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ABSTRACT
ABC-X is a generalized, automatically con�gurable framework for

the Arti�cial Bee Colony (ABC) metaheuristic. ABC-X has recently

been proposed and it has initially been tested on di�erent bench-

mark functions sets, showing very good results when compared to

known ABC algorithms. However, it has never been used in an in-

dustrial application. In this case study on a real-world problem, the

performance of ABC-X for the economic power dispatch problem

(EPDP) with valve point e�ects is investigated. �e algorithm’s per-

formance is tested on four instances of di�erent size and compared

with the performance of other algorithms that have been proposed

earlier for this problem. �e results obtained show that ABC-X can

successfully solve the EPDP with valve point e�ects.
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1 INTRODUCTION
�e ABC meta-heuristic has been used for more than ten years in

solving continuous optimization problems and a large number of

variants of the basic ABC have been proposed [14]. Usually, the

ABC variants suggest a �xed set of changes in one or several steps

of the classical ABC algorithm and explore the extent to which these

changes improve performance. Di�erent from other approaches,

ABC-X has been designed as a framework that encompasses many

di�erent algorithmic components that have been proposed in the

context of ABC algorithm variants [3]. It also features a generalized

search equation that can be used to instantiate many of the search

equations that have already been applied in various ABC algorithms

but it can generate also many additional ones. �e main idea un-

derlying ABC-X is to allow, in a modular fashion, the generation

of not only many existing ABC variants but also many new ABC

algorithms that have never been proposed in the literature before.

�e space of possible instantiations of ABC algorithms and their

associated, typically numerical parameters can then be searched

using automated algorithm con�guration tools such as irace [17],

ParamILS [12], or SMAC [11].

In our previous studies [2, 3], the use of ABC-X with automatic

algorithm con�guration techniques has been tested using classical

benchmark functions that are used to test the performance of con-

tinuous optimizers. So far, the results obtained have been positive

as they showed that we could generate from ABC-X automatically,

using irace [17], new ABC algorithms that are superior to manually

generated ABC algorithm designs, even if the la�er are �ne-tuned

using a same con�guration budget to set numerical ABC algorithm

parameters [3].

In this paper, the performance of the ABC-X algorithm is tested

on an industrial application. For this task, the problem of economic

power dispatch problem (EPDP) with valve point e�ects has been

chosen. �is problem is well known in the �eld of electrical energy

generation and its solution has been studied for many years. Ac-

cording to Happ [10], it is necessary to go back to the beginning

of the 1920ies to examine the work of engineers on the problem of
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Algorithm 1 �e ABC-X Framework

1: ApplyInitializationStrategy( ) . Comp. 1

2: while termination condition is not met do
3: for each employed bee, i, in swarm do . Comp. 2

4: ApplyEmployedBeeSearchEqationStrategy(i)

5: CalculateSelectionProbabilies( ) . Comp. 3

6: for each onlooker bee, j, in swarm do . Comp. 4

7: ApplyOnlookerBeeSearchEqationStrategy(j)

8: ApplyScoutBeeStrategy( ) . Comp 5

9: ApplyLocalSearch( ) . Comp. 6

10: UpdatePopulationSize( ) . Comp. 7

economically dividing energy generation and the burden between

existing generators. �e aim of the EPDP is to minimize the fuel

cost of generating units for a given operating time, typically one

hour, to achieve optimum production delivery between operating

units, and to satisfy the system load demand and the constraints

of the generating units. Moreover, the methods used to solve the

problem can be easily adapted to the real-world problem instances.

As a ma�er of fact, EPDP was chosen as one of the problems in the

CEC 2011 competition for testing evolutionary algorithms applied

to real world optimization problems [7].

Using the automatic algorithm con�guration tool irace [17], an

ABC variant is generated from ABC-X in accordance with the EPDP

instances to be tackled, and its performance is tested. In addition,

the results obtained with ABC-X are compared with many algo-

rithms that have been proposed before in the literature for the same

problem.

�e paper is structured as follows. In Section 2, we present the

ABC-X framework. In Section 3, we de�ne the economic dispatch

problem with valve point e�ects and in Section 4 we detail how

ABC-X was applied to tackle it. Experimental results on four real-

world problem instances and a comparison to the literature are

given in Section 5. Finally, we conclude the article in 6.

2 ABC-X: A GENERALIZED AND FULLY
CONFIGURABLE FRAMEWORK

ABC-X was created by combining di�erent ABC components in

the literature into one algorithm framework, which is outlined in

Algorithm 1. ABC-X consists of seven components and the di�erent

alternatives for each component are described below.

2.1 First Component: Initialization
For the initialization of the population, there are four alternative

strategies called default, opposition-based, chaotic and mix:

• default: �is is the standard initialization strategy used in

the canonical ABC algorithm. �e details of this strategy

are stated in [2].

• opposition-based: In this strategy, SN (SN is the popula-

tion size) candidate solutions are selected randomly in the

search space and their opposite positions are determined.

�en, the population is initialized by deleting the worst

SN solutions from the 2 ∗ SN candidate solutions [8].

Algorithm 2 �e general form of the search equation

1: % D is the dimension of problem space

2: for t = 1 tom do
3: select random dimension j (1 ≤ j ≤ D)

4: xi, j = term1 + term2 + term3 + term4

Table 1: Alternative options for each component in the gen-
eralized search equation. xG, j and xGD, j are the best-so-far
and the best-distance candidate solutions at dimension j, re-
spectively. Xr1 and Xr2 are two randomly selected candi-
date solutions. ϕl can take two possible ranges: [−1,−1] and
[−SF , SF ]where SF is a randomly selected positive real value.
�ese ranges are calculated randomly for each term of the
general search equation.

m term1 term2 | | terms3 | | terms4

1 xi, j ϕl (xi, j − xG, j )
k (1 ≤ k ≤ D) xG, j ϕl (xi, j − xr1, j )

[t ,k] (1 ≤ t < k ≤ D) xr1, j ϕl (xG, j − xr1, j )

ϕl (xr1, j − xr2, j )

ϕl (xi, j − xGD, j )

DoNotUse

• chaotic: In the default strategy, food sources are randomly

positioned according to a uniform distribution in search

space. Here, instead, chaotic maps are used as random

number generators. Within ABC-X, random numbers can

be generated from seven di�erent chaotic maps.

• mix: In this method, chaotic and opposition-based are used

together [9].

2.2 Second and Forth Component: Employed
Bees and Onlooker Bees Steps

In the employed and onlooker bees steps, each bee chooses a candi-

date solution and generates a new, possibly be�er candidate solu-

tion in the vicinity of the visited one. While employed bees select a

candidate solution to visit deterministically, onlookers determine

the one to visit by using a probabilistic selection rule based on the

candidate solutions’ qualities. �e new candidate solution is deter-

mined by a search equations using the visited candidate solution

as a reference solution. �e visited candidate solution is replaced

by the newly generated candidate solution if the quality of the

new one is be�er than the visited one. Several search equations

have been proposed in the literature. Instead of adding all search

equations one by one in the ABC-X algorithm, a general search

equation, which can produce several search equations including

previously explored ones, is proposed. �is search equation is given

in Algorithm 2 and possible alternatives for each term are de�ned

in Table 1. �e details of this generalized search equation can be

also found in [2, 3].
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2.3 �ird Component: Calculation of Selection
Probabilities

�e onlooker bees visit candidate solutions according to a proba-

bilistic selection rule. In the ABC literature, di�erent approaches

have been proposed for the probabilistic selection rules and ABC-X

considers the following ones.

• default: A candidate solution is chosen according to a

probabilistic selection rule. In the ABC literature, the dif-

ferent approaches proposed for probabilistic selection rules

are used in the ABC-X algorithm as follows:

pi =
�tnessXi∑SN

n=1
�tnessXn

. (1)

In Equation 1, �tnessXi
is the �tness value of solution Xi .

It is de�ned as

f itnessXi =

{
1

1+fXi
, fXi > 0,

1 + abs(fXi ), fXi < 0,
(2)

where fXi is the objective function value of the solution

Xi .
• weightedSum: In the weighted sum method, the weight

of selecting the worst solution is set to at least 1 −w and

the weight of other solutions may vary from 1 − w to 1

using

pi = (1 −w) + (w − (w
f (XG )

f (Xi )
)) (3)

where f (XG ) is the objective value of the best-so-far solu-

tion and w is a constant, which as default is set to 0.9.

• rankedBased: In the Rosenbrock ABC algorithm [13], a

ranked based �tness adaptation rule is used when calculat-

ing �tness value of candidate solutionXi , �tnessXi
, instead

of using Equation 2 as follows:

�tnessXi
= 2 − SP +

2(SP − 1)(ri − 1)

SN − 1

(4)

where SP is de�ned as selection pressure set to between

1.0 and 2.0, and ri is the rank of the candidate solution Xi .

2.4 Fi�h Component: Scout Bees Step
When a candidate solution is visited limit times, it is assumed that

a be�er candidate solution close to it is di�cult or not possible

to �nd. In that case, the candidate solution is abandoned and a

new candidate solution to be explored is generated in the search

space. (�is mechanism is called scout bees step in analogy to

the original inspiration of the ABC algorithm.) �e original ABC

algorithm generates a new candidate solution in the scout bees step

in the same way as in the initialization step. �is is called default in

ABC-X. However, there are other strategies proposed for the scout

bees step, trying to improve ABC’s search capability. In ABC-X,

we used two chaotic methods namely chaotic1 and chaotic2 and

two other methods called scoutBABC and scoutIABC. �e details of

these methods can be found in [3].

2.5 Sixth Component: Applying a Local Search
Procedure

�ere are multiple local search procedures within the ABC-X frame-

work. For now, the applicable local search procedures are Powell,

Mtsls, IPOP-CMAES, and competitive in which an appropriate pro-

cedure may be found by adding a competition phase [2]. �e local

search procedure is applied only to the best-so-far solution in each

iteration if the best-so-far solution is updated.

2.6 Seventh Component: Updating Population
Size

In the original ABC algorithm, the population size is kept constant

throughout the execution. However, the number of candidate so-

lutions in the population can change dynamically in some ABC

variants, and these approaches have been implemented in ABC-X.

In the ABC-X framework, the �xed population size approach is

called default, the approach with the incremental population size

is called incremental, and the approach that alternatingly reduces

and increases the population during the search process is called

dynamic [3].

3 NON-CONVEX ECONOMIC DISPATCH
PROBLEMWITH VALVE POINT EFFECTS

With today’s increasing need for electricity, the issue of economic

power dispatch has become one of the most important issues in the

operation of power systems.�e fact that the cost of fuel used in

electricity production reaches a signi�cant fraction of the produc-

tion costs, requires the fuel producing companies to use the fuels

more e�ciently. In the literature, the problem of economic power

dispatch is de�ned as the adjustment of the active power output of

production units to meet the current load in the system (under sys-

tem constraints and minimum fuel cost). In such problems, the fuel

cost function curves of the production units are used to calculate

the total fuel cost [1].

3.1 �e objective function
�e solution of the economic power dispatch problem is found by

the minimization of total fuel cost under the limits of the system.

�e objective function of the standard EPDP is de�ned as [6, 30]:

min Ftotal = min

N∑
n=1

Fn (PG,n ) (5)

where Fn (PG,n ) represents the fuel cost function of the n-th gener-

ation unit as R/h which is de�ned as:

Fn (PG,n ) = an + bnPG,n + cnP
2

G,n , (R/h) (6)

where PG,n represents the output power of the n-th generation unit

in MW , and an , bn , cn are constants.

�e fuel cost function of the generation units is shown in a

schematic way in Figure 1. In Figure 1, the convex function shown

by the broken line is the fuel cost function when we used Equation

6, which contains no valve point e�ects. In fact, the input-output

curve of multi-valve steam stand generation units is very di�erent

when it is compared with the equality in Equation 6. �e inclusion

of the valve point e�ect in the fuel cost of the generation unit
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Figure 1: �e input-output characteristic of valve point ef-
fect generation unit

makes the representation of the fuel cost more realistic. As the

valve point is �nalized with surges, the fuel cost function includes

higher non-linear series. For this reason, as for the study aimed at

considering the valve point e�ects, a non-convex function is used

in the Equation 7 that is varied following the continuous line in

Figure 1.

Fn (PG,n ) = an+bnPG,n+cnP
2

G,n+|dn .sin(en (P
min
G,n −PG,n ))|, (R/h).

(7)

In Equation 7, dn and en represent the valve point e�ects.

3.2 Problem constraints
�e EPDP with valve point e�ects has two constraints that should

be satis�ed when tackling the problem, the generating capacity

constraints and the power balance constraints.

�e generating capacity constraints. �e power generated from

the nth unit, PG,n , should not exceed the minimum and the maxi-

mum bounds on the power generated by the nth unit depicted by

Pmin
G,n and Pmin

G,n respectively. �is constraint is de�ned as

Pmin
G,n ≤ PG,n ≤ Pmax

G,n , (n ∈ N ). (8)

�e power balance constraint. While planning for an optimal

operation of energy production systems, AC power �ow analysis is

needed to be done �rst. In the AC power �ow analysis of the energy

system, the net active and reactive powers of all generators should

be determined and amplitudes and phase angles of all generators are

found. With this information, the system losses are calculated by the

active and reactive power �ows occurring in the transmission lines

in the system. �e problem of optimal power �ow is the problem

of �nding the optimal value of the energy fuel cost, which is the

objective function of the system, under the condition of satisfying

all equality and inequality constraints. When the solution of this

optimization problem is investigated, the power load, Pload , is taken

as constant. Actually, in the literature it is typically assumed that

the power load is the energy demand of a place and that it remains

constant during 2 to 10 minutes. For this reason, the optimization

of fuel cost must be done very quickly. However, the AC power �ow

analysis is an iterative metric and it needs to be re-calculated when

the generated power values are changed, which is time and memory

consuming. �erefore, if an algorithm tackles the problem using

an AC power �ow analysis, this analysis should be calculated at

every objective function evaluation, which is very time consuming.

�erefore, when testing a new algorithm for economic dispatch

problems, the transmission line losses are ignored or calculated

with a single equation using approximate B-loss matrices. B-loss

matrices allow the transmission line losses to be handled faster than

using an AC load �ow for generated powers. When the system

losses are ignored, the power balance calculated as follows:

Pload −
D∑
n=1

Fn (PG,n ) = ∆P = 0 (9)

whereD is the total number of generators, which is also the problem

dimension. If we consider the power losses, the power balance

constraint is taken as in Equation 10:

Pload − Ploss −
D∑
n=1

Fn (PG,n ) = ∆P = 0 (10)

where Ploss are the power losses, which are calculated using the

B-loss matrix by the following Equation [30]:

Ploss =
D∑
n=1

D∑
j=1

PG,n .Bnj .PG, j +
D∑
n=1

B0n .PG,n+B00 (11)

In the literature, there are problem instances of both lossy and

lossless power dispatch problems. In a majority of the lossy systems,

the losses are calculated using the B-loss matrices. In our study,

the algorithm is tested on examples of lossy and lossless problems.

B-loss matrices are preferred to use in lossy systems to compare

with other algorithms in the literature.

4 APPLYING ABC-X TO EPDP
4.1 Achievement of appropriate ABC

algorithm from ABC-X framework using
irace

ABC-X is a generalized framework, and its parameter values must

be well-de�ned in order to produce an algorithm suitable for the

problem. In this work, parameter values of ABC-X and so an ap-

propriate ABC algorithm from ABC-X, are determined with irace,

an automatic algorithm con�guration tool. irace is run with de-

fault parameter values. Problem instances are selected as training

instances for irace from systems with 3, 5, 6, 13 and 40 generator

units. Among these, the instances with 3, 5, and 6 generators ones

are lossy and the other ones are lossless systems. In order to make

the training instances di�erent from the test cases that are available

in the literature during the parameter con�guration phase, problem

instances were produced that di�er in the power load demands

from each of the problem instances from the literature. In this way,

totally 30 instances (6 instances for each system) have been used

as training set for irace to �nd appropriate parameter se�ings for

ABC-X.

�e algorithm obtained by irace from the ABC-X framework is

given in Algorithm 3. �is ABC algorithm does not correspond to
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any known ABC algorithm, as can be observed from the fact that it

uses di�erent search equations in the employed and onlooker bees

steps, the speci�c combination of the scoutBABC component with

others for the scout bees step, and the particular combination of

the local search algorithms.

Algorithm 3 �e constructed ABC Algorithm

SN = 22, limit = 2.7 ∗ SN
Apply mix initialization strategy with Henon chaotic map

for each employed bee Xi do
for t = 1 tom = 5 do

Select dimension j randomly

vi, j = xr1, j + ϕ1(xi, j − xr1, j ) + ϕ2(xi, j − xG, j )

if Vi is be�er than Xi then
Xi = Vi , triali = 0

else
triali = triali + 1

Calculate selection probabilities with rankBased strategy with

SP = 1.95

for each onlooker bee Xi do . Select Xi according to the

selection probability

for t = 3 tom = 4 do
Select dimension j randomly

vi, j = xG, j + ϕ1(xi, j − xG, j ) + +ϕ1(xr1, j − xr2, j ) +

+ϕ2(xi, j − xGD, j )

if Vi is be�er than xi then
Xi = Vi , triali = 0

else
triali = triali + 1

Apply scoutBABC scout bees strategy with parameter values:

wMin = 0.24 and wMax = 0.72

Apply competitive local search with using Mtsls1 and IPOP-

CMAES

�xed population size

4.2 Structure of a candidate solution
For an EPDP problem with D generators, a candidate solution X is

presented as a vector

X =
[
PG,1, . . . , PG,n , . . . , PG,D

]
(12)

where each element PG,i , which corresponds to the power gener-

ated by generator unit i , should satisfy the problem constraints.

4.3 Handling problem constraints
When solving the EPDP with the ABC-X framework, constraint

handling mechanisms need to be de�ned. For the generating ca-

pacity constraints, there are two possible ways of handling them.

One is to use penalize constraint violations in the �tness function

[19]; another is to repair unfeasible solutions, creating feasible ones,

and to work only with the repaired solutions during optimization

process[24]. Here, we consider the second approach. �e repair pro-

cess we apply here to avoid the violation of the equality constraints

de�ned in Eqs. 9 and 10, is given in Algorithm 4.

Algorithm 4 Power balance constraint handling procedure

while |∆P | ≤ ε do . where ε is very small tolerance value

Randomly select a generator i from the solution

if ∆P < 0 then
Add an amount of ∆P to PG,i that doesn’t

violate Pmax
G,n ( such as PG,i =min(PG,i + ∆P , P

max
G,n ))

else if ∆P > 0 then
Subtract an amount of ∆P from PG,i that doesn’t

violate Pmin
G,n (such as PG,i =min(PG,i − ∆P , P

min
G,n ))

Table 2: (Case I) �e cost function coe�cients of the genera-
tion units and active power generation limits

Bus no. 1 2 5 8 11 13

a 150 25 0 0 0 0

b 2 2.5 1 3.25 3 3

c 0.0016 0.01 0.0625 0.00834 0.025 0.025

d 50 40 0 0 0 0

e 0.063 0.098 0 0 0 0

Pmin (MW ) 50 20 15 10 10 12

Pmax (MW ) 200 80 50 35 30 40

5 EXPERIMENTAL RESULTS
In order to asses the e�ectiveness and robustness of the ABC-X

framework, two test cases of economic dispatch with valve-point

e�ect have been considered. �e �rst system has six generators

with transmission losses (Case I) and the other one is from the

realistic Taipower system, which has 40 generator units without

transmission losses (Case II).

ABC-X framework is implemented in C++. �e code was run

on a Intel Xeon E5410 quadcore CPUs running at 2.33 GHz with

2 x 6 MB L2 cache and 8 GB RAM. In each case study, the results

are obtained over 30 independent runs which were terminated

a�er D ∗ 1000 and D ∗ 10000 (D is the number of generators in

our case) function evaluations (FEs). �e reason for running the

program with these two values of FEs is that (i) no standard has

been speci�ed in the literature and many methods have worked

with di�erent FEs in the past and (ii) to test the convergence speed

of the algorithm. For the computation of the objective function

value, ε is set to 10
−6

to obtain feasible solutions.

5.1 Case I: 6 Generating Units System
�e �rst case is a lossy system consisting of six generating units and

the expected power demand, Pload , is 283.4 MW . �e cost function

coe�cients and the B matrices related to the problem however is

given in Tables 2 and 3 respectively.

�e best and worst total fuel costs obtained for the �rst case over

D ∗ 1000 and D ∗ 10000 FEs are given in Table 4. As seen in Table 4,

both the best and the worst results of ABC-X are similar in both

runs with low and high FEs. �is indicates a low variability of the

results and to a fast convergence of ABC-X at each run.

In Table 5, we compare the results achieved by ABC-X with

various algorithms that have been applied to the same problem

instance in the literature before. �e algorithm generated from
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Table 3: (Case I) B loss matrix values

[B] =



0.0224 0.0103 0.0016 −0.0053 0.0009 −0.0013

0.0103 0.0158 0.001 −0.0074 0.0007 0.0024

0.0016 0.001 0.0474 −0.0687 −0.0060 −0.0350

−0.0053 −0.0074 −0.0687 0.3464 0.0105 0.0534

0.0009 0.0007 −0.0060 0.0105 0.0119 0.0007

−0.0013 0.0024 −0.0350 0.0534 0.0007 0.2353


[B0] =

[
−0.0005 0.0016 −0.0029 0.006 0.0014 0.0015

]
[B00] =

[
0.0011

]
Table 4: (Case I) �e results obtained over 30 trials

Results over D ∗ 1000 FEs Results over D ∗ 10000 FEs

Generator Output power Output power Output power Output power

P1(MW ) 199.6 199.6 199.6 199.6

P2(MW ) 20.00 20.01 20.00 20.00

P3(MW ) 24.01 25.24 23.96 23.96

P4(MW ) 18.68 17.51 18.86 19.54

P5(MW ) 18.53 17.28 18.17 18.17

P6(MW ) 13.54 14.69 13.82 13.47

Ploss (MW ) 11.22 9.237 11.18 10.77

Ftotal (R/h) 925.0 925.2 925.0 925.0

(Best Cost) (Worst Cost) (Best Cost) (Worst Cost)

Table 5: (Case I) Comparison between the results of ABC al-
gorithm produced by ABC-X and other algorithms in litera-
ture

Methods Best Cost Worst Cost FEs

(R/h) (R/h)

MSG-HS [30] 925.6 928.6 1000000

GA [18] 996.0 111.7 6120

DE [22] 963.0 − 10000

ABC [21] 928.4 − 10000

EP [20] 955.5 959.4 −

IEP [20] 953.6 958.3 −

SADE ALM [28] 944.0 964.8 20000

TS-SA [20] 959.6 966.0 −

ITS [20] 969.1 985.5 −

ABC-X 925.0 925.2 6000

ABC-X 925.0 925.0 60000

ABC-X outperforms all other algorithms in terms of achieving the

best and worst costs even though most of the considered algorithms

have run with more function evaluations.

5.2 Case I: 40 Generating Units System
�is case study includes 40 generators with quadratic cost functions,

together with the valve point e�ects. In this case, the transmission

losses are ignored and the required power demand to be met by

all the forty generating units is 10500 MW . �e unit data (cost

function coe�cients) for the system are available in literature and

so we have taken them directly from [27]. �e Taipower system

is one of the largest problems that can be found in the literature

on the EPDP with valve point e�ects.�e best and worst total fuel

costs obtained for the two case studies with D ∗ 1000 and D ∗ 10000

FEs are listed in Table 6 and 7.

Since this is a larger system with more non-linear elements, it

has also more local minima and, thus, is also more di�cult to solve.

�is situation is re�ected by the results in Tables 6 and 7, where,

unlike in the �rst case study, the results obtained with D ∗ 1000 FEs

are clearly worse than those obtained with D ∗ 10000 FEs and also

the variability of the results obtained is higher.

In Table 8, a comparison of the results of ABC-X with those

of several algorithms from the literature is given. When the com-

parison results in Table 8 are examined, it can be observed that

although each algorithm is run with di�erent FEs, our approach

gives very good results when compared to the other algorithms

and the best costs reported for ABC-X with 1000 ∗ D function eval-

uations are be�er than those of all other algorithms except for

NPSO-LRS [25], ST-HDE [29], and DEC(2)-SQP(1) [6]. On the other

hand, the worst results by ABC-X are in all cases be�er than the

worst results achieved by any of the other algorithms and in many

cases also be�er than their best ones. �e results by ABC-X with

10000 ∗ D function evaluations indicate that it can still bene�t sig-

ni�cantly from the additional computation time. Hence, overall

the results achieved with the proposed approach of automatically

con�guring a specialized, ABC-X algorithm (or any other contin-

uous optimizer from a �exible, component-wise framework) for

a speci�c, industrial-style problem shows to be highly e�ective

without requiring any signi�cant algorithm engineering e�ort.

6 CONCLUSION
ABC-X is a �exible and con�gurable ABC framework that can be

adjusted by automatic algorithm con�guration tools to speci�c

problems. ABC-X has previously been applied to several bench-

mark functions and has demonstrated superior performance over

known ABC algorithms. In this study, ABC-X was tested on a non-

convex economic dispatch problem with valve point e�ects that

serves as a case study for a potential industrial application in power

management. �e obtained results on two case studies shows that

the algorithm generated from the ABC-X framework reaches very

high performance and that its structure did not exist previously in

the literature. Future planned work will be to extend the ABC-X

algorithm by adding new components and realize its usability in

di�erent application areas. In addition, we want to implement the

ideas underlying the design of the ABC-X framework to other meta-

heuristics such as Di�erential Evolution (DE) and Particle Swarm

Optimization (PSO).
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Table 6: (Case II) �e best and worst results obtained over 30 trials with D ∗ 1000 FEs

Best solution Worst solution

Generator Output power Generator Output power Generator Output power Generator Output power

P1(MW ) 114.0 P21(MW ) 523.0 P1(MW ) 114.0 P21(MW ) 523.5

P2(MW ) 114.0 P22(MW ) 524.1 P2(MW ) 114.0 P22(MW ) 550.0

P3(MW ) 102.3 P23(MW ) 523.1 P3(MW ) 120.0 P23(MW ) 523.4

P4(MW ) 190.0 P24(MW ) 523.1 P4(MW ) 190.0 P24(MW ) 550.0

P5(MW ) 97.00 P25(MW ) 523.0 P5(MW ) 97.00 P25(MW ) 526.3

P6(MW ) 140.0 P26(MW ) 525.6 P6(MW ) 140.0 P26(MW ) 550.0

P7(MW ) 269.9 P27(MW ) 10.00 P7(MW ) 300.0 P27(MW ) 10.00

P8(MW ) 285.7 P28(MW ) 10.00 P8(MW ) 300.0 P28(MW ) 10.00

P9(MW ) 285.8 P29(MW ) 10.00 P9(MW ) 300.0 P29(MW ) 10.00

P10(MW ) 130.0 P30(MW ) 97.00 P10(MW ) 130.0 P30(MW ) 97.00

P11(MW ) 169.3 P31(MW ) 190.0 P11(MW ) 94.00 P31(MW ) 190.0

P12(MW ) 94.00 P32(MW ) 190.0 P12(MW ) 94.00 P32(MW ) 190.0

P13(MW ) 125.0 P33(MW ) 190.0 P13(MW ) 214.7 P33(MW ) 190.0

P14(MW ) 304.6 P34(MW ) 200.0 P14(MW ) 215.5 P34(MW ) 200.0

P15(MW ) 391.9 P35(MW ) 200.0 P15(MW ) 304.6 P35(MW ) 200.0
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P17(MW ) 489.5 P37(MW ) 110.0 P17(MW ) 500.0 P37(MW ) 110.0

P18(MW ) 491.3 P38(MW ) 110.0 P18(MW ) 489.8 P38(MW ) 110.0

P19(MW ) 517.5 P39(MW ) 110.0 P19(MW ) 511.6 P39(MW ) 110.0

P20(MW ) 511.4 P40(MW ) 512.2 P20(MW ) 513.3 P40(MW ) 512.4

Ftotal (R/h) 121770 Ftotal (R/h) 122356

(Best Cost) (Worst Cost)

Table 7: (Case II) �e best and worst results obtained over 30 trials with D ∗ 10000 FEs

Best solution Worst solution

Generator Output power Generator Output power Generator Output power Generator Output power

P1(MW ) 112.0 P21(MW ) 523.2 P1(MW ) 114.4 P21(MW ) 523.3

P2(MW ) 111.0 P22(MW ) 523.2 P2(MW ) 113.9 P22(MW ) 523.7

P3(MW ) 97.39 P23(MW ) 523.3 P3(MW ) 120.2 P23(MW ) 523.6

P4(MW ) 179.7 P24(MW ) 523.2 P4(MW ) 179.7 P24(MW ) 549.8

P5(MW ) 88.29 P25(MW ) 523.2 P5(MW ) 96.99 P25(MW ) 523.6

P6(MW ) 140.0 P26(MW ) 523.2 P6(MW ) 140.6 P26(MW ) 523.3

P7(MW ) 300.0 P27(MW ) 10.00 P7(MW ) 300.0 P27(MW ) 10.00

P8(MW ) 284.7 P28(MW ) 10.00 P8(MW ) 300.0 P28(MW ) 10.00

P9(MW ) 284.6 P29(MW ) 10.00 P9(MW ) 290.5 P29(MW ) 10.00

P10(MW ) 130.0 P30(MW ) 94.03 P10(MW ) 130.0 P30(MW ) 96.99

P11(MW ) 94.00 P31(MW ) 190.0 P11(MW ) 94.00 P31(MW ) 190.0

P12(MW ) 94.00 P32(MW ) 190.0 P12(MW ) 94.00 P32(MW ) 190.0

P13(MW ) 214.7 P33(MW ) 189.9 P13(MW ) 125.0 P33(MW ) 190.0

P14(MW ) 304.5 P34(MW ) 199.9 P14(MW ) 394.2 P34(MW ) 199.9

P15(MW ) 394.2 P35(MW ) 199.9 P15(MW ) 304.6 P35(MW ) 200.0

P16(MW ) 394.2 P36(MW ) 199.9 P16(MW ) 394.2 P36(MW ) 200.0

P17(MW ) 489.2 P37(MW ) 109.9 P17(MW ) 489.2 P37(MW ) 110.0

P18(MW ) 489.2 P38(MW ) 109.9 P18(MW ) 489.2 P38(MW ) 110.0

P19(MW ) 511.2 P39(MW ) 109.9 P19(MW ) 511.2 P39(MW ) 110.0

P20(MW ) 511.2 P40(MW ) 511.2 P20(MW ) 511.2 P40(MW ) 511.3

Ftotal (R/h) 121465 Ftotal (R/h) 121751

(Best Cost) (Worst Cost)
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Table 8: (Case II) Results in literature and the solution values
obtained by the proposed ABC-X .

Methods Best Cost (R/h) Worst Cost (R/h) FEs

HGPSO [15] 124797 − 100000

SPSO [15] 124350 − 100000

CEP [27] 123488 126903 60000

HGAPSO [15] 122780 − 100000

FEP [27] 122680 127246 60000

MFEP [27] 122648 124356 60000

IFEP [27] 122624 125741 60000

HPSOM [15] 122112 − 100000

PSO-LRS [25] 122036 123462 20000

Improved GA [16] 121916 123334 100000

HPSOWM [15] 121915 − 100000

IGAMU [5] 121819 − 450000

HDE [29] 121813 − 42500

PPSO [4] 121788 124998 20000

DEC(2)-SQP(1) [6] 121742 122839 18000

ST-HDE [29] 121699 − 42500

NPSO-LRS [25] 121664 122982 40000

ABC-X 121770 122356 40000

ABC-X 121465 121751 400000
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