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ABSTRACT
In this paper an improved version of a general–purpose
asynchronous adaptive multi–population model for distributed
Di�erential Evolution algorithm is investigated. Speci�cally, in
addition to an asynchronous mechanism for a multi–population
recombination employed to exchange information, the distributed
algorithm is endowed also with an innovative mechanism able to
exploit diversity for the selection of the subpopulations involved in
the asynchronous communication. Moreover the model is provided
with a speci�c updating scheme to randomly update the control
parameter values.

The asynchronous migration mechanism and the adaptive
procedure allow reducing the number of control parameters to
be set and tuned in the distributed model respectively.

The proposed distributed algorithm has been tested on the
benchmarks of the CEC2016 real parameter single objective
competition without adopting any speci�c mechanism opportunely
tailored for solving such test problems. The results compared
with the basic version of the distributed algorithm reveal an
improvement in the performance in most of the considered
benchmarks.
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• Computing methodologies → Continuous space search;
Distributed algorithms;
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1 INTRODUCTION
During the last decade Di�erential Evolution (DE) has been
widely investigated for solving global continuous optimization
problems. The motivation behind this success within the research
communities is twofold. On the one side DE success requires few
control parameters and is simpler to implement with respect to
most other Evolutionary Algorithms (EAs). On the other side, such a
technique is characterized by low complexity [15] and outperforms,
in terms of �nal accuracy, convergence speed, and robustness,
many of the already existing stochastic and direct search global
optimization techniques [6, 14, 42].

Nevertheless, its performance depends on the choice of the
transformation scheme to produce the trial vector and on the
setting of the control parameters to avoid premature convergence
or an undesired stagnation condition [13, 26, 42], according to
both experimental investigations [25] and theoretical analyses [46].
With the aim to improve the performance, the outcome of the DE
investigation has given rise to a multitude of sequential approaches
on how to properly choose the trial vector generation strategy
and to avoid the manual tuning of these control parameter values
[9, 41, 43, 46]: i) deterministic parameter control which takes place
when the value of a parameter is altered by some deterministic rule
[13, 22, 35, 52, 55]; ii) adaptive parameter control when a form of
feedback from the search is used to determine the direction and/or
the magnitude of the changes in the parameters [8, 29, 37, 49, 54, 56];
iii) self–adaptive parameter control which exploits an evolutionary
process to implement the self–adaption of the parameters. This
means that the parameters are encoded in the chromosome and
undergo the mutation and recombination operators [7, 47, 53].

In the last years much research activity has been dedicated to the
development of distributed Di�erential Evolution (dDE) approaches
[15–20, 23, 27, 30, 33]. The motivation behind this research line can
be found in the fact that they are able to explore a search space
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more evenly, and can �ght population stagnation thanks to a better
capability of preserving an overall higher diversity [2].

Based on the previous considerations, we introduced a general–
purpose asynchronous adaptive multi–population algorithm for
distributed Di�erential Evolution, referred to as Asynchronous
Adaptive Multi–Population Model for dDE (AsAMP–dDE) [21],
characterized by an asynchronous mechanism for the migration
and for a multi–population recombination employed to exchange
information. The motivation of this choice was that the use of an
asynchronous migration mechanism may result advantageous with
respect to its synchronous counterpart in terms of result quality
[24].

Di�erently from AsAMP–dDE in which the migration among
the subpopulations occurs on a probabilistic basis, in the algorithm
proposed within this paper, hereinafter referred to as Diversity–
based Adaptive Multi–Population Model for dDE (AsDivAMP–dDE),
the policy adopted for the selection of the subpopulations involved
in the asynchronous communication is guided by the diversity
between the current global best individual and the local best ones.
In particular, the subpopulations selected for such a communication
are those containing the current global best and the most ‘diverse’
current local best. This entails that the communication is potentially
possible between any pair of subpopulations rather than only
among subpopulations that are neighboring on the basis of the
migration topology as occurs in AsAMP–dDE.

The mechanism for exploiting the diversity is a very important
factor for enhancing the performance of evolutionary algorithms
[12, 28]. In fact, diversity-preserving mechanisms are able to
improve the global exploration of the search space and enable
crossover to �nd dissimilar individuals for recombination.

AsAMP–dDE borrowed some migration issues and one of the
adaptive control parameter schemes adopted by AIM–dDE [19].
The adaptive procedure, based on a �tness–based measurement,
aims to enhance the exploration in the parameter space in those
subpopulations with lower improvements in performance. The hope
is that in this way such subpopulations will �nd good individuals
and parameter values, thus improving their performance. In general
the updating scheme is employed for a dynamic setting of both the
mutation and the crossover parameters, where the subpopulation
size is assumed to be tuned in advance and kept �xed throughout
the evolution process.

The employment of the asynchronous migration and of the
adaptive scheme allows reducing the number of the control
parameters to be set and tuned and this represents a noticeable
strength point of the proposed distributed model.

The performance of AsDivAMP–dDE algorithm has been
investigated on the CEC 2016 competition test suite on learning-
based real-parameter single objective optimization problems.

In the following, Section 2 describes the classical DE technique.
Some works on the asynchronous mechanism are reported in
Section 3; Section 4 illustrates AsDivAMP–dDE algorithm with
its adaptive scheme and the new adopted asynchronous migration
mechanism. In Section 5 the experimental results obtained by this
algorithm are presented and discussed. The �nal section reports
the conclusions and the future works.

2 DIFFERENTIAL EVOLUTION
DE [40, 46] is one of the most e�cient and reliable population–
based stochastic techniques for solving optimization problems in
continuous search domains. The population of DE made up of a
�xed number of potential solutions is randomly initialized within a
multidimensional search space. Then such a population is evolved
over time by using three operators of mutation, crossover, and
selection to explore the search space and to locate the optima of the
�tness function, denoted with Φ, which evaluates the optimality of
a solution.

More speci�cally, given a minimization problem within a D–
dimensional search space of real parameters, DE deals with it by
starting with a population of l randomly chosen potential solution
vectors xi each made up by D real values, one for each problem
dimension. The population is evolved from one generation t to
the next creating new individuals by combining vectors chosen
within the current population (mutation). The mutant vectors are
then mixed with a predetermined target vector (crossover operator)
to create the trial vector. Many di�erent transformation schemes
have been introduced by the inventors to produce the candidate
trial vector [40, 46]. To explicit the strategy they established a
notation for each DE technique with a string like DE/base/num/cross.
In it DE stands for Di�erential Evolution, base is a string which
denotes the vector to be perturbed (best = the best individual in the
current population, rand = a randomly chosen one, rand–to–best =
a random one, but the current best takes part in the perturbation
too), num is the number of di�erence vectors taken for perturbation
of base (either 1 or 2), while cross is the crossover method (exp =
exponential, bin = binomial). A di�erence vector is a subtraction
between two solution vectors within the current population. For
example the DE/best/2/bin model involves that the best individual is
perturbed by using two di�erence vectors and by applying binomial
crossover. More speci�cally, to create the new i–th individual in the
next population four integer numbers r1, r2, r3 and r4 in [1, . . . , l]
di�ering from one another and di�erent from i are randomly chosen.
Once the mutant vector x∗i = xbest + F · ((xr1 − xr2 ) + (xr3 − xr4 )),
where F is the scale which controls the magnitude of the di�erential
variation, is created, it will undergo binomial crossover with xi .

To this scope, another integer number s in the range [1,D] is
randomly generated. Starting from the mutant vector a random
number ρ in [0.0, 1.0] is generated, and if this is lower than the
crossover rate CR (control parameter of the DE set by the user, in
the same range as ρ) or the position j under account is exactly s ,
then the j–th gene of the trial x

′
i is generated as:

x
′
i, j = x∗i, j = xbest, j + F · ((xr1, j − xr2, j ) + (xr3, j − xr4, j )) (1)

otherwise the gene of the original vector is kept: x
′
i, j = xi, j . Finally,

the selection phase happens: this trial individual x
′
i is compared

against xi in the current population and, if �tter, replaces it in
the next population, otherwise the original one survives into the
new population. Such a comparison is accomplished on the basis
of Φ. This basic scheme is repeated for a maximum number of
generations tmax or until some stopping criterion is satis�ed.
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3 WORKS ON ASYNCHRONOUS MECHANISM
An excursus of the available literature reveals that asynchronous
distributed EA models have not been extensively investigated [32].
Some authors state that “the main feature of synchronous methods
are the so–called synchronization points. When a worker reaches
the synchronization point it stops and waits until all workers reach
the same point. This means that workers must wait for the slowest
worker ... Idle time can be avoided by using the asynchronous approach
where workers do not wait for each other. When a worker �nishes
a task, it reports the results and immediately starts a new task"
[38]. Analogously other researchers consider an algorithm to be
synchronous when only a processing element may access a data
structure, and asynchronous when multiple processing elements
may access the same data structure (individual) at the same time
[32]. This means that the asynchronism is introduced just to reduce
the idle times which inevitably occur when processing elements
must wait for data structure to be available. These de�nitions should
not be confused with the synchronous/asynchronous migration
in distributed EAs. During the years the use and the meaning of
the synchronous/asynchronous nature of the migration process
in evolutionary computation have given rise to several di�erent
interpretations of the asynchronism mechanism [4, 31].

Some authors [1, 2, 48] link the synchronism to the physical
communication process among the demes. In this way, the
migration synchronism is strictly related to the physical time
and, consequently, to the particular hardware used. For example,
Alba and Troya [3] attested that “sync: is a �ag indicating
whether the algorithm is performing regular blocking input/output
communications from/to another islands, or whether individuals are
integrated in the receiving population whenever they arrive from
its neighbors”. It is then clear that in the case of asynchronous
communication, such a way of implementing the migration could
in�uence the algorithmic behavior, depending on the speci�c
hardware used, as evidenced by the same authors in another
paper [4]: “in general, if all the machines are of the same type ...
no di�erences should appear in the evaluation e�ort or algorithmic
behavior ... This is not necessarily true if processors of di�erent types
are being used”. In other words, if the physical communication
process among the islands is asynchronous and the processors are
the same, the migration will behave in a synchronous way.

Other authors proposed asynchronous migration mechanisms
related to a deliberate algorithmic choice with no reference to how
the islands communicate at a hardware level. Di�erently from the
synchronous migration that takes place after a speci�ed number of
generations of the evolutionary process, in such an asynchronous
model the migration occurs when a migration criterion is ful�lled
[10] and the particular hardware used has no in�uence. It is to point
out that here the migration is asynchronous in the sense that islands
communicate at di�erent times of the evolutionary process, i.e., a
migration interval cannot be de�ned, while the underlying physical
communication mechanism can be indi�erently either synchronous
or asynchronous (blocking vs. non–blocking communications). As
an example, some authors control the migration through a random
or probabilistic process [5, 39, 50]. In other papers, on each island
migration is triggered by the �tness or the diversity distribution
[10, 36].

Our asynchronous model follows this last mechanism since the
migration is driven by the occurrence of a speci�c condition during
the evolution.

4 THE AsDivAMP–dDE ALGORITHM
AsDivAMP–dDE is a novel adaptive multi–population distributed
model in which the population is subdivided into several semi–
isolated subpopulations, namely demes. With reference to the
neighborhood topology, this distributed structure may be classi�ed
as following the island model (fully connected demes) [44, 51].
The information exchange among neighboring subpopulations
is handled by the migration policy [11]. AsDivAMP–dDE uses
an asynchronous migration mechanism, which occurs when
speci�c diversity conditions occur. It is also endowed with an
asynchronous multi–population recombination instead of the
probabilistic exchange mechanism derived from AsAMP–dDE. It
should be also noted that in AsDivAMP–dDE no migration topology
is arranged since the communication guided by the diversity can
involve any pair of subpopulations.

Execution of the algorithm begins with an initialization process
for each node p which hosts an instance of a DE. Hypothesizing
that there are N nodes, N subpopulations {P1(t = 0), . . . , Pp (t =
0), . . . , PN(t = 0)}, each one composed of l individuals, are
randomly sampled and each of them is allocated on a di�erent
node.

The subpopulation Pp (t) of each node p performs a sequential
DE until t equals tmax generations. As a consequence, each
subpopulation is updated from a generation to the next one by
means of the steps typical of the DE chosen.

At each generation t > 0 each node sends/receives the individual
with the best �tness to/from all the other subpopulations so to
individuate the global best individual GB(t). If more than one
global best exists, a random one is selected. The diversity between
each local best individual LBp (t), ∀p ∈ {1, . . . ,N} and the
global best one is evaluated as the euclidean distance between the
components of the involved individuals. The communication takes
place between the subpopulation with GB(t) and the subpopulation
entailing the most diverse (distant) local best one, represented as
MDLB(t). If there is more than oneMDLB(t) individual, a random one
is picked up. The set of individuals of each of the two subpopulations
Pp (t) subject to migration, i.e., the propagule, indicated asMPp (t ),
is determined by collecting the individuals of Pp (t) which are �tter
than its current average �tness 〈Φp (t)〉:

MPp (t ) = {x
p
i (t) ∈ Pp (t) |

Φ(xpi (t)) � 〈Φp (t)〉 =
1
l

l∑
j=1

Φ(xpj (t))} (2)

where Φ(xpi (t)) is the �tness associated to the individual xpi (t) and
“�” is a binary relation stating that the left member is �tter than
the right member.

At this point, for both the subpopulations, a recombination
population Πp (t), formed by both the native and the individuals
belonging to the arrived propagule, is considered for the
recombination:
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Πp (t) ≡ Pp (t) ∪MPp̃(t ) (3)

The best element of the propagule MPp̃(t ) associated to the
subpopulation with GB(t) replaces the worst individual of the
target subpopulation Pp (t) containing MBLB(t). Subsequently, for
both the subpopulations, to create each of the l individuals of the
new corresponding subpopulation Pp (t + 1), the recombination
is applied to Πp (t) by selecting the target individual in Pp (t), by
creating the mutant individual in Πp (t) and, �nally, by obtaining
the trial individual through their recombination. The o�spring
of this recombination are inserted into the new corresponding
subpopulation Pp (t + 1) if they are �tter than the respective target
individuals.

4.1 Adaptive Procedure
We recall here the three steps of the procedure on which the
adaptive model is based considering, without loss of generality,
the case of minimization problems:

(1) At the beginning of the evolution for each subpopulation
random values for mutation and crossover parameters
F and CR are sampled from two independent uniform
distributions U (0.1, 1.0). This distribution has been
employed in the following each time a parameter is
randomly generated.

(2) At each generation, and before the new recombination
subpopulations Πp (t) are created on the involved nodes,
for each subpopulation the local improvement ∆〈Φp (t)〉 of
the average �tness is evaluated as the di�erence between
the average �tness values after the last generation and
at the current generation (for the �rst generation time
only, the initial generation is taken into account as ‘last
generation’):

∆〈Φp (t)〉 = 〈Φp (t − 1)〉 − 〈Φp (t)〉 (4)

(3) According to the adopted adaptive procedure, i. e. RandAvg
scheme borrowed from AIM–dDE, the average of all the
local improvements, i.e., the global average improvement
〈∆〈Φp (t)〉〉, is computed:

〈∆〈Φp (t)〉〉 =
1
N

N∑
p=1

∆〈Φp (t)〉 (5)

In each subpopulation for which ∆〈Φp (t)〉 < 〈∆〈Φp (t)〉〉
the control parameter values are randomly replaced.

This strategy allows that some of the most promising parameter
values can be further exploited while, at the same time, assures
the exploration of new potentially propitious search parameter
values. In fact, the subpopulations with the greater average �tness
improvements will keep on exploiting the current parameter values,
whereas those with the lower improvements will very likely explore
new parameter space domains. The number of updated parameter
couples varies dynamically over generations according to the
�tness feedback from the search so that the updating scheme is
characterized by an adaptive parameter control behavior.

Algorithm 1 Pseudo-code of AsDivAMP–dDE on a generic node
p with p ∈ {1, ...,N}
t = 0
Πp (t ) = ∅; MPp̃ (t ) = ∅
randomly initialize a subpopulation Pp (t ) = {xp1 (t ), · · · , x

p
l (t )}

evaluate the �tness Φ(xpi (t ), ∀i ∈ {1, . . . , l }
randomly initialize the values for F and CR from two independent
U (0.1, 1.0)
while halting conditions are not satis�ed do
t = t + 1
Πp (t ) ≡ Pp (t − 1) ∪ MPp̃(t−1)
update the subpopulation Pp (t ) using the evolutionary operators of
the DE and Πp (t )
evaluate the �tness Φ(xpi (t )), ∀i ∈ {1, . . . , l }
send/receive the current best �tness individual to/from all the other
subpopulations
evaluate the diversity of all the local best individuals with the current
global best individualGB(t ) and �nd the most diverse, be it MDLB(t )
MPp̃ (t ) = ∅
if Pp (t ) contains GB(t ) then

create the propaguleMPp (t )
send/receive the propaguleMPp (t ) /MPp̃ (t ) to/from the island
that contains MDLB(t )

end if
if Pp (t ) contains MDLB(t ) then

replace the worst element of Pp (t ) with GB(t )
create the propaguleMPp (t )
receive/send the propaguleMPp̃ (t ) /MPp (t ) from/to the island
that contains GB(t )

end if
end while

The pseudo–code of this model for a generic node is outlined in
Algorithm 1.

5 EXPERIMENTS
The distributed algorithm AsDivAMP–dDE is written in C
language, and Message Passing Interface (MPI) [45] is used for the
communications. Throughout the experiments the DE/best/2/bin
[40] mechanism has been used. All the experiments have been
carried out on an Intel Core i7 quad-core iMAC with a total memory
of 16 GB. Each core has a frequency of 3.4 GHz.

As concerns the number of subpopulations and the population
size, since we wish to compare AsDivAMP–dDE against AsAMP–
dDE, we have decided to use the same values emplyed for this latter
in [21]. This is because we wish to contrast the new migration
and exchange mechanism based on diversity against the one
contained in AsAMP–dDE, and, to do this in a fair way, we have
to keep everything else �xed. Consequently, we have used N = 16
subpopulations, and a population size equal to 128, which means to
each subpopulation having a number of l = 8 individuals. Before
the execution, the 16 subpopulations are distributed by means of a
round-robin procedure on the four cores of the system employed
for the experimentation, so that we have four running instances of
AsDivAMP-dDE on each core.

The control parameters F and CR undergo the adaptive
procedure described in the previous section and thus they do
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not need any tuning phase. As it can be seen, the number of the
parameters to set is very low, and this represents a strong point of
the model.

The test problems of the CEC2016 real parameter single objective
functions have been considered to evaluate the performance of the
algorithm. The details of these problems, listed in Table 1, can be
found in [34].

Table 1: Test Problems

Type No. Description Optimum

Unimodal function F1 Rotated High Conditioned Elliptic Function 100
F2 Rotated Bent Cigar Function 200

Simple multimodal function
F3 Shifted and Rotated Ackley’s Function 300
F4 Shifted and Rotated Rastrigin’s Function 400
F5 Shifted and Rotated Schwefel’s Function 500

Hybrid function
F6 Hybrid Function 1 (N=3) 600
F7 Hybrid Function 2 (N=4) 700
F8 Hybrid Function 3 (N=5) 800

Composition function

F9 Composition Function 1 (N=3) 900
F10 Composition Function 2 (N=3) 1,000
F11 Composition Function 3 (N=5) 1,100
F12 Composition Function 4 (N=5) 1,200
F13 Composition Function 5 (N=5) 1,300
F14 Composition Function 6 (N=7) 1,400
F15 Composition Function 7 (N=10) 1,500

Tests on convergence performance and quality of �nal solution
provided by AsDivAMP–dDE have been performed under the
following conditions:

• problem dimension D = 10, 30, 50, 100;
• search range [−100, 100]D ;
• maximum number of function evaluations: 10, 000 · D;
• 51 runs for each test problem;
• when the di�erence between the best solution found and

the optimal was lower than or equal to 10−8, the error was
treated as 0;

• the optimization is stopped upon completion of the
maximum number of function evaluations.

5.1 Experimental Findings
The Tables 2 to 5 summarize the results of AsDivAMP–dDE for
the di�erent problem dimensions in terms of the mean of the best
�nal �tness values found in the 51 runs, and of the related standard
deviation. The best �nal �tness value found in the 51 runs is also
reported. All the results are not shown here in absolute values,
rather in terms of the distance of the found values from the optimum
values contained in the fourth column of Table 1.

Moreover,aiming at comparing this new algorithm against the
previous one used to face the same problems, i.e., the AsAMP–
dDE algorithm, these tables report the values obtained by this
latter algorithm too and contained in [21]. Whenever one of the
two algorithms obtains better mean value than the other, the
corresponding value is marked in bold in the tables.

Several comments can be made to the numerical results shown
in the tables:

• As a general comment, the mean values obtained by
AsDivAMP–dDE are better than those achieved by AsAMP–
dDE in 43 out of 60 cases, whereas the opposite is true in 5
cases, the remaining 12 being characterized by equal �nal

values. Consequently, AsDivAMP–dDE actually improves
its ancestor AsAMP–dDE in terms of higher–quality
results.

• Unimodal functions: as far as F2 is concerned, for all the
problem sizes AsDivAMP-dDE is capable of �nding zero
error values (i.e., smaller than 1E-08) in all the runs, and
so is AsAMP-dDE. For F1, instead, for both algorithms
di�culties arise as long as the problem size increases,
and for D=10 only all the runs reach the optimal value.
For the larger sizes, nonetheless, most runs achieve good
results, and just few unlucky runs cause an increase in the
mean values. This is con�rmed by the median values, not
reported here, that are much lower than the corresponding
mean ones.

• Simple multimodal functions: AsDivAMP-dDE and AsAMP-
dDE meet increasing di�culty when passing from F3 to F4
and from this latter to F5. Optimal values are never reached
at any problem size. The standard deviations for F5 are very
high, meaning that some very bad runs are present. This
is con�rmed by the worst values, not reported here. On
F3 both algorithms reach about the same values for all the
problem sizes.

• Hybrid functions: for this set of test functions too
AsDIVAMP-dDE faces di�culties, and in no run the global
best is reached, even at the smallest dimension. F7 seems
to be much easier to solve than the other functions for our
algorithm. The same considerations hold true for AsAMP–
dDE.

• Composition functions: for this function set too AsDIVAMP-
dDE is never able to reach the global best at all problem
dimensions, as it is the case for AsAMP–dDE. F14 seems
to be the hardest function for both algorithms to tackle. It
is worth noting that for F15 the local minimum of 100 is
reached in almost all the runs at all the problem dimensions.
On F9 and F12 the behavior of both algorithms seems to
be quite independent of the problem size, all the statistics
being comparable at the di�erent dimensions.

5.2 Statistical Analysis
From the tables 2, 3, 4, and 5 it can be seen that most of the times
the mean values obtained by AsDivAMP-dDE are better than those
of the original AsAMP-dDE.

To investigate whether the former is superior from a statistical
point of view or there is a statistical equivalence between them, a
statistical analysis has been carried out.

Our zero hypothesis is that there is a statistical equivalence
between the two algorithms. To assess whether or not this
holds true, �rstly a test about normality of the distributions of
the variables has been e�ected. The result has been that the
distributions are not normal, which leads us to use a nonparametric
test. Given than we have just two algorithms here, no tests as
Friedman, Aligned Fredman, or Quade can be used. Rather, we have
availed ourselves of the Wilcoxon signed ranked test with α = 0.05.

The statistic for Wilcoxon p–value has turned out to be equal
to 1557.5 with 1 and 58 degrees of freedom. The resulting p–value
is 0.0000. This last value means that the hypothesis of statistical
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Table 2: Statistical Results of the 10-D Benchmark Functions, Averaged over 51 Independent Runs.

AsAMP-dDE AsDivAMP-dDE
Test Mean StdDev Best Mean StdDev Best
F1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F3 2.00E+01 5.60E-02 2.00E+01 2.00E+01 1.95E-03 2.00E+01
F4 7.65E+00 3.71E+00 2.99E+00 2.77E+00 1.37E+00 1.99E+00
F5 2.76E+02 1.78E+02 6.96E+00 2.24E+02 1.72E+02 3.66E+00
F6 5.54E+01 6.26E+01 1.20E+00 1.99E+01 5.03E+01 0.00E+00
F7 6.75E-01 4.53E-01 1.90E-02 8.68E-02 9.64E-02 0.00E+00
F8 2.17E+01 4.60E+01 1.00E-03 2.84E+00 6.65E+00 1.02E-02
F9 1.00E+02 8.10E-02 1.00E+02 1.00E+02 6.07E-02 1.00E+02
F10 2.20E+02 6.48E+00 2.17E+02 2.19E+02 7.33E+00 2.17E+02
F11 1.31E+01 4.10E+01 3.70E+00 8.76E+00 4.16E+01 1.18E+00
F12 1.02E+02 9.19E-01 1.01E+02 1.02E+02 5.49E-01 1.01E+02
F13 3.09E+01 3.41E+00 2.57E+01 2.91E+01 3.76E+00 2.22E+01
F14 2.13E+03 1.50E+03 1.00E+02 4.95E+02 1.00E+03 1.00E+02
F15 1.00E+02 0.00E+00 1.00E+02 1.00E+02 9.85E-15 1.00E+02

Table 3: Statistical Results of the 30-D Benchmark Functions, Averaged over 51 Independent Runs.

AsAMP-dDE AsDivAMP-dDE
Test Mean StdDev Best Mean StdDev Best
F1 7.52E+01 5.10E+02 1.00E-04 1.67E+01 1.15E+02 4.80E-08
F2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F3 2.04E+01 2.02E-01 2.00E+01 2.00E+01 7.97E-02 2.00E+01
F4 6.09E+01 2.02E+01 3.08E+01 3.05E+01 1.21E+01 2.09E+01
F5 3.29E+03 6.68E+02 1.91E+03 2.63E+03 6.87E+02 1.57E+03
F6 1.22E+03 3.86E+02 5.51E+02 9.26E+02 5.58E+02 3.97E+02
F7 5.05E+00 7.83E-01 3.70E+00 3.75E+00 4.69E-01 3.06E+00
F8 5.08E+02 2.75E+02 1.53E+01 3.30E+02 1.82E+02 1.50E+02
F9 1.04E+02 3.72E-01 1.03E+02 1.03E+02 2.12E-01 1.03E+02
F10 9.50E+02 3.42E+02 2.18E+02 6.54E+02 1.73E+02 4.22E+02
F11 3.95E+02 1.78E+02 3.01E+02 3.01E+02 1.93E-02 3.01E+02
F12 1.08E+02 1.00E+00 1.06E+02 1.06E+02 8.75E-01 1.04E+02
F13 1.19E+02 5.40E+00 1.03E+02 1.10E+02 7.22E+00 9.65E+01
F14 3.22E+04 1.05E+03 3.11E+04 3.18E+04 8.03E+02 3.11E+04
F15 1.00E+02 0.00E+00 1.00E+02 1.00E+02 0.00E+00 1.00E+02

Table 4: Statistical Results of the 50-D Benchmark Functions, Averaged over 51 Independent Runs

AsAMP-dDE AsDivAMP-dDE
Test Mean StdDev Best Mean StdDev Best
F1 3.96E+03 1.98E+04 3.81E-01 3.88E+03 1.95E+04 3.65E-06
F2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F3 2.06E+01 1.41E-01 2.03E+01 2.02E+01 2.59E-01 2.00E+01
F4 1.44E+02 3.02E+01 9.45E+01 1.03E+02 2.12E+01 7.76E+01
F5 7.45E+03 1.75E+03 3.66E+03 5.47E+03 9.85E+02 3.73E+03
F6 2.63E+03 1.19E+03 1.50E+03 2.52E+03 8.74E+02 1.52E+03
F7 1.49E+01 9.72E+00 9.09E+00 8.22E+00 1.22E+00 6.85E+00
F8 1.42E+03 1.12E+03 4.78E+02 1.22E+03 6.79E+02 6.86E+02
F9 1.07E+02 5.98E-01 1.06E+02 1.05E+02 4.93E-01 1.04E+02
F10 2.03E+03 3.37E+02 1.36E+03 1.49E+03 3.84E+02 9.87E+02
F11 3.00E+02 2.00E-04 3.00E+02 3.01E+02 1.65E-01 3.00E+02
F12 1.12E+02 1.23E+00 1.10E+02 1.09E+02 9.86E-01 1.08E+02
F13 2.12E+02 9.37E+00 1.90E+02 2.04E+02 7.13E+00 1.85E+02
F14 6.74E+04 4.17E+03 5.92E+04 5.34E+04 9.09E+03 4.95E+04
F15 1.00E+02 0.00E+00 1.00E+02 1.00E+02 2.01E-15 1.00E+02
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Table 5: Statistical Results of the 100-D Benchmark Functions, Averaged over 51 Independent Runs

AsAMP-dDE AsDivAMP-dDE
Test Mean StdDev Best Mean StdDev Best
F1 3.17E+04 1.50E+05 1.43E+01 9.67E+03 4.21E+04 8.32E-04
F2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F3 2.08E+01 2.24E-01 2.00E+01 2.04E+01 3.63E-01 2.00E+01
F4 4.07E+02 5.95E+01 2.79E+02 3.24E+02 3.89E+01 2.55E+02
F5 1.74E+04 3.16E+03 1.16E+04 1.35E+04 1.83E+03 1.09E+04
F6 8.72E+03 1.09E+04 4.27E+03 8.95E+03 1.91E+04 4.77E+03
F7 3.08E+01 4.21E+00 2.61E+01 2.56E+01 1.89E+00 2.28E+01
F8 3.38E+03 3.19E+03 1.46E+03 4.74E+03 6.77E+03 3.05E+03
F9 1.13E+02 1.15E+00 1.11E+02 1.11E+02 1.17E+00 1.09E+02
F10 4.50E+03 5.26E+02 3.69E+03 4.48E+03 4.78E+02 3.68E+03
F11 1.59E+03 4.60E+02 1.22E+03 1.79E+03 1.76E+02 1.67E+03
F12 1.21E+02 1.60E+00 1.17E+02 1.23E+02 1.36E+00 1.20E+02
F13 4.47E+02 1.03E+01 4.27E+02 4.21E+02 1.19E+01 4.01E+02
F14 1.09E+05 1.43E+01 1.09E+05 1.09E+05 9.69E+00 1.09E+05
F15 1.01E+02 3.66E+00 1.00E+02 1.00E+02 9.23E-01 1.00E+02

equivalence between the two algorithms can be statistically rejected,
hence AsDivAMP–dDE is statistically superior to AsAMP–dDE.

6 CONCLUSIONS AND FUTUREWORKS
It has been recognized in literature that during the evolutionary
process the employment of distributed variants of the DE algorithm
allow improving the performance. To this aim, in this paper we have
proposed an asynchronous adaptive multi–population model for
dDE, i.e. AsDivAMP–dDE, endowed with a novel mechanism for
exploiting the diversity for the selection of the subpopulations
involved in the migration. The adaptive process is tied to the
generation, is guided by a performance measure that relies on the
average �tness improvements of each subpopulation between two
successive generations.

It is to point out that the strength points of AsDivAMP–dDE rely
on its general–purpose nature and, by adopting an asynchronous
migration and an adaptive scheme, on the request of a low number
of control parameters to be set and tuned.

Such an adaptive algorithm has been evaluated on learning–
based single objective optimization functions derived from the
CEC 2016 competition with good performance with all the
investigated benchmarks when compared with the basic version
of the asynchronous model, i.e., AsAMP–dDE. It is worth noting
that the proposed algorithm is a simple asynchronous adaptive
distributed algorithm that does not use any speci�c mechanism
opportunely tailored for the examined tests.

Future works will aim to explore other adaptive mechanisms
and di�erent transformation schemes of DE. Furthermore, a more
complete comparison with other state–of–the art algorithms to
further ascertain the e�ectiveness of the proposed adaptive model
will be performed. Finally, e�orts will be devoted to evaluate the
capability of this algorithm in solving a dedicated group of problems,
rather than a broad variety of benchmarks representing di�erent
kinds of di�culties.
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