.71% 5,776.10 376.03
offset-rnd 2,097.63 78.7% 943.28 120.10% 13.70 80.59% 5,338.40 318.16 2,320.41 87.1% 1,047.64 133.38% 15.10 88.82% 5,900.20 353.67

Class 5 Class 6
blon-1 1,146.14 45.2% 427.36 93.22% 6.80 45.33% 3,002.70 145.24 7,616.65 300.6% 2,747.68 599.35% 45.00 300.00% 19,965.00 961.65
blon-2 789.38 28.9% 294.75 58.73% 5.20 27.37% 2,055.10 104.34 12,007.45 439.9% 4,593.65 915.34% 78.00 410.53% 31,179.00 1,614.45
blon-4 1,601.82 58.8% 649.56 111.13% 13.70 65.24% 4,165.80 213.22 8,074.85 296.7% 3,282.58 561.61% 75.00 357.14% 20,944.00 1,093.52
blon-8 2,548.37 96.9% 1,259.37 204.35% 22.90 104.09% 6,405.20 413.30 20,466.62 778.1% 10,039.37 1629.03% 182.00 827.27% 51,368.00 3,343.95
blon-rnd 2,088.78 75.6% 836.78 156.93% 17.00 89.47% 5,395.70 290.21 18,924.07 685.3% 7,524.69 1411.21% 151.00 794.74% 48,824.00 2,649.41
cluster-1 570.53 47.9% 181.61 91.97% 3.70 52.86% 1,543.70 55.96 8,550.29 717.2% 2,638.38 1336.09% 55.00 785.71% 23,144.00 835.62
cluster-2 908.05 69.7% 308.92 128.39% 6.80 75.56% 2,426.10 99.35 7,080.63 543.5% 2,359.55 980.65% 52.00 577.78% 18,900.00 780.63
cluster-4 972.18 71.7% 383.62 138.64% 10.30 93.64% 2,565.90 116.88 10,847.14 799.5% 4,196.19 1516.46% 113.00 1027.27% 28,621.00 1,306.81
cluster-8 962.50 68.6% 413.19 143.29% 14.20 118.33% 2,555.80 110.57 9,644.35 687.5% 4,186.79 1451.98% 141.00 1175.00% 25,590.00 1,114.35
cluster-rnd 659.39 51.7% 242.13 98.17% 5.80 64.44% 1,740.10 79.36 9,835.28 771.0% 3,661.05 1484.37% 84.00 933.33% 25,937.00 1,189.62
lon-1 159.95 15.5% 49.10 34.13% 1.00 16.67% 443.10 12.25 7,214.67 701.2% 2,087.00 1450.82% 45.00 750.00% 19,971.00 557.67
lon-2 752.54 64.5% 236.62 158.47% 5.60 70.00% 2,062.50 65.04 6,672.64 572.2% 2,092.20 1401.25% 50.00 625.00% 18,297.00 573.64
lon-4 792.40 63.5% 286.80 163.20% 8.60 78.18% 2,149.70 75.84 8,809.38 705.5% 3,143.00 1788.54% 94.00 854.55% 23,889.00 846.38
lon-8 845.06 67.9% 351.00 154.18% 13.80 106.15% 2,267.20 89.32 8,439.90 678.4% 3,476.00 1526.91% 135.00 1038.46% 22,643.00 892.23
lon-rnd 442.91 39.0% 156.00 85.08% 4.40 48.89% 1,199.00 43.25 8,120.00 714.9% 2,809.98 1532.58% 78.00 866.67% 21,889.00 823.66
offset-1 1,245.88 50.3% 523.14 77.44% 7.00 50.00% 3,216.90 173.58 16,707.22 674.8% 6,877.82 1018.18% 94.00 671.43% 43,086.00 2,345.22
offset-2 1,102.23 38.6% 490.14 62.63% 7.20 37.89% 2,818.20 162.83 22,257.22 778.9% 9,873.80 1261.59% 143.00 752.63% 56,791.00 3,326.89
offset-4 2,157.86 73.5% 1,057.35 117.27% 18.30 83.18% 5,446.80 342.26 21,545.44 733.5% 10,363.91 1149.50% 178.00 809.09% 54,393.00 3,414.44
offset-8 2,305.67 80.2% 1,138.63 115.91% 20.20 96.19% 5,783.20 377.94 23,070.60 802.5% 11,342.25 1154.60% 201.00 957.14% 57,828.00 3,794.60
offset-rnd 1,856.49 69.7% 844.02 107.46% 12.10 71.18% 4,718.40 283.69 21,036.74 789.6% 9,491.84 1208.47% 138.00 811.76% 53,407.00 3,234.40
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