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ABSTRACT
In light of recent advances in genetic-algorithm-driven automated
program modi�cation, our team has been actively exploring the art,
engineering, and discovery of novel semantics-preserving trans-
forms. While modern compilers represent some of the best ideas
we have for automated program modi�cation, current approaches
represent only a small subset of the types of transforms which
can be achieved. In the wilderness of post-apocalyptic so�ware
ecosystems of genetically-modi�ed and mutant programs, there
exist a broad array of potentially useful so�ware mutations, includ-
ing semantics-preserving transforms that may play an important
role in future so�ware design, development, and most importantly,
evolution.
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1 INTRODUCTION
Today, so�ware represents a con�uence of human ingenuity, diverse
and sophisticated libraries, robust compilers and interpreters, and
the labor of millions of human programmers. So�ware evolves
primarily as a result of human requirements and manipulation.
New so�ware is created, old so�ware is integrated or discarded,
and the so�ware ecosystem slowly evolves.

�is ecosystem is not a natural one. �e colloquial term “so�ware
ecosystem” seems like a misnomer, and a poor analogy for the blood,
sweat, and tears of so�ware development. Indeed, while there exist
market pressure and de�nitive trends in so�ware development,
so�ware applications don’t evolve over time due to any form of
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natural selection. With few exceptions, so�ware, once compiled,
is static, �xed, and evolution over time one of design and arti�cial
selection pressures. It isn’t driven by natural selection or some
kind of arti�cial biology. Di�erent copies of so�ware do not have
di�erent “genes,” do not undergo natural selection, and do not
evolve on their own. At least not yet.

Nonetheless, we �nd the metaphor a useful one, particularly
when describing the nature, purpose, and evolution of malicious
programs. Malware authors have used evolutionary principles such
as polymorphism and self-modi�cation for several decades. �e
principles of evolutionary biology, adaptation, co-evolution, and
even natural selection, while not yet directly applicable to so�ware
environments, still provides a natural language for describing our
long-term observations of malware propagation and malware ecolo-
gies [5]. Outside of isolated experiments in synthetic biology, a
true “so�ware ecosystem” is still just a longstanding dream of the
programming adept.

When compared to optimizing compiler-driven so�ware trans-
formation, we have taken a very di�erent approach to automated
program modi�cation: mutating programs arbitrarily, performing
cursory validation of program behavior, and then extracting and
exploring each modi�cation as a candidate transform. �is paper
describes our research goals with respect to improving the security
of programs using “in-place” modi�cation, provides an overview
of our technical approach for safe and e�cient modi�cation of
compiled binary program images, describes our initial results, and
discusses the impact that such approaches will have on the future
of so�ware ecosystems.

1.1 Why Modi�cation of Binary Files
So�ware ecosystems notwithstanding, numerous research e�orts
over the last two decades have been actively exploring so�ware
optimization and Genetic Improvement [12, 16, 20, 28], utilizing
search-based techniques for purposes as broad-scoped as program
optimization [4, 16], energy e�ciency [1, 22], program feature
modi�cation [15], automated bug �xing [9, 18, 24, 27], feature re-
moval [14], or program improvement [12, 28].

Our research group has recently begun focusing on program
binary modi�cation due to the strong desire to be able to modify
or otherwise improve programs without access to source code. We
have been principally interested in the removal of unwanted, un-
used, or vulnerable code. We are simultaneously exploring methods
for performing instruction-level randomization of programs to pro-
tect against code re-use a�acks [2, 25]. To these ends we have been
seeking methods to perform in-place program modi�cation without
access to or use of source code, compilers, or the permission or
restriction of developers or commercial so�ware vendors.
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Our current research goal is to create a large set of set of program
transformation routines that have a computing cost comparable
to traditional program patching. We also desire a larger catalog
of potential transforms than what is traditionally available using
common techniques (see Section 2.2). While a traditional patch
routine overwrites speci�c program blocks based on di�erences be-
tween two binaries, our desired program transform routines would
iteratively (and potentially randomly) apply multiple independent
patches to a program to safely a�ect its size, features, performance,
and security-related properties.

Prior work on in-place program binary modi�cation using ge-
netic algorithms has had limited utility for several reasons. While
others have demonstrated the feasibility of performing GA-driven
program modi�cation, these are generally limited to changes which
can be carefully restricted to ensure program safety properties [10,
14, 18]. Ad hoc mutation of so�ware can generally only be per-
formed when safety is not important or when other criteria such as
performance are paramount. Indeed, test suites generally provide
no guarantee of program reliability, correctness, or safety [21]. For
example, removing all unused features from a program in order
to limit a�ack surfaces will also result in removal of any code not
speci�cally a�ecting program test results. Limiting the changes to
a set of speci�ed features, however, can be performed relatively
safely [14]. Use of genetic algorithms to modify programs, while
convenient in their generality, are also incredibly costly, requiring
many hours on a high-performance computing cluster. �is ap-
proach would be impractical if the goal were to create randomized
variants of a particular program. Resulting binaries are likely to
be both fault-prone as well as having an inordinately high cost to
produce.

We have performed a cursory survey of candidate transforms
(learned through observations of a GA population of mutant pro-
grams) and compare and contrast these “naturally occurring” trans-
forms to those found in the literature. While many of these trans-
forms do not have the optimizing properties o�en sought by com-
piler designers, many of these transforms are suitable to perform
automated binary diversi�cation and code removal.

In addition to seeking novel tools to achieve program diversity,
we are also seeking to learn novel transforms to achieve other pur-
poses, learning from mutations occurring within synthetic so�ware
ecosystem. Our approach and principle contribution to the litera-
ture is to demonstrate the feasibility and bene�ts of an empirical
approach to transform discovery. By treating so�ware as an ecosys-
tem and expanding this idea using synthetic evolution, we can learn
useful ways of transforming programs to gain novel properties or
security bene�ts.

2 BACKGROUND
Generally, program modi�cation is an unsafe process, resulting
in a number of changes which may have unintended side-e�ects.
Modi�cations which still pass test-cases may still remove, disable,
or cripple critical features and safety elements which are not cov-
ered by the current test suite. Prior work on GA-based program
modi�cation has overcome this di�culty through the use of tech-
niques such as delta-debugging: obtaining a minimal change set
for a particular �tness criterion [22, 30]. �is approach is relevant

when the �tness criterion is explicitly known. For this work, our
�tness function’s primary purpose was to maintain program va-
lidity while allowing the individual populations’ members to dri�.
Essentially, we created a set of neutral variants because we are in-
terested in examining the di�erences between the variants and the
original. Each di�erence between a mutated population member
and the original program becomes a potential semantics-preserving
transformation.

Modern so�ware is the result of an incredible wealth and history
of so�ware-based symbol-manipulation systems [19], the incredible
stability and determinism of modern compilers [3], and our trust
that these systems are good enough [13]. We use automated symbol
manipulation systems within our optimizing compilers to achieve
enormous performance gains. However, the automated manipula-
tion of so�ware as a symbol system has thus far relied primarily
on hand-cra�ed semantics-preserving transforms. �ese types of
transforms have also been primarily concerned with performance,
o�en at a cost to other potentially useful properties. Unfortunately,
it seems that this trust may be misplaced. No ma�er how carefully
we scrutinize the validity of our so�ware, unexpected defects still
occur.

As so�ware grows in complexity, developers and researchers
have a strong desire to simplify. Traditional approaches to so�ware
simpli�cation generally serve to hide complexity using abstraction.
We believe there is great bene�t to removing complexity from
so�ware and in doing so using automated methods.

We have relied on the following assumptions in our research:

(1) So�ware is generally robust to mutational change [11, 17,
23, 29].

(2) Whole-program validity is a su�cient measure of safety
for many situations.

(3) So�ware is only ever as robust or valid as its test-suite [13,
23].

While each of these appear somewhat specious, we feel that there
is value in treating formal so�ware veri�cation with skepticism
and pursuing an alternate model for so�ware validation. Treating
so�ware veri�cation in this way has allowed us to consider creative
methods for mutating and evolving so�ware. Our hope is that
this approach will allow us to to extract useful artifacts from the
ecosystem of program variants evolved using traditional genetic
algorithm approaches.

An astute reader may also ask why do this using a GA rather than
just cleverly devising transforms that are known to be useful? Our
response is that this, essentially, has already been done. Modern
compilers already represent some of the best and most sophisti-
cated techniques available for purposes of program optimization.
�ere are, however, other useful properties that might be gained by
learning from nature or learning from the wild. For some use-cases
it might be desirable to use only transforms that make a program
smaller, perhaps at the expense of performance. Other use-cases
might seek to make the total cost of two parallel paths identical in
computational cost even if they perform fundamentally di�erent
operations. In essence, we think that there are ample opportunities
for the application of an extensive catalog of program transforms.
We are also fairly con�dent that there exist a large number of useful

1530



Learning from Super-Mutants GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

transforms which could play important roles in future so�ware
development, construction, deployment, and protection.

2.1 Program Binary Modi�cation
In the literature there are numerous examples of research into in-
place modi�cation of binaries and this research encompasses many
di�erent methods and goals for the modi�cation:

• To remove unneeded or unwanted features [14].
• To make programs “look” di�erent [6–8].
• To change program performance [1, 4, 15, 22].
• To a�ect program security properties [6, 7, 14].
• To repair known so�ware defects [24, 27].

Our work has leveraged a broad range of prior research into
Genetic Algorithms and in-place binary modi�cation.

Zeller et al. demonstrate an algorithm for automatically reduc-
ing program crashes to their minimal input state [30]. �eir algo-
rithm, which they dub ddmin (delta debug min), takes an input that
produces a crash or failure and repeatedly runs slightly modi�ed
versions of the provided input until it has produced the smallest
set of input that exhibits the crash. �e algorithm uses a memoized
binary search to produce output and was demonstrated on multiple
programs and input languages. �e algorithm was also able to
produce a maximal set of failure circumstances when compiling
certain defective programs.

Langdon et al. demonstrate that genetic programming tech-
niques can be scaled to work on large, complex pieces of real world
so�ware [16]. �ey introduce a few novel processes, a Sensitiv-
ity analysis pass that determines which sections of the program
might exhibit the largest improvement in the speci�ed property
and a di�erent way of binning output to ease sampling. �ey also
demonstrate that utilizing an automatic test oracle can allow ge-
netic programming to improve on a programs accuracy while also
improving on a speci�c functional property instead of trying to
remain true to the original programs semantics.

�ere’s a large body of work that focuses on using genetic algo-
rithms to improve existing so�ware in some form. In their work on
using Genetic improvement to reduce energy consumption Bruce
et al. explored modifying a program at the source code level to
achieve the reduction [1]. Using a �tness function that selected
variants based on energy information provided by the processor
they found they were able to reduce energy consumption by up
to 25% depending on the use case. �ey also found that for their
test program, which was single threaded and CPU bound, that re-
ducing energy use also strongly corresponded with a reduction in
execution time.

Conversely in their work using Evolutionary Computing to re-
duce energy usage Schulte et al. demonstrate a technique that
works on programs post compilation and can reduce power con-
sumption by an average of 20% [22]. �is reduction was achieved
across two di�erent microarchitectures. �e reduction is measured
using a linear energy model that has been trained across multiple
workloads for each architecture and is validated with wall socket
measurements. Variants were selected �rst for their ability to pass
a functionality test suite and then selected again based on their
energy use. �ey found that their evolutionary computation tech-
nique made a wide range of changes to achieve this reduction in

power use. For one program it made numerous small changes
where no single change or group of changes could be traced to the
reduction. In another case they found it traded an increase in cache
miss rate for a decrease in total computation time.

Forrest and Weimar et al. have shown that it is possible to �x
bugs in existing C programs through manipulation of of an abstract
syntax tree at the statement level [10]. �ey then extend this work
and show that similar techniques can be used to repair a program
through the mutation of assembly code as opposed to source [27].
�is brings several advantages over their previous work, primarily
that it is more generally applicable as it can be used on any language
that compiles to an intermediate assembly language instead of
requiring source access. It allows a �ner granularity of repairs to
be e�ected than what is available from the statement level. Finally
they demonstrate the ability to �x vulnerabilities in router �rmware
before the vendor publicly released a patch [24].

Landsborough et al. show that genetic programming techniques
can be used to remove unwanted or unused program functionality
while still allowing the variant to pass its test suite successfully [14].
By providing test cases that only contain program features that they
wanted removed they were able to successfully remove the desired
functionality from a small test program as well as two di�erent
utility functions. Recognizing that the genetic algorithm may have
removed more program functionality than what they had intended
they were able to use delta debugging [30] to create a minimal set
of changes that still removed the unwanted functionality.

Research has been performed that examines how bri�le source
languages and mutations are. Velez et al. look at the robustness of
source code in a large corpus of Java projects [26]. By examining
the minimal distinguishing subset of functions in their corpus they
found that only a very small amount of source code, approximately
4%, is distinctive. �ey found that the minimal subsets provide a
concise window into a programs function and purpose along with
the possibility of automatically suggesting code snippets to improve
a programmers productivity. �ey also show that these minimal
sets can be used to greatly improve the capability of a programmer
to perform e�ective code search.

In exploring the robustness of code that has been mutated by
genetic programming techniques, Schulte et al. de�ne a neutral
mutant as a mutated program that may be semantically di�erent but
still ful�lls the program speci�cation as de�ned by its test suite [23].
Using this de�nition of neutral mutant they show that on average
more than 30% of mutations are neutral. Based o� of their results
they suggest that traditional de�nitions in mutational testing are
too restrictive and reduce the acceptable number of variants that
can be produced.

Genetic programming can also be used to ease the transfer of ex-
isting so�ware implementations to hardware. Langdon and Harman
demonstrate the idea of Genetic Interface Programming (GIP) [15].
GIP utilized genetic programming techniques to create interfaces as
opposed to creating new programs or reengineering whole systems.
By combining NVIDIA’s CUDA framework and a genetic algorithm
they were able to generate a parallel GPGU kernel that exhibited
the same functionality as a highly optimized sequential Unix utility,
gzip.

�ere is also active research being done on the security bene�ts
of in-place modi�cation such as the work done by Crane et al. to
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demonstrate a novel approach to defending against a�acks that
utilize dynamically bound functions such as Counterfeit Object
Oriented Programming (COOP) a�acks [6]. Utilizing a binary that
has been instrumented during compilation as well as the insertion
of so�ware “booby traps” they are able to dynamically randomize
and hide the contents of virtual tables at load time. Although their
approach utilizes a specialized compiler they can apply it to a binary
if enough information on the virtual tables can be recovered by
static analysis. When tested on a benchmark program as well as
a version of Chromium browser their implementation incurred an
overhead of 8.4%.

2.2 Discovering Program Transforms
It is colloquially understood that for any su�ciently complex pro-
gram, that there are an essentially unlimited number of semanti-
cally equivalent variants. While “whole program” semantics be-
tween two program variants may be identical, the instruction-by-
instruction semantics can di�er extensively. �e result is that we
can generate programs that use di�erent instructions and that have
wildly di�erent instruction-level semantics while still meeting the
same external criteria for functionality. �is idea is particularly
interesting when the program size is allowed to change, or when
particular aspects of end-to-end program functionality (such as
performance) are allowed to vary.

�e core purpose of our research is to explore the space of pro-
gram variants (or mutants) using empirical methods. To gain a
be�er handle on possible techniques we have categorized methods
for discovering program transforms into the following categories:

• Formal: Formal/Manual approaches de�ne some set of
useful (or potentially useful) rewrite rules such as those
used in optimizing compilers. Most semantics-preserving
transforms were discovered and de�ned manually using
formal methods. Generally the discovery of a sophisticated
transform requires somewhat arduous proofs. Once un-
derstood, even sophisticated transforms may essentially
be directly wri�en as rewrite rules and manipulated as
mathematical operations. Formally proven transforms can
be applied to these program sequences with very li�le risk
to a�ecting program operation or robustness. Examples
of manual approaches for transform discovery which are
seen in real-world so�ware include compiler optimizations
and mathematically sound bit-twiddling hacks.

• Generative: Generative approaches describe the gram-
mar of a language and a set of rewrite rules for generat-
ing semantically equivalent expressions. By traversing the
world of grammatically correct statements we can use such
an approach to generate expressions which are semanti-
cally equivalent, but syntactically distant. A generative
approach may also be used to generate programs which
are semantically similar using rewrite rules which de�ne
semantic similarity rather than strict equivalence.

• Empirical: An empirical approach to discovering trans-
forms could take place using any of several techniques.
Our approach uses observations of functionally equivalent
programs, looks at program di�erences to discover candi-
date transforms, then performs empirical measurements of

Record failure Passed?

Run test suiteChoose test binary 
and apply transform 

Choose transform
from candidate pool

Record success

Exit

Last 
transform? Last bin?Y

N
Y

Y

N

N

Start

Figure 1: Rather than using formal methods, we use an end-
to-end validation across a set of candidate programs to de-
termine if our transform a�ects program functionality.

the success or failure of these transforms in new program
contexts.

• Combined Methods: It isn’t necessary to select a single
method. Empirical observations of GA-derived mutations
could be used as a starting point for formal veri�cation
to prove a relation between the original program segment
and a mutated program segment. Formal methods can
also be used to vet candidate transforms by demonstrating
di�erences in semantics.

Our focus in this paper is on empirical methods for transform
discovery and not on formal analysis or veri�cation. Our empirical
measurements do not represent any sort of proof of correctness,
but are a rough estimate of the validity of each tested transform.

3 APPROACH
Our overall approach is detailed in Figure 1, and consists of the
following steps:

(1) Mutate the target binary in place, producing thousands of
variants.

(2) Test each variant for validity using a suite of unit tests.
(3) Discard variants which fail.
(4) Compare each passing variant to the original program.
(5) Extract candidate transforms meeting our scope criteria.
(6) For each candidate transform, apply it to a pool of test

programs.
(7) For each test program, validate the transformed binary

using available unit tests.
(8) Collect candidate transforms for further testing and manual

analysis.

3.1 Program Mutation
Our initial pool of transforms was pulled from a group of variants
that had been processed by a genetic algorithm to make as many
changes to a program as possible while still passing that program’s
test suite. For our purposes, we mutated 16 programs within the set
of GNU core utilities, coreutils: base64, basename, cat, chcon, chgrp,
chmod, chown, chroot, comm, cp, csplit, cut, date, dd, df, dircolors.
Program variants were generated using crossover with tournament
selection as well as three possible mutation operations: copy, delete,
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and swap. For crossover we used two-point, where two o�sets are
chosen where both programs have instructions at both o�sets. �e
resulting variant contains instructions from one of the programs
up to the �rst o�set, instructions from the second program up to
the second o�set, and then the rest of the instructions are from the
�rst program. We compute the o�sets for the mutation operations
using the objdump utility. �e algorithm terminates a�er a speci�ed
number of �tness evaluations and uses a population size of 512. We
ran our algorithm on a 64 bit machine with 64 CPUs and 512 GB
of RAM. Tests were assigned across 16 virtual machines with two
GB of RAM and two CPU cores each. �is was to allow reloading
a virtual machine in the event that the virtual machine hangs due
to faulty programs, such as writing too much data and �lling up
the disc. Runs for the genetic algorithm on a given program were
terminated a�er 500,000 �tness evaluations and ranged from a
couple of days to a week depending on the performance of the
program’s test suite.

All mutation operations were performed directly on the raw
bytes of the binary image of the program as a executable �le on
disk. For a given transform and binary, we search the binary for the
sequence of bytes which match the original instruction bytes and
overwrite them with the bytes in the modi�ed instruction bytes.
�is approach is very straightforward and allows for fast program
mutations, but is likely to have limited applicability for programs
which are obfuscated or have been modi�ed for purposes of reverse
engineering resistance (such as the use of misaligned instructions
or self-modifying code).

Program Bytes Changed Percentage changed
base64 8694 52.266
basename 8495 69.166
cat 21013 71.898
chcon 27968 88.077
chgrp 25301 67.621
chmod 16959 54.171
chown 19745 58.303
chroot 13266 79.371
comm 9001 57.484
cp 28285 40.181
csplit 9499 41.820
cut 9885 54.644
date 13654 38.761
dd 14537 45.482
df 33181 60.715
dircolors 10784 68.314

Table 1: Change in executable code at 5x105 evals

Table 1 shows the percentage of executable code (in bytes) mod-
i�ed in resulting binaries generated by running the genetic algo-
rithm on coreutil binaries for 500,000 evaluations. We see roughly
a 50 percent change in the bytes in the executable section with
a few notable outliers. For example, chcon had 88 percent of the
executable code modi�ed. Upon further investigation, chcon is used
to change the SELinux security context for �les. Since we were not
using the SELinux module, some tests may have been skipped or
failed to produce a fail condition due to early termination. In some

other cases, programs worked correctly, but had minor issues such
as unusual characters or words in the usage, or help, output. �is
further illustrates the dependence on test suites and the need for
those with a good level of program coverage to reduce the risk of
faulty transforms.

3.2 Candidate Transform Discovery
We identi�ed three possible techniques for locating potential trans-
forms uncovered by our genetic algorithm.

1. Compare a variant with the original (diff) �is is the simplest
and most straight forward method of candidate transform discovery.
It is also the method that we used in this initial work. Given an
original program and a function preserving variant it is possible to
compare the machine code of the two programs and any di�erences
in the machine code are candidate transforms. �is method may
also reveal potential transform chains. We consider a transform
chain to be an initial transform that leaves the machine code in
such a state where a second transform is able to be applied to the
location that was changed by the initial transform. Care must be
taken when dealing with a transform chain as it is possible to chain
enough transforms to form a cycle. We did �nd transform chains
in our candidate pool but none of the chains were cyclic and all the
chains were broken a�er the exhaustive round of testing.

2. Take subsets of each candidate Given a safe transform that has
been identi�ed using method one we believe that for some trans-
forms there may be a subset of other transforms within the larger
change. �ese new transforms may be either novel transforms
or previously discovered. In a cursory search of the initial pool
of unsafe transforms we identi�ed some larger transforms which
contained smaller, already identi�ed potential transforms. While
none of these transforms were safe enough to make it through the
�rst round of testing we believe that with a larger set of variants to
examine or a set of variants that has been mutated with a di�erent
�tness function a safe version would emerge.

3. Take supersets with adjacent context (windowing of diff con-
text) �e last method we identi�ed for discovering transforms in-
volves including some of the unchanged instructions before and
a�er the transform. For any given transform we can also consider
supersets consisting of the original candidate as well as adjacent
instructions selected using a sliding window of one to three or
more instructions both before and a�er the candidate. Although we
have not yet cataloged transforms using this approach, we believe
this method would increase the number of safe transforms as it
includes more of the program state, such as status �ags from prior
operations. �is method would also drastically increases the search
space.

3.3 Transform Vetting
For each of our candidate transforms, we are essentially hypoth-
esizing that the transform is generalizable across other programs.
We test this hypothesis by applying the transform to a selection
of similar programs. We limit application of the transform to the
.text section of the binary. �is retains transforms which cannot be
safely applied to modify data while also limiting the search space
for useful transforms.
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From the modi�ed binaries, potential transforms were located
by comparing an object dump of the original program to an ob-
ject dump of a variant produced by the genetic modi�cation pro-
cess. Any di�erences in the machine code that are reported by
diff are considered a potential transform. �ese potential trans-
forms are then extracted and stored for use on other programs.
To quickly weed out potential transforms that may be unsafe or
machine/program speci�c we a�empted to apply a single instance
of each transform to other binaries in the coreutils set.

We de�ne a safe transform according to the following de�nition:
Given a program P , a binary transformT , and a program
variant P ′ such that P ′ = T (P ) then T is considered a
safe transform if P and P ′ are functionally equivalent,
de�ned as both P and P ′ successfully passing a common
test suite.

We believe that our testing approach is su�cient to ensure that a
transform is safe in terms of “whole-program” validity. �e speci�c
semantics of the transform in question may violate program validity
if assessed in terms of internal instruction-by-instruction semantics.
Our approach is inspired by a wealth of prior work on program
modi�cation and mutational robustness as discussed in Section 2.1.
�e safety claim is also limited by the validity of the test suite being
used. A test suite with poor coverage will result in transforms of
limited validity. We chose to accept potentially risky transforms
instead of pro�ling the program based on test suite coverage to
obtain a large quantity of transforms. Our assumption is that these
riskier transforms will be eliminated during the transform ve�ing
process.

A�er the candidate transform was applied to a test program the
modi�ed test program was run through a series of test cases as
shown in �gure 1. We a�empt to apply this pool of potential trans-
forms to the 8.25 release of coreutils. We apply a single transform
exhaustively to each member of the coreutil suite and then run the
modi�ed program through unit tests associated with the program.
Any transform that is applied to a program which subsequently
fails one of its unit tests is rejected as unsafe. Any candidate trans-
form that is unable to be applied to any of coreutil programs is not
rejected as unsafe but is still removed from the pool of candidate
transforms. In other words, a candidate transform must be applied
to at least one program in the coreutils suite and that modi�ed
program must pass all of the associated unit tests for the potential
transform to be considered valid.

4 RESULTS
Our original GA population had a large number of transforms that
worked without impact to test-based validation in at least one of the
Linux coreutils. However, this number is a small subset of the total
candidate transforms. As shown in table 1, some variants consisted
of almost entirely modi�ed instructions. Using test cases with be�er
test coverage would reduce our overall number of candidates, but
likely increase the percentage of validated transforms.

• Original candidates from GA population: 11,878
• Transforms working in >= 1 coreutils: 3445
• Transforms working in > 1 coreutils: 2041

Of the 3,445 validated transforms, 50 were found in all 107 of
our test coreutils. On average, transforms were applied to 32 of the

107 test programs. We suspect these values are large because the
programs were all compiled on the same system using the same
compiler. We also suspect we can further eliminate transforms
by a�empting to apply transforms in combination, or by applying
transforms to programs compiled with a compiler other than GCC.

4.1 Novel Transforms
While many of the transforms we found were simply deleting in-
structions by replacing them with an amount of NOPs that are
equivalent to the instruction length there were a number of trans-
forms that performed more interesting modi�cations.

�e following transform performs exactly the same function,
but using di�erent instructions and di�erent computations for the
o�set. �is transform occurred in almost all of the coreutils, and ap-
pears to simply be performing cleanup of open �les during program
termination. �is transform short circuits the call to close stdout
by simply loading the expected return address into %rax and leav-
ing stdout open. �e call to close stdout o�en occurs in the
epilogue of functions and while this operation is unlikely to be cov-
ered by common test suites, it is also unlikely to negatively a�ect
program execution. So, while this mutation represents what ap-
pears to be a signi�cant change in instruction semantics (dropping
the close stdout call entirely), it results in equivalent program
behavior and identical system state shortly a�er program termina-
tion.
Original assembly:
mov %rsi,(%r12)
je 404054 close_stdout+0x1154>

Transformed assembly:
lea 0x39f4(%rip),%rax
# 407a32 <version_etc_copyright+0xa12
nop
nop

Not all transforms modify the program in a positive manner.
�is transform appears to remove a part of the error handling from
the modi�ed program. We surmise that this transform was able to
make it through the various test routines as it was in a section of
code that wasn’t touched by the test suites. We had two di�erent
versions of this transform successfully make it through the into the
valid recursively applied pool, the one shown and another where
the error handling is simply replaced with NOPs.
Original assembly:
callq 401328 __errno_location@plt>

Transformed assembly:
nop
nop
sub %rbx,%rcx

4.2 Generalization
Our current test approach uses a very small subset of so�ware
samples that are all similar in construction and are run in a nearly
identical environment. Our testing approach is unlikely to general-
ize to so�ware which is on a di�erent operating system, compiler,
or processing architecture. Our long-term goal is to discover novel
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transforms that apply to any program. For this purpose we will
likely need to expand the type and kind of mutations being per-
formed. Our current cross-over approach borrows instructions
solely from the program being mutated. We also only perform
whole-instruction modi�cation and instructions are not mutated
in place. Many of the more interesting transforms (such as bit-
twiddling hacks) are simply not part of our current search space.

To manage a large set of transforms, we used an SQLite data-
base consisting of a single table. Columns in the table consisted
of: original hex bytes, original assembly, transformed hex bytes,
transformed assembly, counter for applications, counter for suc-
cesses, and a validity �ag. �e hex bytes were required in order
to apply the transformations in-place by searching for and over-
writing portions of the binary �le. �e assembly is stored only for
the bene�t of analysis, providing a representation of the transform
which is easier to read. �e applications counter keeps track of how
many times a transform has been applied. �e successes counter
keeps track of how many times a transform results in transformed
programs which successfully pass their test suites. �ese counters
were important in weeding out transforms earlier on in the process,
as we only a�empted transforms on the full test suite if the number
of a�empts and successes were equal. �e last column was the
validity �ag. Transforms are validated against the larger test suite
and are marked as: valid, invalid, or skipped. Valid transforms were
those that resulting in programs which were able to successfully
pass all tests. Invalid transforms resulted in programs which failed
one or more of the coreutils test scripts.

5 CONCLUSIONS
�e application of genetic programming to so�ware repair, opti-
mization, and general modi�cation have proven incredibly fruitful.
However, automated modi�cation of programs and program evolu-
tion is still in need of computationally inexpensive and semantically
expressive mutation operators.

Our work is partially inspired by the empirical techniques of
analogous research in the sciences of biochemistry and evolutionary
biology. Useful adaptations within cellular and metabolic machin-
ery are naturally propagated as organisms adapt over evolutionary
timescales. �e scale and scope of modern so�ware development
e�orts suggests that the so�ware ecosystem is ripe for exploratory
and empirical studies of this kind.

Our research in this area is still very early in its development and
we would hesitate to make claims as to the utility of our approach.
However, we feel strongly that systematic empirical exploration
and transform validation are likely to play an important role in
future research. In particular, there are a number of unexplored
research areas that may prove fruitful.

5.1 Future Work
All of our test programs were compiled using GCC without opti-
mizations. �is raises the possibility that many of the transforms
we’ve found are peculiarities only used by this particular compiler.
More work needs to be done to see if transforms generated by one
compiler are safe when applied to a binary generated by a di�erent
compiler.

We currently implement the mutation operations at the granular-
ity of single instructions. We believe that if we allow mutation units
to span a few instructions we may �nd additional transformation
candidates of a more interesting nature.

Our current mutation operations are also essentially unbiased.
However, there are many instances where performance or memory
pro�ling could be used to guide mutations and thus decrease the
number of epochs to achieve a particular �tness criteria. Combining
pro�ling-based mutation with our approach is likely to result in the
discovery of transforms with a higher-impact to program �tness.

Similarly, our approach could also be re�ned by performing dy-
namic tracing of so�ware to determine which portions of a program
are actually covered by a particular test suite. As such, program
mutations could be constrained to portions of the program which
are likely to have been exercised by the available tests. Program
regions which are never executed through test cases could be ex-
cluded from mutation operations entirely. �is technique would
resolve many of the issues with untested features being excised or
inadvertently modi�ed.

It has also been suggested that in some instances, test cases
may cover relatively unimportant features that have a signi�cant
performance impact. Removal or modi�cations of such features may
have bene�t but the challenges of gauging the relative importance
of individual tests is not addressed with the current approach.

Another limitation of our approach is that we only perform
mutations using machine code which is borrowed from the same
program. We have discussed using large libraries of open-source
so�ware to “borrow” machine code samples for use in program
modi�cation. �is expands the search space dramatically, but as
we have seen even with our current approach, a large number of
candidate transforms is quickly paired down to a small subset in
our initial program variant validation.

We have also failed to address the human factors of program
modi�cation. Our technique deliberately avoids developer-guided
modi�cation with the goal of ad hoc mutation of so�ware very late
in the so�ware lifecycle. Developers are unlikely to embrace the
idea of arbitrary code mutations. However, it would be interesting
to explore the use of developer-guided annotations or “interesting
code here” hints. Such an approach may have the potential to im-
prove the transform discovery process as well as modi�ed program
safety and performance.

Overall, while our current results and the extent of our experi-
mentation has been very limited, we believe that the approach is
sound and has potential to catalog and characterize a broad array
of useful transforms.
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