
On heuristic bias in fragment-assembly methods for protein
structure prediction

Julia Handl
Decision and Cognitive Sciences Research Centre

University of Manchester
UK

julia.handl@manchester.ac.uk

Mario Garza-Fabre
Decision and Cognitive Sciences Research Centre

University of Manchester
UK

garzafabre@gmail.com

Shaun Kandathil
School of Biological Sciences
University of Manchester

UK
shaun.kandathil@manchester.ac.uk

Simon C. Lovell
School of Biological Sciences
University of Manchester

UK
Simon.Lovell@manchester.ac.uk

ABSTRACT

We discuss the issue of heuristic bias in fragment-assembly meth-

ods for protein structure prediction. We explain the importance of

this issue, which has been paid insu�cient a�ention by evolution-

ary computation researchers engaging with the structural biology

community. We proceed by describing preliminary data that illus-

trates the signi�cant (and expectable) impact that fragment library

composition has on search performance, and discuss the challenges

this poses for the development of improved fragment libraries.
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1 INTRODUCTION

Heuristic optimization approaches are of increasing importance in

identifying solutions to complex optimization problems that cannot

be addressed using methods from exact optimization alone. Meta-

heuristic optimizers, in particular, play a crucial role in identifying

approximate solutions to problems that are challenging due to

their scale, the presence of uncertainties and noise, and/or the

existence of multiple con�icting criteria. Meta-heuristic optimizers

are fundamentally designed as �o�-the-shelf� methods that are

su�ciently general to be useful for a diverse range of non-linear,

global optimization problems. Nevertheless, to obtain competitive
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performance on di�cult real-world problems, a careful design of

representation, variation and initialization operators that introduce

suitable heuristic bias, as well as rigorous tuning, is o�en essential,

and can be, arguably, of more importance than the basic choice of

meta-heuristic.

State-of-the-art methods for protein structure prediction typi-

cally employ a meta-heuristic optimizer, including methods such as

evolutionary algorithms [1], EDAs [2] and simulated annealing [3].

�ere have been a number of recent papers by evolutionary com-

putation researchers that consider the deployment and design of

state-of-the-art meta-heuristics for this problem (see e.g. [4–6]). In

terms of the choice of representation of candidate protein structures,

there have been fewer concrete contributions from this community.

�e class of fragment-assembly methods has remained the de

novo prediction approach of choice for the past decade. Fragment-

assembly approaches typically employ an internal low-resolution

representation of protein structure, e.g. based on backbone torsion

angles, and use insertions of short segments from known protein

structures as their variation operator. More speci�cally, there are

two aspects to this internal representation.

• �e speci�c low-resolution representation used.

• �e choice of the fragment library, which de�nes the values

available for insertion at each position.

Arguably, the second of these is the most in�uential from a

heuristic optimization perspective, as the composition of the frag-

ment library restricts the available search space and may introduce

signi�cant heuristic bias towards certain regions of this space. �is

e�ective reduction of the search space is widely seen as the key

strength of fragment-assembly, but it can also be seen as the Achilles

heel of the approach: an unfavourable bias will clearly introduce

problems for search algorithms, the severity of which will depend

on the sensitivity of the search protocol to such bias, and aspects

of the objective function.

While there has been extensive research on the development of

improved fragment libraries in the structural biology community,

this has focused on improving the biophysical plausibility of candi-

date fragments. As far as we are aware there is no published work

that directly considers the impact of fragment library composition

on search performance. �e closest work that touches upon the
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issue is [7, 8], but this focuses on aspects of the variation operators,

and the impact of their de�nition on the search space and / or search

performance. In our current work, we are interested in de�ning

the impact fragment selection will have on search, and to explain

previous �ndings on prediction performance from this perspective.

�e remainder of this paper is structured as follows. Section 2 de-

scribes the standard process of generating a fragment library, using

the example of Rose�a’s fragment picker. Section 3 discusses and

formalizes the heuristic bias that the fragment library introduces

into the search process. Section 4 summarizes current evidence for

the existence, and the signi�cant impact, of such bias. Section 5

highlights implications for future work and concludes.

2 FRAGMENT-ASSEMBLY AND FRAGMENT
LIBRARY CONSTRUCTION

2.1 Fragment-assembly methods

Predicting protein tertiary structure from sequence information

remains an important unsolved problem. Techniques based on the

principle of fragment-assembly [9] have emerged as the leading

class of methods to tackle this problem, as evidenced by their perfor-

mance in the CASP experiments [10, 11]. However, their accuracy

is known to decrease for larger, more complex proteins [11].

In general, fragment-assembly techniques rely on the fact that

secondary and tertiary structure can be strongly in�uenced by lo-

cal amino acid sequence [9]. �ese local propensities are taken

into account and exploited during model construction, by deriving

fragments from known protein structures and using them as build-

ing blocks during the search. �e search techniques employed are

heuristic optimization algorithms that start from an initial structure

(e.g. a fully extended chain), and which iteratively apply randomly

selected fragment insertions to generate novel candidate structures.

An energy or scoring function is used to determine whether a par-

ticular candidate structure should be accepted. A key assumption

behind the use of an optimization procedure is that near-native

structures correspond to at least a local optimum in the energy

landscape de�ned by this function. State-of-the-art fragment-based

prediction pipelines typically employ many independent runs of

a prediction technique (the random-restart strategy) to arrive at a

pool of structures, from which a subset of promising predictions

are chosen.

2.2 Fragment library generation - �e example
of Rosetta

�e �rst step in applying any fragment-based prediction method

is the selection of appropriate structural fragments for the target

protein sequence. Fragments are typically identi�ed based on se-

quence and structure pro�les (obtained from multiple sequence

alignments), on the basis of threading against known templates, or

by using constant fragment sets selected from a non-redundant set

of structures.

Like other methods, Rose�a�s fragment generation process em-

ploys automated secondary structure prediction methods to inform

the choice of fragments chosen for any given window of the se-

quence. A maximum of 3 three-state secondary structure predic-

tors can be used: PSIPRED [12, 13], SAM (Sequence alignment and

Modelling; [14]) and Porter [15, 16] are currently supported. �e

fragment picking process identi�es putative fragments through the

application of a scoring function. Many di�erent criteria can be

used to score fragments [17], and some commonly used metrics

include similarity scores based on PSI-BLAST sequence pro�les,

similarity between the predicted secondary structure for a local

sequence and fragment secondary structure, and agreement with

backbone torsion angles and solvent accessibility predictions from

SPINE X [18]. Di�erent scoring criteria can be assigned di�erent

priorities when selecting fragments; sequence pro�les generally

have the highest priority in deciding what fragments should be

selected. If an insu�cient number of candidate fragments are identi-

�ed based on sequence pro�les, the criterion with the next-highest

priority value is used to select fragments (in this case, agreement

with PSIPRED predictions), and so on. Other criteria may include

agreement with experimental data (such as chemical shi�s) or other

distance- or angle-based constraint information.

Following the selection and scoring of putative fragments, the

200 highest-scoring fragments are returned in the fragment libraries,

which can then be used for de novo structure prediction using

Rose�a. Rose�a�s fragment generation process is typically used

to produce libraries of fragments that are 9 and 3 residues long

(9-mers and 3-mers, used during di�erent stages of Rose�a’s ab

initio protocol), although alternative lengths can be speci�ed [8].

2.3 Diversity mechanisms during fragment
picking

An interesting aspect of Rose�a’s fragment generation process is

the inclusion of a range of di�erent criteria in the pipeline. �is is

testament to the fact that the de�nition of the selection criterion is

di�cult, that reliance on a single criterion may be insu�cient or

risky, and that di�erent criteria may gain importance in speci�c

circumstances.

More fundamentally, we note that, in Rose�a’s fragment picker,

when more than one secondary structure predictor is used (see

above), a quota system can be enabled, by which the fragment

picker selects a certain percentage of fragments for each window

based on each predictor (Gront et al., 2011). �is quota mechanism

is aimed at providing additional diversity in the fragment set, in

situations when the secondary structure predictions produced by

di�erent methods do not agree.

Similarly, for any single predictor, fragments are chosen such

that the predicted likelihood of the three secondary structural types

(helix, strand or loop) for any residue are maintained as best as

possible in the resulting fragment set.

�e above features indicate that there is a clear appreciation that

a poor quality fragment-library can be damaging to the fragment-

assembly process and that there are two con�icting aspects to

this. Firstly, the fragment library narrows down the search space.

�is facilitates the search process, and is the main driver behind

the success of fragment-assembly methods. Secondly, where the

fragment library for a particular position is inappropriate (i.e. it

contains only non-native local structures), this will make it di�cult,

if not impossible, to identify a native structure at the tertiary level.

1653



Heuristic bias in fragment-assembly GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

3 HEURISTIC BIAS AND ITS PRESENCE IN
FRAGMENT-ASSEMBLY

Raidl and Go�lieb [19] de�ne heuristic bias as follows: “Heuristic

bias concerns the mapping from search space to phenotype space…

�e e�cacy of the search process is strongly in�uenced by the

mapping between these spaces. Hence, using some heuristic in this

mapping yields a certain distribution of phenotypes, which can

help to increase performance if the distribution is biased towards

phenotypes of higher �tness.”

A di�erentiation between the genotype and the phenotype in a

fragment-assembly method is not entirely straightforward. For a

protein with N residues and a default use of Rose�a during its �rst

three stages (use of 9mers, 25 fragments per position), one possible

way to think about the genotype is to consider it a string of N

integers, where each position can take up to 225 possible values1,

corresponding to an index of all possible angle triplets available for

this position [8]. While this genotype is never explicitly encoded

within the fragment-assembly method, this abstract de�nition al-

lows us to think about the size of the search space independently

of the choice of fragment library employed and the variation oper-

ator used.2 �e choice of variation operator can have the e�ect of

eliminating access to portions of this search space, but this issue

has been discussed in [8] and is not further considered here.

Our focus here is on heuristic bias, i.e. the bias resulting from

mapping the above genotype to the phenotype. Essentially, this can

be thought to correspond to the mapping of each integer within

our abstract genotype to the triplet of torsion angles that it indexes

within the fragment-library, and the �nal decoding of the string of

backbone angles into a tertiary structure. �is dual mapping pro-

cess is independent of the choice of variation operator, but, in itself,

it clearly has the potential to introduce bias towards particular phe-

notypes. �e vehicle controlling this bias is the choice of fragment

library alone. We therefore take the view that, from an optimization

perspective, the design of a fragment library fundamentally corre-

sponds to the problem of de�ning a genotype-phenotype mapping

with appropriate heuristic bias.

Considering the mechanisms discussed in Subsection 2.3, it is

evident that some of these mechanisms have been designed to

counter-balance the risks introduced through the fragment-picking

process. Some of the procedures incorporated into existing methods

implicitly re�ect an understanding that, in regions where signi�-

cant uncertainty remains regarding the local propensity towards

particular types of secondary structure, fragment libraries need to

remain diversi�ed to allow for the balanced exploration of di�erent

types of solutions. In other words, this can be seen as preliminary

a�empts to control the amount of heuristic bias introduced for

di�erent parts of the protein chain. As fragment library composi-

tion has not usually been considered from a search perspective, it

1�e 225 values stem from nine overlapping insertion windows. �ere are less over-
lapping windows (and therefore values) for the �rst and the last eight positions of the
string, see [8] for details.
2If we considered the genotype to correspond directly to the angle-based representation
explicitly encoded in methods such as Rose�a, the set of possible genotypes / size of
the search space would no longer be independent of the choice of fragment library.
Furthermore, the likelihood of possible genotypes would be non-uniform in the sense
that di�erent instantiations arise with di�erent probability.

remains unclear to what extent these current ways of library con-

struction are su�cient to ensure that access of the native structure

does not become intractable for standard search heuristics.

In particular, it is unknown to what extent current fragment

generation methods do indeed manage to achieve a suitable balance

between helpful heuristic bias and a retention of unbiased options

in those areas where uncertainty regarding structure propensity

remains. �is is due to a number of factors.

In Rose�a’s fragment picker, diversity is implicitly de�ned at the

level of the secondary structure type (i.e. three classes: alpha, beta,

loops), but it is unclear whether this is appropriate and su�cient,

e.g. as some types of local structure (helices) are signi�cantly less

diversi�ed than others (especially loops, but also beta sheets).

Furthermore, estimates of the reliability of secondary structure

predictions are taken from the secondary structure predictors, but

the literature is unclear as to how accurate these estimates are

(this is di�erent to the actual estimates of prediction performance).

�is may be an issue when these estimates are used to inform

the amount of diversity retained in the libraries, as is the case for

Rose�a’s fragment picker, see above.

Finally, wthe variation operators used inmost fragment-assembly

protocols consist of full-fragment insertions. �is removes access to

some areas of the search space, and introduces interactions between

the fragment libraries of neighboring positions. Together, this has

the potential to further reinforce any bias introduced through the

choice of fragment library.

4 CONSEQUENCE OF HEURISTIC BIAS IN
FRAGMENT-ASSEMBLY

In this manuscript, we aim to de�ne the nature of heuristic bias in

the context of fragment-assembly methods and to encourage the

community to reconsider the performance of current protocols in

this context. To further emphasize this point, this section highlights

recent results from the academic literature that, we believe, indicate

the importance of the issue.

Recent research compared di�erent fragment libraries in a set-

ting that eliminated the confounding impact of imprecise energy

functions and heuristic optimizers (through the use of a structure-

based objective and a greedy construction heuristic) [20]. It was

observed that fragment libraries constructed using sequence pro-

�les alone allowed for a more accurate reconstruction of the native

structure. However, when fragment selection considered secondary

structures, this led to a pronounced reduction in the diversity of

fragments. �is goes some way to explain why state-of-the-art

methods typically use both types of information. �e search space

reduction arising from the use of secondary structure information is

likely to lead to “quick” wins on easy prediction targets, which will

have contributed to the adoption of this approach in state-of-the-art

pipelines. For future research, the �nding does raise the question

of whether more diverse libraries and improved search techniques

may be a more fruitful avenue to scale prediction methods to more

complex targets.

In another recent paper on fragment library construction [21],

the authors found that a selection approach that applied scoring

to a random sample outperformed the alternative of exhaustive
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scoring of all fragments. In particular, the resulting fragment li-

braries provided higher precision and coverage. �is provides an

additional indication that, given our reliance on imperfect fragment

scoring criteria, a controlled diversi�cation of fragment libraries

may be desirable, even when the impact of heuristic search is not

considered. It is currently unclear how this diversi�cation is best

approached to ensure inclusion of the most accurate fragments,

and to appropriately moderate heuristic bias.

Our own experiments with iterated local search heuristics re-

veal signi�cant di�erences in performance for di�erent fragment

libraries [22]. Strikingly, these sensitivities are signi�cantly more

pronounced for advanced search heuristics than for simple restart

protocols such as Rose�a (see Figure 1), consistent with the in-

creased sensitivity of such techniques to heuristic bias. Our obser-

vations also go some way to explain why the design of advanced

sampling protocols has o�en led to limited success in the literature:

the potential advantages arising from improved sampling may have

been rendered insigni�cant by misleading heuristic bias, introduced

through the use of inappropriate fragment libraries.

5 CONCLUSION

Moving forward, we believe that the subject of heuristic bias needs

to be considered much more explicitly in the design and compari-

son of prediction protocols. Speci�cally, it can be challenging to

draw conclusions regarding the performance of search techniques,

where contestant techniques are tested in the context of di�erent

(customized) fragment-libraries, and are thus operating in search

spaces with potentially di�erent amounts of bias. Similarly, while

methods are typically tested across a range of target proteins, de-

liberate testing across fragment libraries with di�erent (known)

levels of diversity / heuristic bias has not been considered. �is

would be desirable as such a setup appears to be more powerful at

identifying di�erences in the performance of the search techniques.

In our immediate future work, we will be developing strategies to

explicitly understand and control diversity of fragment libraries.

�is will feed into practical improvements of fragment libraries,

but also the design of benchmark libraries that support the rigorous

testing of new search protocols.

ACKNOWLEDGMENTS

�is work is funded by grant EP/M013766/1, Engineering and Phys-

ical Sciences Research Council, UK.

REFERENCES
[1] J. U. Bowie and D. Eisenberg, “An evolutionary approach to folding small alpha-

helical proteins that uses sequence information and an empirical guiding �tness
function,” Proceedings of the National Academy of Sciences, vol. 91, no. 10, pp.
4436–4440, 1994.

[2] D. Simoncini, F. Berenger, R. Shrestha, and K. Y. Zhang, “A probabilistic fragment-
based protein structure prediction algorithm,” PloS one, vol. 7, no. 7, p. e38799,
2012.

[3] C. A. Rohl, C. E. Strauss, K. M. Misura, and D. Baker, “Protein structure prediction
using rose�a,” Methods in enzymology, vol. 383, pp. 66–93, 2004.

[4] A. Shmygelska and M. Levi�, “Generalized ensemble methods for de novo struc-
ture prediction,” Proceedings of the National Academy of Sciences, vol. 106, no. 5,
pp. 1415–1420, 2009.

[5] R. Clausen, E. Sapin, K. A. De Jong, and A. Shehu, “Evolution strategies for ex-
ploring protein energy landscapes,” in Proceedings of the 2015 Annual Conference
on Genetic and Evolutionary Computation. ACM, 2015, pp. 217–224.

●

●

●

●

●

●

●

●

●
●

● ●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●
●

●

●

●

●

●

●
●
●●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●
●●

●
●

●
●
●

●

●
●

●

●
●

●●

●

●

●
●●

●

●

●
●
●

●

●

● ●

●

●
●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●
●

●

●●

●
●

● ●

●
●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●●●

●
● ●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●●

●

●

●

●●●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●
●●

●●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●●
●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

● ●
●
●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

● ●

● ●

●

●●

●

●
●

●

● ●
●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●
●

●

●

●
●

● ●●

●

● ● ●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10 12 14

−
80

−
60

−
40

−
20

0

RMSD from native (Å)

R
os

et
ta

 s
co

re
3 

va
lu

e 
(R

E
U

)

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●
●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

● ●

●

●

●

● ●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

ILS
Rosetta

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●●●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●●
●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

● ●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●●

●

●

●●

●●

●

●
●● ●

●

●●
●

●

●
●

●

●
●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●
● ●●●

●

●●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●
●

●

●

●

●●

● ●

● ●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

● ●

●●●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
● ●

●

●●

●

●

●

●● ●
●

● ●●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

● ●

●

●

●
●

● ●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

● ●

●●

●

●

●

●
●

●

●

●

●
●

●●

● ●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

● ●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

0 2 4 6 8 10 12 14

−
80

−
60

−
40

−
20

0

RMSD from native (Å)

R
os

et
ta

 s
co

re
3 

va
lu

e 
(R

E
U

)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

ILS
Rosetta

Figure 1: Results obtained by standard Rosetta (using

restarts) and an iterated local search protocol [22] across two

di�erent fragment libraries for the same protein (1c8cA).

�e newer fragments (results in top �gure) were generated
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�e older fragments (results in bottom �gure) are taken
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