
A Simple Bucketing Based Approach to Diversity Maintenance

Amit Benbassat
Sapir Academic College

M. P. Hof Ashkelon, Israel

amitbenb@mail.sapir.ac.il

Yuri Shafet
Ben-Gurion University of the Negev

Beer-Sheva, Israel

shafet@post.bgu.ac.il

ABSTRACT

We present an approach to diversity maintenance based on sepa-

rating the population into buckets based on similarity and biasing

selection to keep individuals from all buckets in the population.

We look at two approaches to bucketing. �e �rst uses a locally

sensitive bucketing function on individuals. �e second uses the

K-Means clustering algorithms to divide the population. We focus

our research on a family of deceptive problem domains which we

dub Tricky Keys and analyze how the using bucketing methods

changes evolutionary search results for problem instances of vary-

ing di�culty. Our results show that both bucketing by function

and bucketing by clustering methods show an increase in proba-

bility of �nding a good solution and in number of good solutions

found.

CCS CONCEPTS

•Computing methodologies→ Genetic algorithms; •Mathe-

matics of computing→ Evolutionary algorithms;

KEYWORDS

Evolutionary Algorithms, Diversity

ACM Reference format:

Amit Benbassat and Yuri Shafet. 2017. A Simple Bucketing BasedApproach

to Diversity Maintenance. In Proceedings of GECCO ’17 Companion, Berlin,

Germany, July 15-19, 2017, 6 pages.

DOI: h�p://dx.doi.org/10.1145/3067695.3082528

1 INTRODUCTION

Maintaining diversity is a common goal in Evolutionary Computa-

tion (EC) research [2, 10, 13, 14]. It is noteworthy that though it is

quite easy to generate and maintain genotypic diversity by contin-

uously introducing new random individuals, such new individuals

will unlikely be helpful in any problem space of signi�cant size and

di�culty. In some cases (e.g. [7]) it may make sense to measure

diversity at a higher level such as phenotype or behavior, however

that may not always be practical or useful.

Another common characteristic that Evolutionary Algorithms

(EAs) usually have and can be relevant to diversity maintenance

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full cita-
tion on the �rst page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permi�ed. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior speci�c
permission and/or a fee. Request permissions from permissions@acm.org.

GECCO ’17 Companion, Berlin, Germany

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-4939-0/17/07. . . $15.00
DOI: h�p://dx.doi.org/10.1145/3067695.3082528

is �tness. When using diversity maintenance we may still be inter-

ested in results expressed by high �tness. By encouraging a more

comprehensive search of the problem space diversity maintenance

techniques are designed to improve results in two distinct ways.

�e�rst improvement one expects frommaintaining population

diversity is quite simply to �nd higher �tness individuals. In a di-

verse population there are more opportunities to get around the

deceptive areas of the problem space and �nd the best individuals.

�e second improvement is �nding a more diverse set of good solu-

tions. Some problem spaces may contain a set of several di�erent

locally optimal high quality solutions and �nding as many of those

solutions as possible may be desirable.

If either of these two improvements occurs we can say that not

only was high diversity achieved, but it was in fact the right kind of

diversity that wewere looking for. We refer to population diversity

that displays one or both of these �tness improvements above as

E�ective Population Diversity.

Section 2 contains a short summery of some of the previous

work in diversity maintenance techniques and clustering that re-

lates to this work. In Section 3 we present both variants of our

bucketing approach. �e family of problem domains that we use

in our simulations is discussed in Section 4. We present our ex-

periment setup and runtime parameters in Section 5. Our results

appear in Section 6 where we examine the success of our methods

in �nding high �tness points. Finally in Section 7 we conclude and

discuss our results.

2 RELATED WORK

Apopularmethod of subdividing the population is the IslandModel

[11]. In this approach, the population is divided into subsets or

Islands, each of them running an independent EA with occasional

migration events between islands. Every island’s initial population

is typically chosen at random and population di�erences are a re-

sult of initial di�erences and their interactions with evolutionary

dynamics.

Petrowski [12] suggested the rather crude but e�ective Clearing

approach in order to coerce the EA to maintain a diverse popula-

tion. Using Clearing only one dominant individual is allowed to ex-

ist in every small area of the problem space, forcing all neighboring

lower �tness individuals into immediate extinction and preventing

the population from devolving into tight clusters around already

discovered local optima.

In work by one of the authors of this paper [1] selection was

manipulated to limit the number of neighbors each individual in

the population can have.

Speciation [10] is another measure used to encourage diversity

by separating the population into species based on some criterion

(usually genetic similarity, phenotype similarity, the existence of

common recent ancestry or some mixture of these factors). In

1559

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany Amit Benbassat and Yuri Shafet

the case of speciation individuals reproduce only with members of

their own species, though they o�en still compete with members

of other species during selection phase or through co-evolution.

Stanley and Miikkulainen [16] chose to adapt Speciation to evolv-

ing Arti�cial Neural Networks (ANNs) in their NEAT system. �is

decision carried through to it successor HyperNEAT that also uses

Speciation for diversity [3, 15].

In later work Lehman and Stanley [7] suggested Novelty Search,

a method that completely replaces standard �tness with a novelty

function that is calculated based on past behavior from previous

iterations of the EA recorded on a special database.

2.1 K-Means

James Mac�een was the �rst to use the term K-Means [9]. �e

standard algorithm was �rst proposed by Stuart Lloyd in 1957 as a

technique for pulse-code modulation, though it wasn’t published

outside of Bell Labs until 1982 [8]. Forgy discovered the idea inde-

pendently in 1965 [4].

3 BUCKET-BASED SELECTION

Bucket-Based Selection maintains diversity by assigning each indi-

vidual in the population to a one of k buckets based on some local-

ity sensitive procedure and then applying the standard selection

method (tournament selection in our case) on each bucket sepa-

rately. �is selection method selects an equal number ofpopSize/k

individuals from each bucket. Figure 1 contains a simpli�ed sche-

matic visualization of the process of bucket-based selection. Al-

gorithm 1 shows the pseudocode for the bucket based selection

phase.

Figure 1: Schematic description of bucket-based-selection

on a population of size n. �e population is �rst divided into

3 buckets of di�erent sizes. Next selection is employed on

each bucket to separately select n/3 parents for the parent

population, resulting in a population containing the same

number of individuals from each of the buckets

Algorithm 1 Bucket Selection (Population P , k)

for each individual I in P do

Assign I to bucket i ∈ {1...k}

end for

NewP ← {}

for each bucket B in P do

Use selection method to select size(P)/k individuals from B

and add them to NewP

end for

3.1 Locality Sensitive Function Bucketing

Perhaps the simplest approach to dividing the population into k

buckets is to have some sort of bucketing function f which, given

an individual I , assigns it to a bucket f (I) ∈ {1..k}. �is method

gives a straightforward interpretation of bucket assignment as de-

scribed in Algorithm 1. �e exact nature of the bucketing function

is domain-dependent. �is method has the potential of being very

fast as all it requires is PopSize calls to f . �is bucketing method is

static. An individual I will always be assigned to the same bucket

f (I). One can get around this by using a sequence { fi } of bucket-

ing functions and using fi to assign individuals to buckets on the

i’th generation.

3.2 Clustering Based Bucketing

Another way to go about bucket assignment is to use a clustering

algorithm beforehand. �e clustering algorithm divides the popu-

lation into k clusters based on a nonnegative distance function d .

Individuals are then assigned a bucket based on the cluster they are

in. An interesting a�ribute of this approach to bucketing is that it

is dynamic. As the clustering algorithm runs once every genera-

tion and as its results depend upon the distribution of the current

generation’s individuals in the search space, bucket associations

di�er on successive generations.

Algorithm 2 shows the pseudocode for the K-Means algorithm.

�is Algorithm serves us as a fast e�cient way to subdivide a set of

feature vectors intok compact clusters on using a distance function

as above for some prede�ned k . We then take the clusters in the

aforementioned set as our the division of the population into k

buckets.

Algorithm 2 K-Means (Population P , k)

Randomly guess a set of k mean values for the k clusters:

M ← {m1...mk }

repeat

C ← A list of k empty sets

for each individual I in P do

Assign I to set i such that the distance between I andmi is

minimal

end for

for i ← 1 to k do

mi ←�e mean of items in element i of C

end for

until�ere are no more changes inM

return C

1560

A Simple Bucketing Based Approach to Diversity Maintenance GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

4 THE TRICKYKEYS DOMAIN

In order to test our bucketing based approach to diversity mainte-

nance we use a simple hand-cra�ed family black-box optimization

problems which we dub TrickyKeys problems. �is set of problems

has several qualities that make it very useful for our purposes.

(1) It is relatively simple to explain, conceptualize, and imple-

ment in code.

(2) It allows for fast �tness calculations, linear or near linear

in the length of the genome even for problem instances

that contain a large number of local and global optima.

(3) It is designed primarily to de�ne deceptive search prob-

lems.

(4) It is very tunable using problem parameters, allowing the

experimenter to control search space size, degree of decep-

tiveness and number of local and global optima.

(5) It lends itself to additions and alterations with ease.

In a TrickyKeys problem instance each individual genome con-

sists of a vector of integers. �ere are however several problem pa-

rameters to be set. One such parameter is a natural number b. Indi-

vidual genomes in TrickyKeys are made of base b strings. �ough

the problem can easily be expanded to include search spaces with

variable length strings, in this work we limit ourselves to genomes

of constant length. A number of keys exist that have optimal �t-

ness. A number of trick keys with locally optimal but globally sub-

optimal �tness also exist. If the number of trick keys ≥ 1 the prob-

lem instance is deceptive.

4.1 Fitness

�e�tness function calculates a di�erent �tness value for each one

of the keys and trick keys and then returns the maximal of those

values. Let fk be the value calculated for exactly matching one of

the keys and let ft be the value calculated for exactly matching the

trick key t .

∀t ∈ Trick Keys, ft < fk (1)

In order to derive the �tness score element in respect to a trick

key t of length n, we count the number of in-place matches be-

tween the individual’s genome and t . We then multiply the result

by a constant factor (in our experiments below this factor is 0.8).

A perfect match with t gives us a �tness score of ft = 0.8n (e.g. for

trick key 1111111111 the individual 1002101131 gets a �tness score

of 5 · 0.8 = 4).

In order to increase deceptiveness we apply a more stringent ap-

proach to evaluating �tness according to keys. Rather than count-

ing the number of in-place matches we �nd the longest in-place

substring match with the key and return its length (e.g. for key

1111111111 the individual 1102111131 gets a �tness score of 4 be-

cause of the 7 matches 4 are consecutive).

4.2 Permutation and Segmentation

As de�ned up to this point TrickyKeys problem domains produce

strong tight building blocks and �t very well with standard k-point

crossover operators as well as mutation operators that make use of

locality. Since we want the problem to be hard to solve we wish to

do awaywith these building blocks. To solve this issue each Tricky-

Keys problem instance may be associated with a permutation π .

When �tness is evaluated π is applied to the genome before com-

pering it with the di�erent keys. �e permutation is an optional

feature which we turn o� due to time considerations when run-

ning simulations that do not use any genetic operators that take

advantage of genome locality.

An a�ribute of TrickyKeys problems is that due to high prob-

lem deceptiveness it very quickly becomes very di�cult to �nd an

optimal solution as the problem size grows. A way to get around

this prohibitive hardness is to segmenting the keys. Suppose we

have a problem instance with length 60 genomes. We may decide

to treat each of the keys and trick keys as segmented into 3 length

20 keys. �e �tness function will then evaluate �tness separately

for every segment and return the sum of these evaluations.

Algorithm 3 contains the pseudocode of the �tness calculation

method.

Algorithm 3 Calculate Fitness (Genome , π SeдmentRanдes , Keys ,

TrickKeys , TrickFactor)

f it ← 0

PermutatedGenome ← π (Genome)

for each Ranдe in SeдmentRanдes do

sub f it ← 0

for each Key in Keys do

temp ←Maximal length of an in-place substring of

Key[Ranдe] in PermutatedGenome[Ranдe]

sub f it ← MAX (temp, sub f it)

end for

for each Key in TrickKeys do

temp ← Number of in-place matches of

Key[Ranдe] in PermutatedGenome[Ranдe]

sub f it ← MAX (TrickFactor · temp, sub f it)

end for

f it ← f it + sub f it

end for

return f it

�e notions of using a permutation on genome locations to dec-

imate building blocks as well as problem segmentation was previ-

ously suggested and implemented by Goldberg et al. in their study

of messy genetic algorithms [5, 6].

5 EXPERIMENTS

We run experiments in simulation sets. In each set the simula-

tions run with the same parameters except that all the keys get

randomly generated before each simulation. By randomly gener-

ating the keys for each simulation we get to explore multiple in-

stances with similar traits (identical search space with di�erent �t-

ness landscapes).

We have three basic types of simulation sets. �e Normal sim-

ulation set type consists of evolutionary runs with no bucketing.

�e Func simulation set type consists of evolutionary runs using

locality sensitive function bucketing. in our experiments we tested

several possible bucketing functions and discovered that one of the

simplest functions we tried seems to work best. Our bucketing

1561

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany Amit Benbassat and Yuri Shafet

Table 1: Runs using 80-bit genomes subdivided into 4 20-bit

segments. In this table and in all following tables of simula-

tion sets, each line represents results gathered from 100 con-

secutive identical simulations. All simulations below use a

population size of 700 and run for 200 generations.

Keys Trick Run # of Mean best Solution

Keys type buckets �tness found

54 1 Normal - 71.60 0

54 1 Func 81 76.45 16

54 1 K-Means 40 75.46 13

function is based on simply summing all the genes in the genome.

For a base b genome of length n this function returns a number in

the range {0, 1, ...bn} for bn + 1 buckets. We can scale this num-

ber down to more manageable k by looking at the remaindermod

k . �e K-Means simulation set type consists of evolutionary runs

using clustering based bucketing. We use the K-Means clustering

algorithm to bucketize. �e algorithm utilizes a simple binary dis-

tance function that counts and returns the number of di�erent el-

ements in the two genomes.

For all runs we used a personal dell laptop computer with an

intel i7-4712HQ CPU 2.3GHz with 16GB of RAM. Each simulation

ran on a single logical processor (out of 8) taking between 5 min-

utes to half an hour, depending on it’s size and bucketing method

used. Clustering based bucketing runs slowed down running time

by a factor of between 1.5 and 10 compared with other simulations,

depending on parameter setup.

5.1 Runtime Parameters

In all our simulation sets we use the following runtime parameters

unless speci�cally stated.

• Each simulation set consists of 100 simulations.

• We use 0.8 as the factor for the �tness deceptive trick keys.

• We use tournament selection with a tournament size of 3.

• Point mutation (randomly swap one digit in the genome)

with probability 0.8. No crossover.

• Population size and number of generations varied, both

however are always in the hundreds.

6 RESULTS

Below in Tables 1–7 are the results of some of our simulation sets.

Each line in the tables stands for an entire set of 100 simulations.

We look at the di�erences between sets utilizing di�erent bucke-

tizing approaches and those using none. In some cases where the

e�ect is not self-evident we ran a two-tailed t-test to test for the

statistical signi�cance of the di�erent in means between sets. We

set a harsh criterion of p < 0.01 for signi�cance.

6.1 Results Solving Tricky Keys Problems

First we want to look at solving some hard deceptive problems.

Below in Table 1 we see the results from simulations on a problem

domain of size 280 with 625 global optima (keys) and 1 deceptive

local optimum (trick key).

Table 2: Runs using 60-bit genomes subdivided into 3 20-bit

segments. All simulations belowuse a population size of 600

and run for 400 generations.

Keys Trick Run # of Mean best Solution

Keys type buckets �tness found

103 1 Normal - 56.52 29

103 1 Func 61 59.92 98

103 1 K-Means 40 59.87 96

Table 3: Runs using 40-bit genomes unsegmented and with

no trick keys. All simulations below use a population size

of 400 and run for 300 generations.

Run # of Mean best Solution mean # of

type buckets �tness found solutions

Normal - 40.0 100 1.0

Func 41 40.0 100 2.63

K-Means 40 40.0 100 6.04

Table 4: Runs using base 4 unsegmented genomes of length

30 with no trick keys. All simulations below use a popula-

tion size of 400 and run for 300 generations.

Run # of Mean best Solution mean # of

type buckets �tness found solutions

Normal - 30.0 100 1.01

Func 60 30.0 100 2.2

K-Means 40 29.98 98 3.43

�ese results show that while the EA without bucketing fails to

�nd an optimum, the simulations that use function bucketing and

clustering based bucketing succeed in the task in 16 and 13 out of

100 simulations, respectively. �e average best �tness achieved in

a simulation using either bucketing technique is also higher. �e

di�erence in means between the two bucketing techniques is sig-

ni�cant (p < 0.01).

�e problem above is quite hard to solve with the resources al-

lo�ed. Below in Table 2 we have results from another run with 60-

bit genomes and a much higher density of keys with 1000 global

optima in the search space.

In this problem we see again that both bucketing strategies im-

prove performance relative to the normal simulation set. In these

problems, however, the bucketing runs can be counted on to quite

reliably �nd an optimal solution. Function bucketing does a li�le

be�er but the e�ect is not statistically signi�cant.

6.2 Results Finding Multiple Keys

We are interested in �nding out whether the use of bucketingmeth-

ods can help an EA �ndmore global optima than conventional EAs.

We �rst look at problem spaces with multiple keys and no trick

keys. Tables 3 and 4 show simulation sets running on problems

with 10 keys and without any trick keys. Table 3 shows results of

simulations on 40-bit problems. Table 3 shows results of simula-

tions on problems with base 4 keys of length 30.

1562

A Simple Bucketing Based Approach to Diversity Maintenance GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

Table 5: Data about number of solutions found in experi-

ment 60-bit experiment described in Table 2.

Run Mean best Solution mean # mean #

type �tness found of solutions found only

Normal 56.52 29 0.32 1.10

Func 59.92 98 2.76 2.82

K-Means 59.87 96 3.37 3.51

Unsurprisingly in both these experiments an optimal point is

found almost every time. Another feature that is evident here is

that clustering based bucketing �nds more solutions on average

than function bucketing, that in turn �nds more solutions than the

normal runs. �e normal runs typically �nd 1 solution. All these

di�erences in number of solutions found for both experimental se-

tups are statistically signi�cant (p < 0.00001).

Next start We look again at our simulation from Table 2 but this

time we are also interested in the number of keys found. Table 5

contains that information.

Here we see the same e�ects as before. Ignoring the normal EA

that mostly fails to solve the problem, clustering-based bucketing

�nds more solutions than function bucketing. Even though the

e�ect seems not as strong it is still statistically signi�cant (p <

0.01).

Figure 2 shows how the results from Table 3 compare over the

two simulation sets using the two di�erent bucketing approaches.

�e simulations in each set are sorted according to number of so-

lutions found.

N
u
m

b
e
r

o
f
O

p
ti
m

a
 F

o
u
n
d

Simulation Number

Figure 2: Comparison of number of global optima found by

the di�erent simulations using the function and clustering

based bucketing.

In order to check how this e�ect transfers to bigger problem do-

mains we ran experiments in domains with a bigger search space

on deceptive problems of various di�culty. Table 6 shows results

from experiments on 10 segment 100-bit genome domains (a prob-

lem space of size 2100).

We can see in Table 6 that simulations using bucketing tech-

niques tend to do be�er than normal simulations in the same block.

Clustering based bucketing does not consistently �nd a higher num-

ber of solutions than function bucketing in these simulation sets

and in fact in three of the four blocks it �nds less. Function buck-

eting �nds more solutions on average in the �rst block and this

di�erence is statistically signi�cant (p < 0.01). In the second block

function bucketing does be�er as well but this di�erence does not

pass our signi�cance criterion (p = 0.023813).

�e parameter setups in the last two blocks make the problem

very hard for all approaches. We ran additional simulations sets for

these problem spaces with a larger population size. Table 7 shows

the results of these simulation sets.

In the simulation sets shown in Table 7 function bucketing seems

to be doing a lot be�er than clustering based bucketing. with

higher best �tness averages and a much higher ratio of �nding

an optimal solution in both blocks. �e �tness advantage in the

�rst block, though it is less than 0.6 is signi�cant (p < 0.001).

�e higher �tness di�erence in the second block is also signi�cant

(p < 0.00001).

6.3 Dynamic Function Bucketing

As results show, on some problem spaces clustering based buck-

eting �nds more local optima than function bucketing. When we

tried to understand this strange phenomenon we came to wander

if the reason was function bucketing is static while the clustering

based bucketing is dynamic.

With this in mind we set out to make function bucketing dy-

namic in the hopes that of coming up with a new approach that

will hopefully exhibit the advantages of both our approaches. �e

solution we came up with was using an alternating mask. On

each generation the algorithm chooses a random mask. �is mask

added to each genome before the bucketing function is applied to

it, thus changing the way the function divides the problem space

into buckets. However when we ran simulations with our new ap-

proach we found that there was practically no di�erence in the

results between the dynamic and static function bucketing tech-

niques. For brevity these results are omi�ed from this work.

7 CONCLUDING REMARKS

In this workwas we explored ways tomanipulate the selection pro-

cess in an EA in order to maintain be�er population diversity. We

designated two criteria for success in achieving and maintaining

e�ective population diversity in relation to a standard EA:

(1) Find global optimum or reach be�er �tness results on de-

ceptive problem domains.

(2) Find more optimal solutions in problem domains with sev-

eral optima.

We presented TrickyKeys, a new family of fast and easy to code

deceptive optimization problems and suggested diversity mainte-

nance techniques built around the our concept of bucket-based se-

lection. We examined two approaches to bucketing, one based on

locality sensitive functions and the other based on a clustering al-

gorithm. Both approaches were successful in improving results

over standard EAs and as experiments show both approaches sat-

isfy both criteria de�ned for maintaining e�ective population di-

versity.

We saw di�erences in the performance of the two approaches to

bucketing as implemented in this work. In some cases clustering-

based bucketing has proven be�er at �nding more solutions. In

some of the harder problems function bucketing �nds a global op-

timumwith higher frequency and reaches be�er mean best �tness.

1563

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany Amit Benbassat and Yuri Shafet

Table 6: Runs using 100-bit genomes subdivided into 10 10-bit segments. All simulations below use a population size of 300

and run for 200 generations. Experiment sets divided into four blocks of increasing problem di�culty.

Keys Trick Run # of Mean best Solution mean # mean #

Keys type buckets �tness found of solutions found only

1010 1 Normal - 99.76 89 4.0 4.49

1010 1 Func 30 100.0 100 9.0 9.0

1010 1 K-Means 15 100.0 100 7.92 7.92

410 1 Normal - 98.0 37 0.68 1.84

410 1 Func 30 99.42 73 1.56 2.14

410 1 K-Means 15 99.16 61 1.11 1.82

210 1 Normal - 94.87 2 0.02 1.0

210 1 Func 30 96.99 14 0.16 1.14

210 1 K-Means 15 97.32 17 0.18 1.06

210 210 Normal - 93.42 4 0.04 1.0

210 210 Func 30 95.88 6 0.07 1.17

210 210 K-Means 15 94.87 3 0.03 1.0

Table 7: Runs using 100-bit genomes subdivided into 10-bit segments. Repeat of hardest sets from previous table with a bigger

population and more generations. All simulations below use a population size of 600 and run for 500 generations

Keys Trick Run # of Mean best Solution mean # mean #

Keys type buckets �tness found of solutions found only

210 1 Normal - 96.39 15 0.22 1.47

210 1 Func 60 99.73 86 2.03 2.36

210 1 K-Means 30 99.14 65 1.74 2.68

210 210 Normal - 94.74 3 0.03 1.0

210 210 Func 60 99.56 76 1.5 1.97

210 210 K-Means 30 98.21 32 0.6 1.85

Our approach is still in its infancy but we believe it shows great

potential. �ere is still much to be done and many possibilities to

be explored. We plan to look into other methods of making buck-

eting dynamic, including changes in bucket sizes in mid-run. An-

other obvious avenue is to try bucketing techniques in other prob-

lem domains beyond the family of synthetic domains used here.

One great challenge might be to use bucketing techniques in order

to maintain phenotypic diversity in a problem space with genera-

tive or developmental encoding.

REFERENCES
[1] Amit Benbassat and Avishai Henik. 2016. Replicating the Stroop E�ect Us-

ing a Developmental Spatial Neuroevolution System. In International Confer-
ence on Parallel Problem Solving from Nature. Springer International Publishing,
Springer International Publishing, Edinburgh, UK, 602–612.

[2] Matej Črepinšek, Shih-Hsi Liu, and Marjan Mernik. 2013. Exploration and
exploitation in evolutionary algorithms: A survey. ACM Computing Surveys
(CSUR) 45, 3 (2013), 35.

[3] David B D’Ambrosio and Kenneth O Stanley. 2007. A novel generative encoding
for exploiting neural network sensor and output geometry. In Proceedings of the
9th annual conference on Genetic and evolutionary computation. ACM, New York,
NY, USA, 974–981.

[4] Edward W Forgy. 1965. Cluster analysis of multivariate data: e�ciency versus
interpretability of classi�cations. Biometrics 21 (1965), 768–769.

[5] David Goldberg, Kalyanmoy Deb, and Bradley Korb. 1989. Messy genetic algo-
rithms: Motivation, analysis, and �rst results. Complex systems 3 (1989), 493–
530.

[6] David E Goldberg, Kalyanmoy Deb, Hillol Kargupta, and Georges R Harik. 1993.
RapidAccurate Optimization of Di�cult Problems Using Fast Messy Genetic Al-
gorithms. In Proceedings of the Fi�h International Conference on Genetic Algo-
rithms. Morgan Kaufmann, San Francisco, CA, USA, 56–64.

[7] Joel Lehman and Kenneth O Stanley. 2011. Abandoning objectives: Evolution
through the search for novelty alone. Evolutionary computation 19, 2 (2011),
189–223.

[8] Stuart Lloyd. 1982. Least squares quantization in PCM. IEEE transactions on
information theory 28, 2 (1982), 129–137.

[9] JamesMac�een and others. 1967. Somemethods for classi�cation and analysis
of multivariate observations. In Proceedings of the ��h Berkeley symposium on
mathematical statistics and probability, Vol. 1. Oakland, CA, USA., University of
California Press, Berkeley, CA, 281–297.

[10] Samir W Mahfoud. 1995. Niching methods for genetic algorithms. Urbana 51,
95001 (1995), 62–94.

[11] WN Martin, Jens Lienig, and James P Cohoon. 1997. C6. 3 Island (migration)
models: evolutionary algorithms based on punctuated equilibria. B ack et al.
BFM97], Seiten C 6 (1997), 101–��124.

[12] Alan Pétrowski. 1996. A clearing procedure as a niching method for genetic
algorithms. In Evolutionary Computation, 1996., Proceedings of IEEE International
Conference on. IEEE, Nagoya, Japan, 798–803.

[13] Bruno Sareni and Laurent Krahenbuhl. 1998. Fitness sharing and niching meth-
ods revisited. IEEE transactions on Evolutionary Computation 2, 3 (1998), 97–106.

[14] Giovanni Squillero and Alberto Tonda. 2016. Divergence of character and pre-
mature convergence: A survey of methodologies for promoting diversity in evo-
lutionary optimization. Information Sciences 329 (2016), 782–799.

[15] Kenneth O Stanley. 2007. Compositional pa�ern producing networks: A novel
abstraction of development. Genetic programming and evolvable machines 8, 2
(2007), 131–162.

[16] Kenneth O Stanley and Risto Miikkulainen. 2002. Evolving neural networks
through augmenting topologies. Evolutionary computation 10, 2 (2002), 99–127.

1564

	Abstract
	1 Introduction
	2 Related Work
	2.1 K-Means

	3 Bucket-Based Selection
	3.1 Locality Sensitive Function Bucketing
	3.2 Clustering Based Bucketing

	4 The TrickyKeys Domain
	4.1 Fitness
	4.2 Permutation and Segmentation

	5 Experiments
	5.1 Runtime Parameters

	6 Results
	6.1 Results Solving Tricky Keys Problems
	6.2 Results Finding Multiple Keys
	6.3 Dynamic Function Bucketing

	7 Concluding Remarks
	References

