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ABSTRACT
Understanding the relationship between selection, genotype-phenotype
map and loss of population diversity represents an important step
towards more e�ective genetic programming (GP) algorithms. This
paper describes an approach to capture dynamic changes in this
relationship. We analyze the frequency distribution of points in
the diversity plane de�ned by structural and semantic similarity
measures. We test our methodology using standard GP (SGP) on a
number of test problems, as well as O�spring Selection GP (OS-GP),
an algorithmic �avor where selection is explicitly focused towards
adaptive change. We end with a discussion about the implications
of diversity maintenance for each of the tested algorithms. We
conclude that diversity needs to be considered in the context of
�tness improvement, and that more diversity is not necessarily
bene�cial in terms of solution quality.
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1 INTRODUCTION
Genetic Programming (GP) [3, 6] is a population-based evolutionary
algorithm where solution candidates are gradually improved via
the iterative application of selection and recombination.

Similar to biology, the ability to improve (ie., produce solutions
of increased quality) inherently depends on the amount of genetic
variation available in the population. A more diverse gene pool
increases the chances of successful adaptation; thus, population di-
versity is essential to the algorithm’s chances of success. However,
maintaining population diversity in the presence of selection pres-
sure remains an unresolved issue. For example, Xie [11] shows that
loss of population diversity in GP is entirely due to the not-sampled
individuals by selection.

Loss of diversity under �tness-based selection is considered to be
the main cause of premature convergence, a situation where the o�-
spring produced by the algorithm are no longer able to outperform
their parents. Since selection acts on phenotypes, it becomes neces-
sary to investigate diversity loss starting from underlying factors
such as selection pressure, the antagonistic relationship between
exploration and exploitation, and the non-injective (many-to-one)
mapping from genotypes to phenotypes.

Our motivation, in this context, is to analyze population diversity
at both the genotype and phenotype levels and investigate possible
connections between the two. We consider tree-based GP where
the genotypes are represented by symbolic expression trees. We
employ structural (genotypic) and semantic (phenotypic) similarity
measures and describe the dynamical evolution of diversity in the
“similarity plane” formed by these two axes. We test di�erent algo-
rithmic �avors and selection mechanisms in order to analyze their
e�ects on GP population dynamics.

The remainder of this paper is organized as follows: Section 2
introduces our similarity measures and methodology, Section 3
details the experiment con�guration, Section 4 describes the used
problems and Section 5 is dedicated to conclusions.
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2 SIMILARITY MEASURES
We here introduce a new genotype similarity measure based on the
bottom-up tree distance [7] and a phenotype similarity measure
based on the correlation between two individuals’ outputs.

Since our similarity measures are symmetrical, the number of
similarity calculations necessary to compute the average similar-
ity for a population of N individuals is N (N−1)

2 . Therefore, the
population diversity is given by:

Div (T ) = 1 −
∑N−1
i=1

∑N
j=i+1 Sim(ti , tj )

N (N − 1)/2 (1)

where Sim(t1, t2) can be either the bottom-up or the phenotypic
similarity.

2.1 Genotypic Similarity
Genotypic similarity is calculated using a bottom-up tree mapping
based on the largest common forest between trees, as described
by [7]. It has the advantage of maintaining the same time complex-
ity, namely linear in the size of the two trees regardless of whether
the trees are ordered or unordered. The algorithm works as follows:

(1) In the �rst step, it computes the compact directed acyclic
graph representation G of the largest common forest F =
t1 ·∪ t2 (consisting of the disjoint union between the two
trees). The graphG is built during a bottom-up traversal of
F (in the order of non-decreasing node height). Two nodes
in F are mapped to the same vertex in G if they are at the
same height and their children are mapped to the same
sequence of vertices inG . The bottom-up traversal ensures
that children are mapped before their parents, leading to
O ( |t1 | + |t2 |) time for adding vertices in G corresponding
to all nodes in F . This step returns a map K : F → G which
is used to compute the bottom-up mapping.

(2) The second step iterates over the nodes of t1 in level-order
and builds a mapping M : t1 → t2 using K to deter-
mine which nodes correspond to the same vertices in G.
The level-order iteration guarantees that every largest un-
mapped subtree of t1 will be mapped to an isomorphic
subtree of t2.

Finally, the bottom-up similarity between trees t1 and t2 is calcu-
lated as

Bo�omUpSimilarity(t1, t2) =
2 · |M (t1, t2) |
|t1 | + |t2 |

(2)

By taking two times the size of the bottom-up mapping between
the two trees, we make sure that the similarity values will always
fall inside the [0, 1] interval.

2.2 Phenotypic Similarity
We de�ne an individual’s phenotype as its evaluation response on
the training data. Individuals with the same response (with the
same semantics) are considered phenotypically similar regardless
of their actual structure. In this paper, we introduce a phenotypic
similarity measure based on the squared Pearson product-moment
correlation coe�cient:

R2
X ,Y =

(
ρX ,Y

)2
=

(
Cov(X ,Y )
σXσY

)2
(3)

Figure 1: Bottom-upmapping between two trees t1 and t2 [7]

Since ρ ∈ [−1,+1], the R2 correlation coe�cient will always return
a similarity value in the interval [0, 1].

To avoid unde�ned situations where the denominator is zero in
the above formula, we introduce an exception for the case when one
of the responses has variance zero. Two individuals with constant
responses are considered to be completely similar; otherwise, if
only one of them has a constant response, similarity is set to zero.

PhenotypicSim(t1, t2) =




1 if Var(t1) = Var(t2) = 0
0 if Var(t1) = 0 or Var(t2) = 0
R2
t1,t2

otherwise
(4)

3 EXPERIMENTAL SETUP
We analyze the e�ect of selection on population dynamics for the
standard GP algorithm and O�spring Selection GP (OS-GP). We
con�gure each algorithm using typical and competitive parameter
settings and test with two problem instances (one synthetic and
one real-world problem) which we describe in the next section.

3.1 Algorithms
3.1.1 Standard Genetic Programming (SGP). We con�gure the

standard genetic programming algorithm with the following pa-
rameter settings:

• Population size: 500 individuals
• Termination criterion: 1000 generations
• Tree initialization: probabilistic Tree Creation (PTC2) ([4])
• Maximum tree size: 50 nodes, 10 levels
• Elites: 1 individual
• Parent selection: tournament selection, group size 5
• Crossover: subtree crossover, 100% probability
• Mutation: 25% mutation rate, each mutation is performed

either as single-point, multi-point, remove branch or re-
place branch mutation

• Fitness function: coe�cient of determination R2 ([2])
• Terminal symbols: constant, weight * variable
• Function symbols: binary functions (+,-,×, ÷, exp, log)

3.1.2 Genetic Programming with O�spring Selection (OSGP).
Strict o�spring selection (OS) [1] shifts the focus of selection to-
wards adaptive change by introducing an additional selection step
where newly created individuals are accepted into the population
only if their �tness exceeds that of their parents. The algorithm
produces as many individuals as needed in order to �ll in a new

1554



Dynamic Observation of Genotypic and Phenotypic Diversity GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

generation of individuals. In this context, the active selection pres-
sure is de�ned as the ratio between the total number of produced
o�spring and the number of individuals needed to �ll a generation
(ie., the population size). The active selection pressure varies every
generation depending on how easy it is to generate better o�spring.
The active selection pressure at generation i is expressed as:

SelectionPressure(i ) =
|GeneratedO�spring(i ) |

|Population|
. (5)

We use the selection pressure as termination criterion, ie., the al-
gorithm is terminated as soon as the selection pressure reaches a
prede�ned maximum value.

Most parameters for these OS-GP tests are equal to those used
for standard GP; OS-GP speci�c parameter settings are changed as
follows:

• Population size: 200 individuals
• Termination criterion: Maximum selection pressure 200
• Parent selection: Gender speci�c ([9]); proportional and

random
• O�spring selection: Strict, i.e. success ratio = 1.0 and com-

parison factor = 1.0 ([1])

3.2 Problem Instances
We test the aforementioned GP algorithms on two benchmark re-
gression problems to examine population dynamics. The problems
are taken from the recommended GP benchmark problems [10] and
are both available within the HeuristicLab framework.

• The Poly-10 data set [5] consists of 500 samples with 10
variables x1...10 and the response variable y. The values
x1...10 were generated by randomly (uniformly) drawing
values from the interval [−1,+1], the response values were
calculated according to the following equation:
y = f (x) = x1x2 + x3x4 + x5x6 + x1x7x9 + x3x6x10

• The Tower data set [8] comes from an industrial problem
on modeling gas chromatography measurements of the
composition of a distillation tower. It contains 5000 records
and 25 potential input variables, the target variable is the
propylene concentration at the top of the distillation tower.
The samples were measured by a gas chromatograph and
recorded as �oating averages every 15 minutes. The 25
potential inputs are temperatures, �ows, and pressures
related to the distillation tower. The Tower data set can
be downloaded from http://www.symbolicregression.com/
?q=towerProblem.

4 EXPERIMENTAL RESULTS
We build our similarity histograms using measurements acquired
from 10 runs for each problem instance (Poly-10 and Tower) and
algorithmic con�guration. We create a visual illustration of the
evolution of similarity with bidimensional similarity histograms
smoothed using gaussian kernel density estimation. Additionally,
we plot the average population �tness for each algorithm and prob-
lem combination, in order to investigate whether the evolution of
population similarity is related to the evolution of average �tness.

Figures 2 and 3 show the evolution of average population qual-
ity, while Figures 4 and 5 show the evolution of similarities on
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Figure 2: Standard GP average and best population quality
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Figure 3: OS-GP average and best population quality

the two benchmark problems for the GP and OS-GP algorithms,
respectively. The sub�gures represent snapshots taken every 100
generations in the case of standard GP and every 5 generations in
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the case of OS-GP. A comparison between the two �gures leads us
to the following observations:

• Phenotypic similarity is more heavily dependant on se-
lection pressure and, indirectly, on the average �tness of
the population. Strict o�spring selection (where genetic
changes can only improve �tness, otherwise the o�spring
gets rejected) causes all individuals in the population to
become semantically similar.

• Semantically similar individuals tend to be structurally
similar as well. This is noticeable on all �gures by looking
at the y-axis values towards the right-hand part of each
histogram.

• Semantic similarity increases with quality. This is par-
ticularly noticeable for the tested standard GP instance
(Figures 2b and 2a) where a higher average population
quality (Tower problem) translates into higher phenotypic
similarity (Figures 4b and 4a).

The signi�cant di�erence in the evolution of similarities between
GP and OS-GP suggests that diversity loss is more pronounced
when selection is focused on adaptive changes. Therefore, strict o�-
spring selection determines the evolution of a more homogeneous
population at both structural and semantic levels.

We notice that maintaining diversity is useful only in situations
where the algorithm is able to exploit it to obtain better solution
candidates. In practice, this does not always seem to be the case. On
one hand, the obtained qualities show that the considered standard
GP instance is unable to exploit the additional diversity in the
population. This seems to be caused by a wider variation of �tness
in the population, where low-�tness individuals contribute diversity
but their genetic material is not necessarily useful.

On the other hand, strict o�spring selection in OS-GP leading to
increased genotypic and phenotypic similarity allows the algorithm
to make better use of the available genetic variation, translating
into higher average population �tness and better overall results.

5 CONCLUSION
The goal of this work is to show the potential of dynamic geno-
type/phenotype similarity observations exemplarily on the basis
of two algorithm instances and two benchmark problems. Our
analysis reveals the important role played by selection in genetic
programming.

In future work we plan to extend this approach on other problems
and algorithmic con�gurations, with di�erent parent and child
selection mechanisms. Additionally, we plan to develop improved
visualization methods which show more clearly the relationship
between the evolution of diversity and the evolution of population
quality.
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Figure 4: Distribution of genotypic vs. phenotypic similarities in standard GP

1557



GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany M. A�enzeller et al.

0.0 0.2 0.4 0.6 0.8 1.0

Phenotype similarity

0.0

0.2

0.4

0.6

0.8

1.0

Ge
no

ty
pe

sim
ila

rit
y

Generation 0

0.0 0.2 0.4 0.6 0.8 1.0

Phenotype similarity

0.0

0.2

0.4

0.6

0.8

1.0

Ge
no

ty
pe

sim
ila

rit
y

Generation 5

0.0 0.2 0.4 0.6 0.8 1.0

Phenotype similarity

0.0

0.2

0.4

0.6

0.8

1.0

Ge
no

ty
pe

sim
ila

rit
y

Generation 10

0.0 0.2 0.4 0.6 0.8 1.0

Phenotype similarity

0.0

0.2

0.4

0.6

0.8

1.0

Ge
no

ty
pe

sim
ila

rit
y

Generation 15

0.0 0.2 0.4 0.6 0.8 1.0

Phenotype similarity

0.0

0.2

0.4

0.6

0.8

1.0

Ge
no

ty
pe

sim
ila

rit
y

Generation 20

0.0 0.2 0.4 0.6 0.8 1.0

Phenotype similarity

0.0

0.2

0.4

0.6

0.8

1.0

Ge
no

ty
pe

sim
ila

rit
y

Generation 25

0.0 0.2 0.4 0.6 0.8 1.0

Phenotype similarity

0.0

0.2

0.4

0.6

0.8

1.0

Ge
no

ty
pe

sim
ila

rit
y

Generation 30

0.0 0.2 0.4 0.6 0.8 1.0

Phenotype similarity

0.0

0.2

0.4

0.6

0.8

1.0

Ge
no

ty
pe

sim
ila

rit
y

Generation 35

1

(a) Poly-10 Problem
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Figure 5: Genotypic vs. phenotypic similarities in OS-GP
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