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ABSTRACT
HNCO consists of a C++ library, command-line tools, and scripts

for the optimization of black box functions de�ned on �xed-length

bit vectors. It aims at being �exible, fast, simple, and robust. The

library provides classes for functions, populations, neighborhoods,

and algorithms. It currently includes 22 concrete functions and 18

concrete algorithms. The command-line tools expose most of the

library to the user without the need for programming. One of the

goals of HNCO is to automate experiments and favor reproducible

research. HNCO comes with experiments designed to tune or com-

pare algorithms. Scripts run all the simulations in an experiment

and generate a report. The source code of HNCO is published under

the GNU LGPL 3 license.
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1 INTRODUCTION
Experimental study of algorithms for the optimization of black box

functions is di�cult. Considerable e�ort is spent in the development

and test of algorithms. It involves di�erent skill sets and very

often is conducted by individuals or small teams, at least in early

stage research. Sometimes knowledge of algorithms or functions

is spread across di�erent scienti�c or engineering �elds spanning

many decades. Hence frameworks are needed to help developers

and users of these algorithms. They usually provide collections of

functions, operators, and algorithms. See [29] for a survey of black

box (or metaheuristic) optimization frameworks.

HNCO consists of a C++ library, command-line tools, and scripts

for the optimization of black box functions de�ned on �xed-length

bit vectors. Only unconstrained single objective optimization is
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addressed. HNCO aims at being �exible, fast, simple, and robust.

The source code of HNCO [7] is published under the GNU LGPL 3 li-

cense. The library o�ers classes for functions, algorithms, maps (e.g.

permutations of bit vector components), populations, and neigh-

borhoods for random and exhaustive local search. Functions and

maps can be composed. The population class provides experimental

support for parallel evaluation of bit vectors. The library imple-

ments many evolutionary algorithms but is by no means restricted

to evolutionary computation. It includes simulated annealing and

other local search algorithms. The command-line tools expose most

of the library to the user without the need for programming.

One of the goals of HNCO is to automate experiments. An exper-

iment in HNCO is a list of simulations speci�ed in a plan �le. Scripts

process this �le, run the simulations, and generate a report. HNCO

comes with a few experiments and their respective scripts. These

experiments are designed to tune and compare algorithms. By pro-

viding collections of functions, algorithms, and experiments, HNCO

aims at favoring reproducible research. Another goal of HNCO is

to help bridge the gap between theory and practice. Experiments

can be used to make conjectures about runtimes or reproduce theo-

retical results. Finally, algorithms in the library can also be applied

to practical problems.

HNCO departs from most black box optimization frameworks in

that it is restricted to bit vectors. It is also smaller and more limited

in scope than they are. Other C++ frameworks include ParadisEO

[11], EasyLocal++ [13], and Mallba [1]. HNCO shares some of the

goals of COCO [16] in the performance assessment of black-box

algorithms.

The article is organized as follows. The library is presented in

Sec. 2. The command-line tools are presented in Sec. 3. Sec. 4 brie�y

explains how the library and the tools are built. Sec. 5 presents

experiments and fragments of generated reports. Sec. 6 points at

some current limitations of HNCO and concludes the article.

2 LIBRARY
The library is organized into hierarchies of classes for exceptions,

maps, functions, populations, neighborhoods, iterators, and algo-

rithms. The library is documented with Doxygen.

2.1 Namespaces
The library declares the top-level namespace hnco and the nested

namespaces hnco::random, hnco::function, hnco::algorithm,

hnco::exception, and hnco::neighborhood.

2.2 Data structures
2.2.1 Bit vector. The library de�nes the type bit_vector_t as

vector<char>. We have also considered vector<bool> (standard

library) and dynamic_bitset (Boost library). We have compared

their runtime with various functions, sizes, and algorithms. It ap-

pears that vector<char> is always the fastest implementation. The

other two implementations are 5% to 70% slower, with the majority
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of overheads between 10% and 30%. Apart from the fact that vector
<char> uses more memory than the other two implementations,

it is clear that some algorithms could bene�t from vector<bool>
or dynamic_bitset, in particular those intensively using bit-wise

operations. However, there is currently no such algorithm in the

library. Finally, vector<char> provides iterators, which allows to

use algorithms in the standard C++ library. This is not the case for

vector<bool> or dynamic_bitset.

The library provides functions for bit vectors to �ip a single bit,

compute the Hamming weight of a bit vector, add two bit vectors

etc. All such functions are pre�xed by bv_.

The library de�nes the type permutation_t as vector<int>.

The corresponding functions are pre�xed by perm_.

The library de�nes the type point_value_t as a std::pair
made of a bit_vector_t and a double.

2.2.2 Bit matrix. The library o�ers basic support for linear alge-

bra on bit vectors. It de�nes the type bit_matrix_t as a vector of

bit_vector_t. The corresponding functions are pre�xed by bm_.

The library provides functions to resize or transpose a bit matrix,

add rows, swap rows, solve a linear system, invert a square bit

matrix, multiply a bit matrix and a bit vector etc.

2.3 Exceptions
All exceptions derive from the class Exception which is declared in

the namespace hnco::exception.

• Error

• LastEvaluation is thrown by a function when the budget

has been spent.

• PointValueException declares a point_value_t data mem-

ber. It has four derived classes:

– MaximumReached is thrown by a function when it

has evaluated a bit vector to its known maximum (see

Sec. 2.5.2).

– TargetReached is thrown by a function when it has

evaluated a bit vector to a value greater or equal to

some given target (see Sec. 2.5.2).

– LocalMaximum is thrown by an algorithm when it

has detected a local maximum (exact or approximate).

2.4 Maps
Map classes implement various transformations from bit vectors to

bit vectors which can be freely composed. They prove themselves

most useful when checking invariance properties of algorithms.

The class Map is declared in the namespace hnco. It de�nes the

following methods:

• void map(const bit_vector_t&, bit_vector_t&)
• size_t get_input_size()
• size_t get_output_size()
• bool is_surjective()

The following concrete maps are de�ned in the library:

• A�neMap is de�ned by φ(x) = Ax + b, where A is a n × n
bit matrix, b is a n-dimensional bit vector, and operations

are understood modulo 2.

• LinearMap is de�ned by φ(x) = Ax , where A is a n × n bit

matrix. It is a special case of A�neMap.

• Translation is de�ned by φ(x) = x + b, where b is a n-

dimensional bit vector. It is a special case of A�neMap.

• Permutation is de�ned by φ(x) = y, where yi = xσi , and σ
is a permutation of 0, . . . ,n − 1 (indices start at 0).

• MapComposition implements the composition φ ◦ψ of φ
andψ ; it requires their dimensions to be compatible.

A�ne and linear maps are declared not surjective; the correct

answer depends on the rank of A and will be implemented in a

future release of the library. Translations and permutations are

surjective. The composition of two maps is surjective if both of

them are surjective.

2.5 Functions
2.5.1 Abstract function. The abstract class Function is declared

in the namespace hnco::function. It de�nes the following meth-

ods:

• size_t get_bv_size() returns the bit vector size, useful

for example if the given instance has been read from a �le.

• double eval(const bit_vector_t&)
• double safe_eval(const bit_vector_t&)

This method must not throw any exception as it is called

during parallel evaluation.

• void update(const bit_vector_t&, double)
This method updates the object state after a safe evaluation.

• bool has_known_maximum()
• double get_maximum()

Functions are de�ned for all x ∈ {0, 1}n .

2.5.2 Function decorators. The class FunctionDecorator derives

from Function. We �rst present function decorators which modify

decorated functions. Let f : {0, 1}n → R denote the decorated

function.

• AdditiveGaussianNoise implements f +N(0,σ ). Successive

calls to eval add samples from independent and identically

distributed random variables with centered Gaussian dis-

tribution of standard deviation σ .

• Negation implements −f . This is useful when minimizing

a function since algorithms all maximize some function.

• FunctionMapComposition implements f ◦ φ where φ :

{0, 1}m → {0, 1}n is a map (see Sec. 2.4). The decorator

and the decorated function can have di�erent sizes. It

should be noted that f ◦ φ has a known maximum only if

f has a known maximum and φ is a surjective map.

The library also de�nes function decorators which do not modify

the decorated function. They are useful as control �ow statements

or to collect information on the trajectory taken by an algorithm.

• CallCounter derives from FunctionDecorator. It counts

the number of calls to the method eval of the decorated

function.

• ProgressTracker derives from CallCounter. It keeps track

of the maximum so far and of the time when it has been

found. This information can be sent to the standard output

or any output stream.

• OnBudgetFunction derives from CallCounter. If some given

budget (number of calls) has been spent then it throws a

LastEvaluation exception.
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• StopOnMaximum derives from FunctionDecorator. It throws

an exception MaximumReached as soon as it has evaluated

a bit vector to its known maximum. A error is thrown by

the constructor if the maximum of the decorated function

is not known.

• StopOnTarget derives from FunctionDecorator. It throws

an exception TargetReached as soon as it has evaluated a

bit vector to a value greater or equal to some given target.

• Cache derives from FunctionDecorator. It implements a

simple memoization technique in which the �rst call eval
(x) stores the ordered pair (x , f (x)) in an associative array.

Subsequent calls eval(x) with the same argument x re-

trieve the value f (x) from the associative array and avoid

its actual computation. Depending on function complexity,

caching values can be bene�cial.

2.5.3 Concrete functions.

Functions without instance �les.

• OneMax [19].

• LeadingOnes [19]

• Ridge [19]

• Needle (needle in a haystack) [19]

• Jump or BigJump in [26]

• DeceptiveJump or Jumpk in [19]

• FourPeaks [2]

• SixPeaks [8]

• Labs (low autocorrelation binary sequence) [24]

• Cancellation (summation cancellation) [3]

• SinusCancellation (summation cancellation with sinus)

[30]

• Trap [12]

• Hi� (hierarchical if and only if) [19]

• Plateau [19]

• LongPath [19]

• Plugin allows to load a dynamic shared object and call a

function loaded into memory and identi�ed by its name.

Its prototype must be of the form:

double f(const char[], size_t);

Functions with instance �les. Serialization is mostly achieved

through the Boost serialization library [9] with text archives. For

problems with standard �le formats, custom load and save meth-

ods have been developed.

The library provides the following functions:

• MaxSat [28]. Dimacs �le format [23] is used to load and

save instances.

• Qubo (quadratic unconstrained binary optimization) [10]

implements f (x) = ∑
i qiixi +

∑
i<j qi jxix j . The dimacs-

like �le format speci�ed in the reference is used to load

and save instances.

• LinearFunction implements f (x) = ∑
i aixi where ai are

real numbers. It uses the Boost serialization library.

• QuadraticFunction implements f (x) = ∑
i ai (2xi − 1) +∑

i<j qi j (2xi − 1)(2x j − 1). It uses the Boost serialization

library.

• NkLandscape [20]. It uses the Boost serialization library.

• EqualProducts [3]. It uses the Boost serialization library.

• Factorization recasts the problem of factorizing some given

integer z into a maximization problem. It is de�ned by

f (x) = −∑i (i + 1)(yi ⊕ zi ) where zi is the ith binary

digit of z, y = u × v , and x is the concatenation of u and

v . This particular class uses the GNU Multiple Precision

Arithmetic Library [15]. The number to factorize, written

in decimal, is loaded from a text �le.

2.6 Population
The class Population hides away the details of evaluating a popu-

lation of bit vectors with a given function, sorting the population,

and performing selection. It de�nes the following methods:

• void random() initializes the population with random bit

vectors.

• void eval(Function *) implements sequential evalua-

tion of the population.

• void eval(const vector<Function *>& functions)
This method implements parallel evaluation of the popula-

tion.

• void sort() sorts the population without copying any

bit vector.

• const bit_vector_t& get_best_bv(int i)
This method returns a reference to the ith �ttest bit vector

in the population.

• void plus_selection(const Population&)
This method implements plus-selection in the sense of

evolutionary algorithms [19].

• void comma_selection(const Population&)
This method implements comma-selection in the sense of

evolutionary algorithms [19].

The library also provides the class TournamentSelection which

derives from Population.

2.7 Neighborhoods
Neighborhood classes are used by random local search algorithms,

including simulated annealing. For each bit vector x , a neighbor-

hood de�nes an implicit set of bit vectors, usually not containing x
itself, and a distribution on this set. A local search algorithm can

then repeatedly ask the neighborhood for a random candidate bit

vector.

The abstract class Neighborhood is declared in the namespace

hnco::neighborhood. It de�nes the following methods:

• void set_origin(const bit_vector_t&)
• void propose()
• const bit_vector_t& get_candidate()
• void keep()
• void forget()

The following concrete neighborhoods are de�ned in the library:

• SingleBitFlip. Exactly one bit of x is �ipped.

• Binomial. Every bit of x is �ipped with a given probability

until at least one bit has been �ipped.

• HammingSphere. The candidate is uniformly sampled from

the set of bit vectors y such that dH (x ,y) = r , where r is
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the radius of the Hamming sphere: exactly r bits of x are

�ipped.

• HammingBall. Given the radius r of the ball, exactly k bits

of x are �ipped, where k is uniformly sampled between 1

and r .

2.8 Iterators
Iterators allow to enumerate implicit sets of bit vectors. They are

used by the complete search algorithm which enumerates the whole

hypercube and by local search algorithms such as hill climbers

which enumerate neighborhoods.

The abstract class Iterator is declared in the namespace hnco. It

de�nes the following methods:

• void init()
• const bit_vector_t& get_current()
• bool has_next()
• void next()

The following concrete iterators are de�ned in the library:

• HypercubeIterator

• SingleBitFlipIterator

• HammingBallIterator

2.9 Algorithms
2.9.1 Abstract algorithm. All algorithms in the library maximize

some given function. They are responsible for keeping track of the

solution so far, as decorated functions can ful�ll the same task but

only globally.

The abstract class Algorithm is declared in the namespace hnco
::algorithm. It de�nes the following methods:

• void set_function(Function *)
• void set_functions(const vector<Function *>)
• void init()
• void maximize()
• const point_value_t& get_solution()

The class IterativeAlgorithm derives from Algorithm and de-

clares the additional methods iterate and log.

2.9.2 Concrete algorithms. The library provides the following

concrete algorithms:

• CompleteSearch

• RandomSearch

• NonStrictRandomLocalSearch

• StrictRandomLocalSearch

• SteepestAscentHillClimbing

• SimulatedAnnealing [21]

• OnePlusOneEa, (1 + 1) evolutionary algorithm [19]

• MuPlusLambdaEa, (µ + λ) EA [19]

• MuCommaLambdaEa, (µ, λ) EA [19]

• GeneticAlgorithm [18]

• Pbil, population-based incremental learning [2]

• NpsPbil, PBIL with negative and positive selection [4]

• Umda, univariate marginal distribution algorithm [25]

• CompactGa, compact genetic algorithm [17]

• NonStrictMmas, non strict max-min ant system [31]

• StrictMmas, strict max-min ant system [31]

• BmPbil, Boltzmann machine PBIL [5]

• Hea, herding evolutionary algorithm [6]

• Restart is actually an algorithm decorator which inde�-

nitely restarts its decorated algorithm.

2.10 Parallel evaluation
The library provides experimental support for parallel evaluation

of bit vectors. Parallel evaluation is implemented in the class Popu-

lation with OpenMP [27]. More precisely, it uses a parallel for loop

which automatically distributes iterations across a prede�ned num-

ber of threads. The main objective is that parallel and sequential

evaluations produce the same e�ects.

To achieve thread-safety, each thread calls its own copy of the

function. However, this is insu�cient because we have seen that

function decorators update their states and even throw exceptions.

This is why each thread calls safe_eval instead of eval. At the

end of the parallel loop, all side-e�ects (including exceptions) are

accounted for by calling update on a single copy of the function. In

the base class Function, safe_eval simply calls eval and update
does nothing. They are rede�ned only in decorators.

The following algorithms can use parallel evaluation: MuPlus-

LambdaEa, MuCommaLambdaEa, Umda, GeneticAlgorithm, Pbil,

NpsPbil, Hea, BmPbil.

2.11 Example
We give a complete example of how to use the library, including

a custom function and a custom algorithm. The di�erent parts of

the source code below should be merged into a single �le to be

compiled and linked against the library as indicated in Sec. 4.

The source code starts with header inclusions and namespace

declarations:

#include <iostream >

#include <hnco/algorithms/algorithm.hh>

#include <hnco/functions/function.hh>

using namespace hnco:: algorithm;

using namespace hnco:: function;

using namespace hnco:: random;

using namespace hnco;

The following custom function implements the function de�ned

by f (x) = ∑n
i=1 i · xi :

class CustomFunction: public Function {

size_t _bv_size;

public:

CustomFunction(int bv_size):

_bv_size(bv_size) {}

size_t get_bv_size () { return _bv_size; }

double eval(const bit_vector_t& x) {

double result = 0;

for (size_t i = 0; i < _bv_size; i++)

if (x[i])

result += i + 1;

return result;

}

};
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The custom algorithm implements an iterative random search.

Only the method iterate must be de�ned. The base class Al-

gorithm de�nes a default method init which randomly sets the

solution. It also de�nes many update_solution methods. In par-

ticular, update_solution(_candidate) evaluates the candidate

and sets it as the new solution provided its value is strictly greater

than that of the current solution.

class CustomAlgorithm: public IterativeAlgorithm {

bit_vector_t _candidate;

protected:

void iterate () {

bv_random(_candidate);

update_solution(_candidate);

}

public:

CustomAlgorithm(int n):

IterativeAlgorithm(n),

_candidate(n) {}

};

Finally, the custom algorithm is applied to the custom function.

Observe that the custom function is decorated with a progress

tracker which logs improvement to the standard output. At the end

of the search, the program prints the solution found by the custom

algorithm.

int main()

{

Random :: engine.seed (0); // Or entropy source

const int bv_size = 100;

CustomFunction function(bv_size);

ProgressTracker tracker (& function);

CustomAlgorithm algorithm(bv_size);

algorithm._num_iterations = 1000;

algorithm.set_function (& tracker);

algorithm.init();

algorithm.maximize ();

point_value_t solution =

algorithm.get_solution ();

bv_display(solution.first , std::cout);

std::cout << std::endl;

return 0;

}

3 COMMAND LINE TOOLS
HNCO comes with the command-line tools ffgen, mapgen, and

hnco. With the �ag --help, they print a list of available options.

Auto-completion is available for bash.

3.1 �gen
ffgen generates random instances of functions and saves them to

�les which can be later loaded by hnco and used by any algorithm.

For example, to generate a random instance of Nk landscape

with n = 100 and k = 4 and save it to the �le nk.100.4, run the

command:

ffgen -s 100 -F 60 --nk-k 4 --path nk .100.4

3.2 mapgen
mapgen generates random instances of maps and saves them to �les.

It can generate a translation, a permutation, the composition of a

permutation and a translation, a linear map, or an a�ne map (see

Sec. 2.4).

Random maps are useful to check whether a given algorithm

is invariant under the action of those maps. hnco can generate a

random map instance but subsequent runs get di�erent instances.

However, it might be necessary to ensure that di�erent algorithms

share the same instance previously generated by mapgen.

3.3 hnco
hnco allows to apply any algorithm to any function in the library.

Nearly every parameter can be set with an option at the command-

line. An option takes the form of a �ag or a key-value pair; there is

a default value for every key. This simple command-line interface

makes it easy to use hnco inside a script. Results are written to the

standard output. Warning and error messages are written to the

standard error stream. By default hncowrites to the standard output

the values of all parameters as comments. The same simulation

(including the same seed for random numbers) can then be run

again later.

For example, to apply (1+1) EA to the previous Nk landscape

instance, run the command

hnco -A 300 -F 60 --path nk .100.4 \

-b 200000 --print -performance

where we have set the budget to 200000 function evaluations.

For the purpose of scripting, hnco returns an exit status with the

following meaning: 0 indicates success; 1 indicates a runtime error;

2 indicates that the �ag --stop-on-maximum has been set and the

maximum has not been reached; 3 indicates that the �ag --target
has been set and the target has not been reached.

4 BUILDING THE SYSTEM
The library has been developed under Linux Ubuntu 16.04 but

should be successfully built under many unix-like operating sys-

tems. It uses the Boost serialization library, libdl (for plugin), and

libgmp (for factorization, see Sec. 2.5.3). The compiler must imple-

ment the OpenMP API (for parallel evaluation, see Sec. 2.10).

Autotools are used to build the system. The package comes

with 31 tests which cover functions with known maximum (using

complete search), serialization, linear algebra, and steepest ascent

hill climbing (applied to OneMax).

5 EXPERIMENTS
HNCO provides four experiments. For each experiment, there is a

script for running the simulations and another one for computing

the statistics. The scripts are written in Perl although Python is

considered for future developments.
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The script for computing the statistics generates a few gnuplot

scripts and a LATEX �le. The gnuplot scripts in turn generate graphics

�les in eps, pdf, and png formats. The LATEX and graphics �les are

�nally compiled into a single pdf report. The whole process is

controlled by a make �le.

A JSON plan �le speci�es the experiment, that is the set of

algorithms, the set of functions, their respective parameters, and

various options. Every experiment discussed hereafter has a plan

�le which can be found in its own directory under experiment.

Some problems are originally expressed in terms of minimization,

for example minд, then recast as the maximization problem max−д
to �t into HNCO. The scripts can apply a symmetry to the data

before generating the tables and the graphics. They can also use

a logarithmic scale to better represent performance of algorithms.

Finally, the user can control how numbers are rounded and printed

in the tables.

5.1 Benchmark
The purpose of this experiment is to compare the performance of a

set of algorithms applied to a set of functions. Every algorithm is

run the same number of times on every function. Algorithms are

ranked according to their median performance (other quartiles are

also considered for tiebreak) on every function (see Tab. 1). They

are also globally ranked according to their rank distribution (see

Tab. 2). Graphics similar to Fig. 1 and 2 are generated for every

function.

Here is a fragment of the plan �le showing two functions and

two algorithms. The value of the key col represents the number

format used in LATEX tables such as Tab. 1. The plan �le is read by a

Perl script which interprets the backslash as an escape character

hence the need for a double backslash sequence.

{ "exec": "hnco",

"opt": "--no -header --print -performance --map 1

--map -random -s 100 -i 0 -b 300000" ,

"num_runs ": 20,

"results ": "results",

"graphics ": "graphics",

"report ": "report",

"functions ": [

{ "id": "one -max",

"opt": "-F 0 --stop -on-maximum",

"col": " >{{\\ nprounddigits {0}}}N{3}{0}" },

{ "id": "leading -ones",

"opt": "-F 10 --stop -on-maximum",

"col": " >{{\\ nprounddigits {0}}}N{3}{0}" } ],

"algorithms ": [

{ "id": "rls",

"opt": "-A 100 --restart" },

{ "id": "ea -1p1",

"opt": "-A 300" } ]

}

5.2 Dynamics
The purpose of this experiment is to visualize the dynamics of the

performance of a set of algorithms applied to a set of functions.

algorithm performance time (s)

min Q1 med. Q3 max rk mean

rls 4.17 4.39 4.44 4.52 4.91 5 1.65

hc 4.46 4.59 4.81 4.88 5.31 2 1.66

sa 4.47 4.63 4.76 5.08 5.75 3 1.68

ea-1p1 3.54 3.81 4.03 4.28 4.87 8 2.27

ea-1p10 3.71 3.89 4.13 4.35 4.73 7 2.02

ea-10p1 4.16 4.49 4.60 4.69 4.80 4 2.04

ea-1c10 4.57 4.79 4.85 4.90 5.05 1 2.03

ga 3.64 4.05 4.33 4.48 5.11 6 2.55

pbil 3.50 3.68 3.89 4.07 4.60 10 2.16

umda 3.51 3.86 3.91 4.10 4.41 9 2.05

Table 1: Algorithms ranked according to their performance
on Labs (20 runs). Labs stands for low autocorrelation bi-
nary sequence, rls for random local search, hc for steepest
ascent hill climber, sa for simulated annealing, ea-1p1 for
(1+1) evolutionary algorithm, ea-1p10 for (1+10) EA, ea-10p1
for (10+1) EA, ea-1c10 for (1,10) EA, ga for genetic algorithm,
pbil for population-based incremental learning, umda for
univariate marginal distribution algorithm. Best results are
in blue.

algorithm rank distribution

1 2 3 4 5 6 7 8 9 10

pbil 10 0 1 2 2 0 1 1 0 2

sa 8 2 3 2 0 1 0 0 2 1

umda 7 2 1 0 2 0 2 1 3 1

rls 6 4 2 2 1 1 0 1 0 2

ga 6 2 1 0 1 3 5 0 0 1

ea-1c10 5 5 3 5 0 0 0 0 1 0

hc 5 5 1 2 1 0 1 2 0 2

ea-1p1 5 3 1 2 1 0 3 3 0 1

ea-10p1 4 2 5 5 0 2 1 0 0 0

ea-1p10 4 2 2 2 0 1 4 0 3 1

Table 2: Algorithms ranked according to their rank distribu-
tion. For example, PBIL is ranked #1 ten times and #5 twice.

 3

 3.5

 4

 4.5

 5

 5.5

 6

rls hc sa ea-1p1

ea-1p10

ea-10p1

ea-1c10

ga pbil
um

da

Pe
rf

o
rm

a
n
ce

Algorithm

Figure 1: Performance of algorithms applied to Labs (20
runs).
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Figure 2: Performance vs number of evaluations for algo-
rithms applied to Labs (20 runs).
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Figure 3: Dynamics of the performance of algorithms on
Labs (single run). The end of a line indicates that an algo-
rithm has not improved its solution any further within the
allocated budget.

Each algorithm is run once on each function. See Fig. 3 for an

example.

5.3 Parameter
The purpose of this experiment is to study the in�uence of a single

parameter on the performance of a given algorithm applied to a set

of functions. For each value (taken in a list) of the parameter, the

algorithm is run the same number of times on every function. The

report is similar to the one presented in Sec. 5.1. For every function,

the mean, standard deviation, and quartiles of the performance

of the algorithm as a function of the parameter are plotted as in

Fig. 4-5.

5.4 Runtime
The purpose of this experiment is to study the in�uence of a single

parameter on the runtime of a set of algorithms applied to a set of

functions. By runtime is meant the number of function evaluations

needed to reach the maximum of a function which must then have

a known maximum as seen in Sec. 2.5.2. For every function and
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Figure 4: Mean performance of PBIL applied to Ridge as a
function of the learning rate (20 runs).
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Figure 5: Standard deviation of the performance of PBIL ap-
plied to Ridge as a function of the learning rate (20 runs).
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Figure 6: Mean runtime of (1+1) EA and RLS applied to
LeadingOnes as a function of size (20 runs).

every algorithm, the mean, standard deviation, and quartiles of the

runtime as a function of the parameter are plotted as in Fig. 6-7.
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Figure 7: Standard deviation of the runtime of (1+1) EA and
RLS applied to LeadingOnes as a function of size (20 runs).

6 LIMITATIONS AND FUTURE
DEVELOPMENTS

The restriction to �xed-length bit vectors might appear as the great-

est limitation of HNCO. At the same time, it o�ers the opportunity

to experiment with and directly compare a great diversity of algo-

rithms and functions, as most black box algorithms can be expressed

in terms of bit vectors.

Any additional algorithm enriches the library and can be tested

against all the functions already in the library, thus increasing the

signi�cance of the results. Two important classes of algorithms are

missing in the library and should be added to it in a future release:

Tabu search [14] and estimation of distribution algorithms (EDA)

[22]. Additional functions are also needed.

An algorithm in HNCO is responsible for producing a single solu-

tion. It could be desirable to also get a set of solutions. For example,

evolutionary algorithms could give access to their population.

As noted before, support for parallel evaluation is still experi-

mental. Beyond the case of populations in evolutionary algorithms,

algorithms yet to be developed could bene�t from parallel evalua-

tion.

One of the most pressing issues related to experiments is to

make scripts run independent simulations in parallel. This should

be addressed in a future release.

The content and presentation of reports could be improved. Be-

yond algorithm ranking and simple descriptive statistics, statistical

techniques are available for the performance assessment of black-

box algorithms. In particular, empirical cumulative distribution

functions of runtimes as used in COCO [16] are not restricted to

continuous optimizers and should be included in reports generated

by HNCO.
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