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ABSTRACT

In this paper, Gaussian processes are studied in connection with
the state-of-the-art method for continuous black-box optimization
CMA-ES. To combine them with the CMA-ES is challenging be-
cause CMA-ES invariance with respect to order preserving trans-
formations suggests ordinal regression, whereas Gaussian process
continuity suggests metric regression. Results of testing ordinal
and metric Gaussian process regression, the former in 14 different
settings, combined with the CMA-ES on noiseless benchmarks of
the COCO platform are reported.
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1 INTRODUCTION

An area of evolutionary optimization that is important from the
point of view of real-world applications is continuous black-box opti-
mization, i. e., optimization of functions for which no mathematical
expression is known. The values of such black-box functions can
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be obtained only empirically, e. g., through measurements, experi-
ments, or simulations. Such an empirical evaluation is sometimes
very time-consuming or expensive: for example, in the applica-
tions of evolutionary algorithms to the optimization of chemical
materials reported in [8], the evaluation of one generation takes
several days to weeks and costs several to many thousands of eu-
ros. Needless to say, such situations are undesirable in the context
of evolutionary optimization, where many fitness evaluations are
typically needed. Therefore, surrogate regression models replacing
the original expensive fitness in a part (typically, a large majority)
of the evaluated points have been in use since the early 2000s (cf.
the survey paper [9]). If we restrict attention to single-objective
continuous black-box optimization, then mainly these four kinds
of regression models have been employed to this end: low degree
polynomials [11], which are models in the spirit of traditional re-
sponse surface models [13], artificial neural networks, in particular
multilayer perceptrons and radial basis function networks [1, 10],
support vector regression [12], and Gaussian processes (GPs), a.k.a.
kriging [14]. Whereas models of the first three kinds provide only
estimates of the expected value of the original fitness, GP have the
advantage of estimating the whole probability distribution of its
values.

In this paper, we use Gaussian processes as surrogate models for
the CMA-ES [5]. To combine GP with the CMA-ES is challenging
due to the fact that the CMA-ES is invariant with respect to order
preserving transformations suggesting ordinal regression, whereas
the continuity of GP suggests metric regression. Therefore, the
main objective of this paper is a comparison of ordinal and metric
GP regression models as surrogate models for the CMA-ES. Because
this is (up to our knowledge) the first time the ordinal GP regression
is used for surrogate modelling, we investigate also the suitability
of several different settings of the employed ordinal regression
method to this end.

In the next section, the theoretical principles of the employed
GP regression methods are recalled. Section 3 sketches some details
of our implementation of ordinal GP regression, and in Section 4,
which is the core part of the paper, the results of testing both kinds
of GP regression in connection with the CMA-ES on the noiseless
part of the COCO platform are reported. Finally, the paper closes
with conclusions drawn from the obtained results.
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2 SURROGATE MODELS BASED ON METRIC
AND ORDINAL GP-REGRESSION

A Gaussian process is a collection of random variables assigned to
points of some Euclidean space (in our case a collection (f(x) ) ycr D,
where RP is the space containing the domain of the original fit-
ness) such that each finite subcollection (f(x1),...,f(xn)) has
an n-dimensional Gaussian distribution. Those distributions are
parametrized by the mean and covariance, where the means are de-
fined by the mean functionm : RP >R (often chosen as a constant),
and the covariance matrix is a superposition of (K(x;,%;))7 =1 and
of 621, where K: RP xRP > Risa given function called covari-
ance function and o7 is the variance of an additive independent
identically distributed noise.

We have considered only the two most commonly encountered
covariance functions (cf. [15]): the squared exponential Ksg and
the Mateérn covariance function Kyt with v = % Both covariance
functions are parametrized by the vector of hyperparameters 6
(see [15] for details). The maximal likelihood estimates of 6 are
taken as the values of the hyperparameters.

Since the normal distribution is continuous, GP can be directly
used for metric regression. Indeed, the conditional distribution of
the random variable f* = f(x*) assigned to anew x* ¢ {x1,...,Xp}
on condition (f(x1),...,f(xn)) =y is N(f*,Var(f*)), where:

Fr=m(x") + Kypy (Ki )P +on) 7y, 1

Var(f*) = K("x") = K{yon) (K1 )i o1+ 0a) "KLy (2)
using the notation KZl:n) = (K(x%x1),....K(x%xn)).

The situation with ordinal regression is much more difficult. If
the response variable should be ordinal, but still governed by a GP,
then it has to be derived through some discretizing transformation
from a latent GP behind it. Up to our knowledge, there exist three
approaches addressing that task: expectation propagation, maxi-
mum aposteriori probability, and partial least squares combined
with leave-one-out cross-validation [2, 16, 17]. In [17], they have
been compared on 9 data sets from the UCI Machine learning repos-
itory [18] and their average predictive performance was similar.
Therefore, we decided to implement the probabilistic least squares
ordinal regression (PLSOR) [17] because differently to the other
two approaches, it does not resort to approximation, and also due
to its comparatively easy Matlab implementability and integrability
with existing Matlab GP implementations.

Algorithm 1 Doubly trained evolution control [14]

Input: o, m, C, (CMA-ES internal variables), f (original fitness
function), {xk}ﬁ=1 (sampled population), C (uncertainty crite-
rion), ngrig (number of original-evaluated points), A (archive)

1. faq < trainModel(A,o,m,C) {model training}

2 (ﬁk’slzc) < fm (%) k=1,...,A {model evaluation}

3: Xorig + choose ngyjg best points according to C(gk,s,i)

4 Yorig < f (Xorig) {fitness evaluation}

5: A=Au {(Xorig,yOrig)} {archive update}

6: faq < trainModel(A,0,m,C) {model re-training}

7 Y < faa (X )5 X # Xorig {model evaluation of the rest}

Output: A (updated archive), (yx )£=1 (evaluated population)
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The approach consists in defining ordered non-overlapping in-
tervals I} = (—oo0,b1],Io = (b1,b2],...,Ir = (by—1,00) separated
by the thresholds —co < b; < --- < b,_1 < oo in such a way that
the values of the latent GP can be linearly mapped to them, and
that to each interval, at least one of the values yy,. . .,yn from the
training data is mapped. Describing that linear mapping of a ran-
dom variable f(x) as ap — «f(x) and introducing the auxiliary
threshold values by 00,by = oo, the probability that a random
variable f(x) with probability distribution N'(y, o) is mapped to a
particular interval I,k = 1,...,r, is

o)

P(f(x) €ly) = ‘P(
1+ a20?

:<I>( ap + P )_q)(al""'ﬂk—l) 3)

V1+ale? Vi+aZo?)’

where @ is the distribution function of the standard normal dis-
tribution A/(0,1) and Sy = by — ap,k = 0,...,r. Notice that this
probability depends only on the relative positions ff; = by — ap of
the thresholds with respect to the intercept aq of the linear map-
ping, not on the absolute positions of the thresholds, nor on the
value of the intercept. Taking into account (3), the PLSOR approach
estimates the likelihood of a particular y; = f(x;),i = 1,...,n as
the probability that the prediction of f(x;) based on the remain-
ing training data without (x;,y;) is mapped to the same interval
Iy, = (By,-1 + a0, Py; + o) to which y; is mapped. Denoting the

by — (a0 —ap) b1 — (a0 — ap)

1+ ao?

mean of that prediction p_; and its variance O'E,-, computed like the
mean and variance in (1) and (2) but with hyperparameters of the
GP estimated only from the remaining training data, this leads to
the final estimated likelihood of the observed assignment of the
training data to the intervals I1,. .., I :

ﬁ(yi € Iyi,i =1,.. .,n|{X1}7=1,0(,ﬂ1,. . .,,8,4,0) =

= ap-i + Py; ap-i+ fyi-1

\/1+a%c?, \/1+a%c?,

From (4), both the hyperparameters 6 and the relative positions
Bi,...,Pr-1 of thresholds are simultaneously estimated.

) (4)

=1

3 IMPLEMENTATION OF ORDINAL GP

In this section, we present implementation details of ordinal GP
model for the DTS-CMA-ES [14], which employs the doubly trained
evolution control, depicted in Algorithm 1, to evaluate points sam-
pled by the CMA-ES.

The ordinal GP model-building phase, depicted in Algorithm 2,
starts with clustering the input data (x;,y;)7; transformed by
the DTS-CMA-ES (see [14]) to intervals I1,...,Ir. After that, the
hyperparameters are selected to maximize the likelihood (4).

The ordinal GP model prediction procedure is depicted in Al-
gorithm 3. The prediction of the ordinal class g; of a point x; is
calculated as the expectation of the ordinal class values of x; with
respect to the probability distribution defined for x = x; according
to (3). The output of the GP model is the ordered set of CMA-ES
generated population {x;. )L}?=1’ where the index i:1 denotes the
index of the i-th point ranked, according to the expected order w.r.t.
the probability distribution (3).
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Algorithm 2 Ordinal GP model training

Input: (x;,y;)}-; (training points),
r (the number of bins for clustering),
6° (initial values of latent GP hyperparameters 0),
a®{ ﬂ}) }]';11 (initial values of PLSOR hyperparameters a, { };-;11)

ordy\n

b (), < cluster({) L)
2 (e fy}=1,0) "—argmax log L({y§™ o {xi ior e { B} /21.0)
a.{B;}j2l.0 (see Eq. (4))
Output: (a,{p; }Jr:_ll ,0)" (trained model hyperparameters)

Algorithm 3 Ordinal GP model prediction

Input: {xi}le (population of points),
0 (trained latent GP hyperparameters),
a, {B} Jr:—11 (trained PLSOR hyperparameters)
vk < P(f(xi) e fxia{Bj}i21.0). Yh=1,....r, ¥i=1,...,A
(see Eq. (3))
2 qi < Yh_ pFk Vi=1,...,
3: {Xi:/'{}z)'L:I « order {xi};l:l according to g1:3 <qz:1 <...<q):2
Output: {x;. )L}iA=1 (ordered population)

4 EXPERIMENTS ON THE COCO PLATFORM

First, our PLSOR implementation is validated on UCI datasets [2] to
verify agreement with the original implementation of PLSOR [17],
which was not available. Second, both models are compared with-
out combining with the CMA-ES on datasets collected from the
DTS-CMA-ES [14] runs on the noiseless part of the COCO frame-
work [6, 7] to compare their predictive accuracy. Finally, we com-
pare the performances of three different ordinal model settings to
DTS-CMA-ES, and the original CMA-ES [5] on the COCO bench-
mark functions’.

4.1 Validation of our PLSOR implementation

The PLSOR method was benchmarked on a collection of 9 datasets
from the UCI machine learning repository similarly to previous
approaches to ordinal regression with Gaussian processes [2, 17].

A 20-fold cross-validation was used and the response variables
were discretized into either 5 or 10 ordinal categories by equal
frequency binning. The PLSOR performance was measured with
the zero-one error (ZOE), i. e., the ratio of incorrect test predictions
to the number of the test data, % Si_ I(y; # i), where I(+) is the
indicator function.

Table 1 compares ZOE means and standard deviations on the
5-categories versions of the benchmark datasets with the results
reported in [17].

We observe that our implementation is clearly worse only on
two datasets, Diabetes and Wisconsin. On the remaining datasets,
it slightly exceeds or comes very close to the referential results.
According to the Wilcoxon signed-ranks test, the differences be-
tween both implementations for 5- and 10-categories versions are
not significant (p = 0.16,0.34 respectively).

!the source codes to experiments are freely available at https://github.com/repjak/
surrogate-cmaes/tree/ordgp
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Data ZOE (original [17]) ZOE (our implementation)
Diabetes 0.48 +0.11 0.57 £0.11
Pyrimidine 0.39 £ 0.09 0.36 £ 0.07
Triazines 0.54 £0.03 0.54+£0.03
Wisconsin 0.66 £ 0.03 0.68 £ 0.05
Machine 0.18 £ 0.03 0.19 £ 0.04
AutoMPG 0.26 + 0.02 0.26 £ 0.02
Boston 0.25 +0.03 0.25+0.03
Stocks 0.11 £ 0.02 0.11 £ 0.02
Abalone 0.22 £0.03 0.22 £ 0.04

Table 1: Validation of the PLSOR implementation on the
5 categories versions of the benchmark datasets. Mean
and standard deviations of the zero-one error over 20 cross-
validation sets reproduced from [17] (middle column) and
values for our implementation (right column). The lower
mean values are highlighted in bold.

4.2 Predictive accuracy of metric and ordinal
GP regression

As our primary interest is in using Gaussian processes as surrogate
models for the CMA-ES, we tested the proposed models on datasets
corresponding to the 24 noiseless COCO benchmarks while com-
paring the models’ capabilities to predict the ordering of a new
population.

The training datasets were collected for each function (f €
{1,2,...,24}) and dimension (D € {2,5,10}) from 10 snapshots
of the DTS-CMA-ES archive A (i.e., the set of so-far originally-
evaluated points). These snapshots were taken equidistantly
throughout CMA-ES generations and each testing dataset was sam-
pled using a simple combination of the CMA-ES state variables
(m,o,C), which assures equal distribution of its training and test
part.

We have compared DTS-CMA-ES’ metric GP models with 14
settings of the PLSOR. These settings differ with respect to:

(@)

covariance function — Kgg (used in [17]) and Kpfat;

(ii) type of obtaining ordinal from continuous f-value — quan-
tile clustering, agglomerative hierarchical clustering, or
direct ordering of f-values (no clustering);

(iii) the number of clusters in (ii) - y, A or 24.

Due to space limitations, only results for D = 5 are presented, in
Table 3. As can be seen, the PLSOR models in general produce a
higher ZOE than the metric GP. An exception is the datasets for the
function f (attractive sector) where standard continuous regression
models fail to regress a sharp edge where the true optimum of the
function is located and ordinal models seem to benefit from their
invariance w.r.t. the smoothness of the corresponding function.

4.3 Metric and ordinal GP surrogate models for
the CMA-ES

Based on the off-line model testing, three well-performing ordinal
GP models were chosen for the COCO noiseless benchmarking in
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connection with the DTS-CMA-ES algorithm: Ord-N-DTS, Ord-Q-
DTS, and Ord-H-DTS, where N denotes no clustering, Q quantile-
based clustering, and H hierarchical agglomerative clustering. The
number of ordinal classes for clustering was set the same as the
population size A. The ordinal DTS-CMA-ES versions were tested
using the function values as a criterion for choosing the points for
original fitness function re-evaluation. The remaining parameters
were left the same as in the original DTS-CMA-ES settings.

The original DTS-CMA-ES was employed using the overall best
settings from [14]: the GP prediction variance as the uncertainty
criterion, the population size A = 8 + |6log D], and the number of
originally-evaluated points ngjg = [0.051].

The original CMA-ES was tested in its IPOP-CMA-ES version
(Matlab code v. 3.61) with the following settings: the number of
restarts = 4, IncPopSize = 2, ostart = %, A =4+ |3logD]|, starting
point xg ~ U[~4,4]". The remaining settings were left default.

The results in Figures 1 and 2 and in Table 4 show the effect
of using the PLSOR models instead of the metric GP in the DTS-
CMA-ES optimizer on all the 24 noiseless COCO benchmarks [6, 7].
The expected running time (ERT), used in the figures and ta-
bles, depends on a given target function value, fi = fopt + Af, and
is computed over all relevant trials as the number of the original
function evaluations (FEs) executed during each trial until the best
function value reached f;, summed over all trials and divided by the
number of trials that actually reached f; [6]. The experiments were
conducted with the maximum budget of 100D FEs in dimensions
D = 2,3,5,10. Experiments in higher dimensions were not per-
formed due to immense computational requirements (see Section
4.4). More detailed results can be found on an authors’ Webpagez.

The effect of different clustering methods seems not to be im-
portant (see Fig. 2). The ordinal DTS-CMA-ES outperforms the
metric version only on several (mostly multi-modal) functions in
lower dimensions (on fg, fis—19, and fa1—22). Whereas the original
DTS-CMA-ES is dominant on the remaining tested functions and
in higher dimensions.

The considerably lower speedup of PLSOR-based DTS-CMA-ES
compared to the original DTS-CMA-ES is in agreement with the
results from the previous subsection.

We have tested the statistical significance of performance differ-
ences in 5D using the Iman and Davenport’s improvement of the
Friedman test [3]. The test is conducted separately for two function
evaluation budgets.

Let us denote by AT

the empirical median of distance to opti-
mum Ay over all function instances depending on the number of
function evaluations. Further, let 4FET be the smallest number of
function evaluations at which at least one algorithm reached the
precision A}ned < 1078, or #FET = 100D if no algorithm reached
the precision within 100D evaluations. The algorithms are ranked
on each COCO function with respect to Ajr}‘ed at a given budget of
function evaluations. The null hypothesis of equal performance of
all algorithms is rejected at a higher function evaluation budget
#FEs = #FET (p < 10_3), as well as at a lower budget #FEs = #Er

3
(p<1073).

zhttp://uivtyAcsLas.cz/Ncma/geccoZO17bbob/
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We test pairwise differences in algorithms’ performance using
the post-hoc Friedman test [4] with two different procedures for
controlling the family-wise error. The Bonferroni procedure simply
divides the significance level by the number of tested hypotheses,
whereas the more powerfull Bergmann-Hommel procedure cor-
rects the significance level per each logically consistent family of
hypotheses. The results of both multiple comparisons are reported
in Table 2. There is no significant effect of clustering on ordinal
regression DTS performance in 5D at significance level a = 0.05.
On the other hand, the metric regression DTS significantly outper-
forms the ordinal regression DTS at both tested budgets of function
evaluations.

44 CPU Timing

In order to evaluate the CPU timing of the algorithms, we have run
the Ord-Q-DTS on the COCO test suite with restarts for a maximum
budget equal to 100D FEs. The MATLAB code was run in a single
thread on the MetaCentrum grid with CPUs from the Intel Xeon
family. The time per function evaluation on fg for dimensions 2, 3,
5,10 equals 4.15, 6.48, 12.48 and 13.95 seconds respectively.

5 CONCLUSIONS

In this paper, we have compared the ordinal GP regression model
using PLSOR implementation with the metric GP regression model
used in DTS-CMA-ES. The comparison of our implementation of
the PLSOR method reproduced the published results on the UCI
datasets. On the other hand, the usage of the PLSOR models as sur-
rogates for the CMA-ES was not shown as straightforward on the
COCO benchmark: the performance of the PLSOR models is con-
siderably lower than the standard GP models with few exceptions,
especially on the attractive sector function fg.

A possible perspective is to improve ordinal GP models by im-
plementing clustering methods using informations from the GP
kernels. Another perspective is to further develop DTS-CMA-ES
to adaptively switch from metric to ordinal GP regression model
when the metric prediction is not successful (e. g., on fz).
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Figure 2: Bootstrapped empirical cumulative distribution of the number of objective function evaluations divided by dimen-

sion (FEvals/DIM) for all functions and subgroups in 5-D. The targets are chosen from 1007821 such that the best algorithm
from BBOB 2009 just not reached them within a given budget of k x DIM, with 31 different values of k chosen equidistant in

logscale within the interval {0.5,. ..
selected target.
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,50}. The “best 2009” line corresponds to the best aRT observed during BBOB 2009 for each
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5D Ord-N-DTS Ord-H-DTS Ord-Q-DTS DTS-CMA-ES CMA-ES

LS, % 1 % 1 % 1 % 1 % 1
Ord-N-DTS — — 11 9 10 6 6 1 23%* 7
Ord-H-DTS 12 15 - - 9 9 4 3 22 10
Ord-Q-DTS 13 18 14 15 — — 3 3 22% 10
DTS-CMA-ES 18** 23%* 20" 217 21°% 217 — — 22 17%%
CMA-ES 1 17%* 2 14 2 14 2 7 - —

Table 2: A pairwise comparison of the algorithms in 5D on the BBOB noiseless functions for different evaluation budgets. The
number of wins of i-th algorithm against j-th algorithm over all benchmark functions is given in i-th row and j-th column. The
asterisk marks the row algorithm being significantly better than the column algorithm according to the Friedman post-hoc test
with the Bonferroni correction at the family-wise significance level a = 0.05. The double asterisk marks additional significant
results at the same significance level according to the Friedman test with more powerful Bergmann-Hommel correction of
family-wise error. The Bergmann-Hommel procedure rejects more hypotheses, as it exploits logical relations between them.

5D

DTS-GP| Kyat | Knat:Hop | Kvat, HoA [Kyar, Hy 24| Kviats Qo ¢ | Kt Q04

Kmat, Q.24

Ksg Ksg,H,pt | Ksg,H,A |Ksg,H,24 | Kog, Q. | Ksg, Q.4 | Ksg, Q.24

h

0.84 £ 0.20
0.73+£0.18
0.88 +0.11
0.75 +0.38
0.00 +0.00
0.89 £ 0.09

0.91+0.12
0.89 £0.10
0.85+0.11
0.92 +0.05
0.71+£0.19
0.55 +0.32

0.86 +0.27
0.90 +0.09
0.87 +0.15
0.93 +0.08
0.72+0.24
0.83 £0.17

0.93 £0.08
0.90 +0.09
0.92+0.12
0.92 £ 0.09
0.71£0.22
0.76 £0.21

0.89+£0.12
0.90 +0.09
0.89+0.12
0.93 +£0.07
0.72+£0.19
0.60 £ 0.36

0.85+0.25
0.81+0.16
0.91+0.08
0.90 +0.08
0.60 £ 0.21
0.70 £ 0.30

0.82 £ 0.20
0.87 +£0.14
0.84 +0.10
0.90 £ 0.07
0.67 £0.28
0.66 + 0.33

0.89+£0.12
0.93+0.08
0.90 +0.08
0.92 +0.06
0.63 £0.25
0.68 +0.31

0.79 £0.21
0.91 +0.07
0.86 +0.16
0.89 £0.11
0.66 £ 0.19
0.65 £ 0.32

0.84 +£0.21
0.91+0.11
0.88 +0.13
0.90 +0.08
0.71+£0.27
0.75+0.29

0.79 £0.22
0.83+0.12
0.89 +0.07
0.91+0.08
0.69 £ 0.24
0.76 £ 0.22

0.87 £0.21
0.91 +0.09
0.92 +0.08
0.86 +0.10
0.65 +0.21
0.61 +0.29

0.88 £0.11
0.86 +0.12
0.88 + 0.07
0.85+0.11
0.73 £0.22
0.84 £ 0.17

0.76 £ 0.18
0.93 +0.08
0.90 +0.05
0.90 +0.07
0.63 £0.17
0.72 +£0.31

0.82+0.21
0.88 +0.11
0.92 +0.06
0.92 +0.07
0.70 £0.23
0.78 £0.33

fo

fro
m
fiz

0.88 £0.12
0.74+0.23
0.70 £ 0.28
0.81+0.19
0.81+0.12
0.67 +0.32

0.84 +£0.08
0.82+0.13
0.78 +£0.20
0.81+0.18
0.88 +£0.15
0.86 +£0.14

0.87 £0.08
0.89+0.13
0.88 +0.12
0.88 +£0.11
0.93 £0.08
0.86 +0.12

0.81£0.15
0.83 £0.12
0.85+0.18
0.78 +£0.19
0.91 £ 0.07
0.90 £0.12

0.88 £0.08
0.87 £0.13
0.81+0.24
0.81+0.19
0.95+0.07
0.87 £0.13

0.85+0.10
0.88 +0.09
0.79 £ 0.19
0.83 £0.12
0.91+0.08
0.92 £ 0.10

0.82 £ 0.09
0.86 +£0.14
0.84 £0.19
0.82 £ 0.19
0.90 £ 0.07
0.91+0.10

0.81+0.06
0.85+0.13
0.82+0.19
0.83+0.18
0.88 +£0.13
0.86 +0.12

0.85+0.08
0.83 £0.12
0.81+0.17
0.86 £ 0.11
0.91+0.08
0.87 £0.14

0.85+0.11
0.81+£0.14
0.86 +0.13
0.85+0.13
0.91+0.08
0.85+0.14

0.86 +0.09
0.86 +0.10
0.78 £0.12
0.84 +0.14
0.93 £ 0.07
0.91+0.11

0.85 £ 0.09
0.88 +£0.18
0.83 £0.17
0.82+0.14
0.93 £0.08
0.87 £0.13

0.92 £ 0.07
0.90 +0.09
0.85+0.15
0.93 £ 0.07
0.93 £0.08
0.88 £0.11

0.93 £0.06
0.84 +£0.14
0.81+0.17
0.87 £0.20
0.90 +0.09
0.81+0.14

0.89 +£0.10
0.76 £ 0.18
0.74+0.18
0.82+0.18
0.92 £ 0.07
0.85+0.10

fi3
fua
fis
fie
fir
fis

0.69 +0.28
0.83 £0.13
0.78 £ 0.25
0.92 £ 0.15
0.87 £0.15
0.82+0.18

0.87 £0.13
0.83 +0.17
0.91+0.07
0.89 +0.11
0.85+0.13
0.90 £ 0.07

0.85+0.12
0.90 +0.13
0.94 +0.06
0.91 +0.07
0.88 £0.11
0.90 + 0.09

0.89 £ 0.10
0.84 £ 0.15
0.90 £ 0.10
0.84+£0.16
0.89 £0.12
0.87 £0.10

0.83+£0.12
0.85+0.17
0.92+0.11
0.93 +£0.08
0.85+0.13
0.89 +0.10

0.82 £ 0.15
0.84 +0.12
0.90 +0.10
0.87 £0.11
0.89 +£0.08
0.85 +0.09

0.80 £0.17
0.92+£0.12
0.82 +0.21
0.90 £ 0.16
0.87 £0.14
0.88 +£0.08

0.85+0.13
0.92+0.13
0.89+0.11
0.89 +£0.16
0.85+0.13
0.89+0.10

0.84 £0.15
0.88 £0.16
0.93 £ 0.07
0.91 £ 0.06
0.91 £ 0.09
0.88 £0.11

0.89 £0.10
0.88 +£0.09
0.78 +0.31
0.93 £0.10
0.91+0.11
0.92+£0.10

0.91+£0.09
0.83 +0.16
0.90 +0.09
0.96 +0.04
0.89 +£0.08
0.95 +0.06

0.79 £0.11
0.86 +0.12
0.92 +0.08
0.95 £ 0.06
0.94 £ 0.06
0.94 +0.10

0.84 £ 0.17
0.86 +0.14
0.91+0.08
0.88 £0.18
0.93 £0.08
0.93 £ 0.05

0.80 +£0.11
0.82+0.12
0.89 +0.09
0.86 +0.15
0.85+0.12
0.89 £0.09

0.82+£0.10
0.90 +0.12
0.95 +0.05
0.89+0.13
0.93 £ 0.07
0.88 +£0.13

fro
f20
fa1
fa2
f3
fau

0.72 £ 0.34
0.63 +0.33
0.70 +0.38
0.70 + 0.36
0.75+0.33
0.77 £ 0.22

0.62 £ 0.26
0.86 +£0.13
0.90 +0.12
0.76 £ 0.23
0.72 £ 0.39
0.88 £ 0.06

0.76 £ 0.21
0.82 +0.15
0.93 +0.07
0.87 £0.08
0.78 £0.29
0.90 +0.11

0.63 £0.18
0.85+0.17
0.83 £0.17
0.88 £0.08
0.83£0.23
0.88 +£0.10

0.71+£0.23
0.87 +£0.13
0.88 +£0.11
0.82+£0.22
0.68 +0.38
0.87 £0.09

0.88 +£0.09
0.90 +0.10
0.87 £ 0.15
0.80 £ 0.25
0.78 £ 0.30
0.90 + 0.09

0.69 £ 0.24
0.85+0.17
0.87 £0.13
0.80 £0.18
0.68 £ 0.39
0.84 £0.11

0.68 £0.25
0.87 +£0.18
0.91+0.11
0.75+0.25
0.73£0.31
0.91 +0.05

0.71£0.27
0.88 £0.16
0.89 £ 0.10
0.89 £ 0.08
0.79 £0.32
0.92 +£0.09

0.78 £0.25
0.86 +0.14
0.88 +0.09
0.86 +£0.13
0.83 £0.17
0.91+0.14

0.74+£0.18
0.83 +0.16
0.87 +£0.11
0.85+0.17
0.86 £ 0.16
0.88 +0.13

0.78 £0.22
0.81+0.15
0.87 +0.09
0.91+0.13
0.84 +£0.17
0.95 +0.06

0.87 £0.08
0.90 +0.05
0.94+0.14
0.84 +£0.22
0.84+0.23
0.93 +0.05

0.74 £0.26
0.82+£0.16
0.86 + 0.08
0.83 £0.15
0.84+0.18
0.91+£0.09

0.65+0.33
0.86 +0.16
0.84+0.13
0.86 +0.13
0.83 £0.20
0.92 £ 0.07

0.74 +0.29/0.82 + 0.19|0.87 + 0.150.85 + 0.15|0.84 + 0.19(0.84 + 0.17(0.83 + 0.19

0.84 +0.18

0.84 +0.17|0.86 £ 0.16{0.85 + 0.15|0.85 £ 0.16/0.88 + 0.13/0.84 + 0.16{0.84 + 0.17

Table 3: Means and standard deviations of ZOE of offline testing on 10 selected generations for 24 noiseless functions and
5D, DTS — GP: a metric GP regression model, Ksg and Kjg,;: squared-exponential and Matérn covariance function, Q: quantile-
based clustering, H: hierarchical agglomerative clustering, y, A, 2: the number of ordinal classes for clustering. The last row
shows mean and standard deviation through all functions. The best achieved values in each function are given in bold.
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0rd-Q [4.2(2) 2.5(1) 2.1(0.9) 3.4(7) 2.4(3) 7/15 Ord-Q |oo oo oo oo o502 | 0/15
DTS-C [2.3(2) 1.9(0.7) 1.4(0.8) 1.6(0.9) 1.0(0.9) 13/15 DTS-C|oo oo oo oo 0500 | 0/15
CMA-E}4.3(5) 4.7(6) 6.8(3) 6.9(2) 2.4(1) 9/15 CMA-E|co oo oo oo 0500 | 0/15
#FEs/D 05 12 3 10 50 [succ #FEs/D 05 1.2 3 10 50 |gsuce
f8 1.0e+45.0 6.3¢+3:7.0 1.0e+3:18 6.3¢+1:54 1.6¢+0:258 15/15 ~ f20 6.3¢+3:5.0 4.0¢+3:8.0 25¢+1:16 2.5¢+0:69 1.0e+0:851]15/15
Ord-N [3.7(3) 3.0(2) 2.0(1) 3.7(3) oo 501 0/15 Ord-N [2.4(3) 2.0(2) 2.6(0.8) 3.9(4) oo 501 | 0/15
Ord-H [2.4(3) 2.2(2) 1.5(0.5) 2.5(2) 28(25) 1/15 Ord-H [2.7(3) 2.4(2) 2.6(2) 31(2) oo 501 | 0/15
0Ord-Q [2.6(3) 2.2(1) 1.9(1) 1.9(0.5) 28(30) 1/15 Ord-Q ) 2.3(2) 2.7(0.9) 2.8(2) o0 501 | 0/15
DTS-C [2.8(2) 24(2) 1.9(0.4) 1.6(1) 1.1(08)*2 1315 DTS-C|[2.5(2) 1.8(1.0) 1.7(0.6) 2.9(3) 0500 | 0/15
CMA-E/40(3) 14(8) 66(7) 93(7) 00 500 0/15 CMA-E{4.3(4) 3.5(7) 8.6(5) 8.0(9) oo 500 | 0/15
#FEs/D 05 1.2 3 10 50 [succ #FES/D 05 12 3 10 50 [suce
) 7501120 TGer 126 1067135 2001062 160-2256 s f21 £.0e+1:4.0 250+ 111 1.6e+1:31 6.3¢+0:73 1.6e+0:347 l5/5
Ord-N [13(6) 14(17) 176) 56(44) 00 501 0/15 Ord-N [16(2) 2.0(3) 2.2(3) 4.8(4) 10(30) /15
Ord-H | 7.009) 7.0(5) 6.0(4) 13(8) o0 501 0/15 Ord-H [3.1(3) 24(2) 3.1(5) 5.3(6) 47(8) k15
0rd-Q | 73(8) 63(6) 51(2) 16(12) 00 501 0/15 Ord-Q [2.4(3) 2.7(2) 2.5(4) 7.6(9) 4.6(2) k15
DTS-C | 4.1(0.9) 3.3(0.6) 2.6(0.7) 23(1)*2 1.9(3)*2 12/15 ggﬁ&fgg; ::((21)) ;'?(3)'9) if(;) 1‘3(91;20 2;12
CMA-E47(25) 37(53) 34(40) 120(123) 0 500 0/15 N : A I
SFES/D! 05 2 5 0 s ouce FEES/D 05 1.2 3 10 50 Jsuce
o T5er630 o570 TEes T e Teria97 T 22 6.3¢+1:4.0 4.0e+1:15 2.5¢+1:32 1.0+ 1:71 1.6e+0:341 l5/5
Ieron. o T Ier IR oerd > Ord-N [1.4(1) 1.3(2) 1.4(2) 2.4(2) 10(20) /15
Ord-N [2.6(4) 2.9(3) 20(2) 3.0(6) 6.1(5) 0558 ba) 150) 270) 359) 2403) Ee
Ord-H |4.1(4) 3.4(2) 1.7(1) 42(2) 12(23) 215546 [3166) 24(2) 27) 3.200) 5(8) 1
Ord-Q [2.7(4) 23(2) 1.9(1.0) =l e 15 b5 [2.8(4) 3.6(0.9) 33(12) 53(9) 42(3) /15
DTS-C [2.7(3) 2.1(2) 1.2(0.7) 1.2(0.5) 0.58(0.1) 15/15 CMA-E[2.0(5) 2.1(1) 15(1) 12(2) 7.1(4) k/15
CMA-E[3.7(3) 2.6(5) 2.1(2) 6.1(7) 0 500 0/15
#FEs/D 0.5 1.2 3 10 50 Jsuce
#FEs/D) 05 12 3 10 50 [fsucc a3 1.0e+13.0 6.3¢+0:9.0 4064033 2.5¢+0:84 1.0e+0:5518 15/15
11 1.0e+6:3.0 1.0¢+48.0 6.3¢+2:16 6.3¢+1:74 6.3¢-1:298 15715 Ord-N [2.6(2) 3.2(3) 2.6(4) 8.9(6) o0 502 015
Ord-N [2.9(4) 2.2(2) 4.3(3) 5.4(9) ©0 502 0/15 Ord-H [2.0(2) 23(2) 3.0(2) 7.2(9) o0 502 0/15
Ord-H [2.0(2) 1.9(2) 3.7(4) 3.3(4) ©0 501 0/15 Ord-Q [2.6(3) 3.7(3) 2.8(3) 6.6(10) o0 501 0/15
0rd-Q [2.4(3) 3.0(2) 4.2(3) 3.1(5) 00 502 » 015 s el 2.0(2) 3.02) 1.5(3) 0.94(0.3)* 9/15
DTS-C |2.7(2) 2.7(2) 2.7(0.6) 0.93(0.4) 0.70(0.1) 15/15 CMA-E[2.2(1) 3.3(1) 2.4(2) 5.6(7) 14(18) 1/15
CMA-E[3.7(6) 3.5(2) 11(6) 6.2(14) 00 500 015 ppon 05 s 5 1 s lesuce
#FEs/D) 0.5 12 3 10 50 [fsucc “f2q 6.3¢+1:15 4.0e+137 4.0e+1337 2.5e+1:118 1.6+ 1:692 15/15
fiz 4.00+7:4.0 1.6+7:8.0 4.0¢+6:19 T.6e+4:52 1.0¢+0:268 15/15 Ord-N [2.1(1) 2.2(1) 2.2(2) 25(3) 11(24) 115
Ord-N |2.8(3) 2.5(2) 1.7(0.6) 3.5(3) o0 501 0/15 Ord-H [1.8(1) 2.0(1) 2.0(1) 4.9(4) 2.5(0.8) 4/15
Ord-H [2.4(1) 2.3(2) 2.0(1) 3.0(2) 14(9) 2/15 Ord-Q [2.1(2) 1.5(0.9) 1.5(1) 2.9(4) 10(9) 1/15
Ord-Q |1.9(4) 2.6(1) 1.9(0.6) 3.2(2) 9.2(14) 3/15 DTS-C [1.7(0.6) 3.0(2) 3.0(1) 2.0(0.4) 0.84(0.5) 8/15
DTS-C [1.9(3) 2.4(2) 2.1(1) 1.90.9)* 1.50.8)*2 12/15 CMA-E|4.6(4) 5.8(4) 5.8(4) 5.8(3) 3.6(3) 3/15
CMA-E[3.6(4) 3.7(3) 6.8(5) 144(%6) 0 500 0/15

Table 4: Average runtime (aRT in number of function evaluations) divided by the respective best aRT measured during BBOB-
2009 in dimension 5. The aRT and in braces, as dispersion measure, the half difference between 10 and 90%-tile of bootstrapped
run lengths appear for each algorithm and run-length based target, the corresponding reference aRT (preceded by the target
Af-value in italics) in the first row. #succ is the number of trials that reached the target value of the last column. The median
number of conducted function evaluations is additionally given in italics, if the target in the last column was never reached.
Entries, succeeded by a star, are statistically significantly better (according to the rank-sum test) when compared to all other

algorithms of the table, with p = 0.05 or p = 10% when the number k following the star is larger than 1, with Bonferroni
correction of 110. A | indicates the same tested against the best algorithm from BBOB 2009. Best results are printed in bold.
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