
Large Scale Optimization of Computationally Expensive
Functions: an approach based on Parallel Cooperative

Coevolution and Fitness Metamodeling
Ivanoe De Falco

Institute of High Performance
Computing and Networking,

National Research Council of Italy
Naples, Italy 80131

ivanoe.defalco@icar.cnr.it

Antonio Della Cioppa
Natural Computation Lab, DIEM,

University of Salerno
Fisciano (SA), Italy 84084

adellacioppa@unisa.it

Giuseppe A. Trun�o
DADU, University of Sassari

Alghero (SS), Italy 07041
trun�o@uniss.it

ABSTRACT
In recent years, research on large scale global optimization (LSGO)
provided metaheuristics able to e�ectively tackle real-valued objec-
tive functions depending on thousand of variables. Nevertheless,
�nding a suitable solution of LSGO problems o�en requires a sig-
ni�cantly high number of �tness evaluations. �erefore, when the
objective function is computationally expensive, metaheuristics-
based solutions of LSGO problems can easily become infeasible
or at least una�ractive. In this paper, we address such an issue
with a joint approach based on problem decomposition, �tness
meta-modeling and parallel computing. We present a preliminary
numerical investigation of the proposed methodology, which pro-
vided signi�cant gains in terms of both exact evaluations of the
objective functions and parallel speedup.

CCS CONCEPTS
•Computingmethodologies→Continuous space search; Ran-
domized search; Shared memory algorithms; Heuristic function
construction; Supervised learning by regression;

KEYWORDS
Cooperative coevolution, large scale optimization, metamodeling
ACM Reference format:
Ivanoe De Falco, Antonio Della Cioppa, and Giuseppe A. Trun�o. 2017.
Large Scale Optimization of Computationally Expensive Functions: an
approach based on Parallel Cooperative Coevolution and Fitness Metamod-
eling. In Proceedings of GECCO ’17 Companion, Berlin, Germany, July 15-19,
2017, 8 pages.
DOI: h�p://dx.doi.org/10.1145/3067695.3084214

1 INTRODUCTION
Over the past few years, there has been an increasing need of
e�ective metaheuristics algorithms to tackle real-world problems
involving the optimization of a high number of variables [1, 3, 4, 22].
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’17 Companion, Berlin, Germany
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-4939-0/17/07. . . $15.00
DOI: h�p://dx.doi.org/10.1145/3067695.3084214

For this reason, the �eld of research referred to as Large-scale
global optimization (LSGO) is a�racting an increasing number of
researchers, according to the literature [9]. However, despite the
progress made in the �eld, LSGO still requires a high number of
objective function evaluations (e.g., from hundreds of thousands
to millions) to provide a satisfactory near-optimal solution [21].
�erefore, for LSGO problems characterized by a computationally
expensive objective function, as is the case of many real-world
applications in engineering design, the use of metaheuristics proves
o�en computationally infeasible. In spite of this, the issue of using
metaheuristics for optimizing high-dimensional functions that are
also computationally expensive did not a�ract enough research
e�orts.

A typical approach for dealing with expensive �tness evaluations
consists of exploiting cheaper approximations of the objective func-
tion during the search (i.e., the so-called surrogates or meta-models)
[8]. However, for high-dimensional problems also the quality of
�tness surrogates is plagued by the curse of dimensionality, that is,
it decreases rapidly as the number of involved variables increases.

To address the issue of LSGO with expensive objective func-
tions, in this paper, we study the joint use of �tness surrogates
and parallel computing in the context of a cooperative coevolu-
tionary (CC) approach [17], in which the problem is decomposed
into lower-dimensional subcomponents. �e idea is that, thanks
to the CC approach, the surrogates can operate within the lower
dimensional search spaces originated from a decomposition of the
original problem [5, 13]. �is allows e�ectively approximating
the exact �tness function at the obvious cost of building a higher
number of surrogates (i.e., at least one for each subproblem origi-
nated by the CC decomposition), under the assumption that there is
still a saving of computing time due to the high cost of the original
�tness function. Moreover, the CC technique enables a natural data-
parallel approach, given that the subcomponents can be evolved
independently with only periodical exchange of information.

In the literature, accurate meta-modelling in conjunction with
CC has been rarely used and the resulting framework has never
been thoroughly investigated using LSGO problems [5, 13]. Never-
theless, quantifying the advantages provided by such a surrogate-
assisted CC (SACC) is of some interest. For example, in case of non-
separable problems [17], previous studies limited to some medium-
sized test functions [14] showed that the uncertainties introduced
by the approximate �tness can have contrasting e�ects. Another
peculiar aspect of the CC technique is the periodical exchange of

1788

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany Ivanoe De Falco, Antonio Della Cioppa, and Giuseppe A. Trunfio

information between subcomponents, which should be more fre-
quent in case of highly nonseparable problems. In case of a SACC,
with meta-modelling at the subcomponent level, such interactions
interfere with the accumulation of data on the �tness landscape
that is required to train the surrogates.

To investigate the above issues, in the article we use a common
meta-modelling approach, namely Radial Basis Function Network
(RBFN) [26], within a CC optimizer based on Di�erential Evolu-
tion (DE) [20]. Moreover, we investigate the scalability of a data-
parallel implementation for shared-memory architectures, based
on OpenMP and C++. Our main aim is to quantify, using a stan-
dard LSGO test-bed, the gain of expensive function evaluations and
computing time that can be achieved with the proposed SACC.

2 RELATEDWORK
�e joint use of the CC approach and �tness approximation is rela-
tively rare in literature, especially when the application to LSGO
problems is concerned. An earlier work based on CC optimization
assisted by approximate models was conducted in 2001 by Nair and
Keane in [10], where the authors applied a CC Genetic Algorithm
to the design of a large space structure. However, such a study
concerned a single test problem of relatively small size (i.e. 40 vari-
ables). Later, in [13], Ong and co-authors used a surrogate-assisted
CC based on a real-coded GA and a RBFN [2] to approximate the
exact �tness. �e main aim of the study was to investigate the
combined e�ect of non-separability and �tness meta-modelling.
Also in this case, the approach was not applied to LSGO problems,
since the investigation was based on only two objective functions,
with 20 and 40 variables respectively. More recently, Goh and co-
authors in [5] described a surrogate-assisted memetic CC algorithm
for constrained optimization problems. In the proposed approach,
a Local Search (LS) phase takes place within each subcomponent
and for each individual by exploiting �tness surrogates built on the
basis of the current archive of exact evaluations. Again, although
the proposed algorithm has proved e�ective in some constraint-
optimization benchmark test functions, it was not investigated in
high-dimensional problems. A similar approach, implementing a
CC with surrogate-assisted LS phase, was recently presented in
[23]. �e proposed CC optimizer was based on an adaptive DE (i.e.,
JADE [29]) and its e�ectiveness was investigated on a small set
of 1000-dimensional problems. �e results showed that in most
cases the surrogate-assisted memetic approach can make the CC
search more e�ective, although the gain in e�ciency proved very
sensitive to the algorithm’s parameters. Another relevant study,
including a speci�c investigation in LSGO, was illustrated in [6, 7],
where the authors adopted a �tness inheritance (FI) strategy [19]
in conjunction with a CC approach. In these cases, the results
suggested no evidence of overall advantages provided by the FI
strategy. �e authors concluded that, likely, the adopted surrogate-
assisted approach was not able to add any signi�cant improvement
to algorithms already including several sophisticated mechanisms
that boost their performance.

Also the parallel implementations of CC algorithms, to be applied
in the LSGO �eld, are relatively infrequent in literature. To our
knowledge, the only relevant application was described in [16],
where the author evaluated a master-slave CC optimizer on di�erent

hardware architectures and using a popular test suite with up to
1200 variables.

3 A SURROGATE-ASSISTED CC OPTIMIZER
According to the divide-and-conquer CC technique proposed by
Po�er and De Jong in [17], ad-dimensional continuous optimization
problem is �rst decomposed into lower-dimensional easier-to-solve
subcomponents. �en, a standard iterative algorithm is applied to
separately evolve candidate solutions in each subcomponent, using
�xed values for the variables not included within that particular
subcomponent. Periodically, the �xed values are updated by the
subcomponent they represent. More in details, a d-dimensional
optimization problem is tackled using the CC approach by partition-
ing the d-dimensional set of search directionsG = {1, 2, . . . ,d} into
k sets G1 . . .Gk , where each group Gi of directions de�nes a sub-
component. For example, a straightforward decomposition of the
original d-dimensional search space consists of k subcomponents
of the same dimension dk = d/k , being the groups of directions
associated to the subcomponents de�ned as:

Gi = {(i − 1) × dk + 1, . . . , i × dk } (1)

Typically, the exchange of information between subcomponents is
implemented through a common d-dimensional context vector b,
which is built using a representative individual provided by each
subcomponent. �en, before its evaluation, each candidate solution
is complemented through the appropriate elements of the context
vector. In this study, the current best individual is used to represent
a subcomponent in the context vector.

When applying a CC optimizer, an important aspect to be con-
sidered is epistasis [17, 25], which can negatively a�ect the con-
vergence rate [17]. In practice, when interdependent variables are
assigned to di�erent subcomponents, it is more di�cult to adjust
correctly their values relying on a periodical access to the context
vector, which represents only partially the convergence state of
each subcomponent. To cope with the possible epistatic interaction
between variables belonging to di�erent subcomponents, a typical
approach consists of using a dynamic grouping strategy called Ran-
dom Grouping (RG) [27, 28], in which the directions of the original
search space are periodically re-grouped in a random way to deter-
mine the CC subcomponents. In practice, the RG strategy increases
the probability of having grouped together two dependent variables
during the optimization process [12, 27]. �e CC optimizer based
on the RG strategy adopted in this study is outlined in Algorithm
1. �e �rst step consists of randomly initializing both the popu-
lation, composed of numInd individuals, and the context vector.
�e optimization is organized in cycles (lines 5-12 of Algorithm
1). During each cycle, �rst a new RG is executed by creating k
groups of coordinates randomly drawn without replacement from
the set {1, 2, . . . , d } (line 5). �en, the optimizers are activated
in a round-robin fashion for the di�erent subcomponents (lines
7-9). Before the next cycle, the context vector is updated using the
current best individual of each sub-population (lines 11-12). Each
optimizer is executed for Ite iterations at each cycle. �e CC cycles
terminate when the number of �tness evaluations reaches the value
maxFE.

In this study, we adopted JADE [24, 29] as the evolutionary
search algorithm within each subcomponent. JADE is an adaptive

1789

Large Scale Optimization of Computationally Expensive Functions GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

variation of DE in which the parameters F and CR are evolved
on the basis of their historical record of success. Moreover, JADE
implements a mutation strategy called ’DE/current-to- pbest’, in
which one of the vectors involved in every mutation is randomly
selected among the 100p% best individuals, being p ∈ (0, 1] a fur-
ther parameter. An outline of the modi�ed JADE, able to exploit
surrogate �tness, is shown in Algorithm 2. Because of the lack of
space, we refer the reader to the original algorithm illustrated in
[29] for a be�er understanding of basic DE and JADE functionali-
ties. In the developed SACC, an approximate model of the objective
function is built within each subcomponent in order to evaluate
with a surrogate �tness most of the o�spring produced in a CC
cycle. In particular, we use a global meta-model trained with online
learning, which consists of constructing an approximate model of
the �tness landscape by using the data generated during the opti-
mization process. As a consequence, at the beginning of each CC
cycle a certain number of individuals have to be evaluated with
the exact �tness in order to collect su�cient data for the model
training. More in details, each subcomponent maintains an archive
A of past evaluations 〈x, f (x)〉, where x is a member of the dk -
dimensional population and f (x) is the corresponding value of the
exact objective function. �e purpose of A is to store a suitable
number nr of training pa�erns for building the �tness surrogate
when required. At each activation of the subcomponent’s optimizer,
the archive of past evaluations is empty (see line 1 of Algorithm 2).
Subsequently, every evaluation of an individual x with the original
�tness function enriches A with a new pa�ern (lines 4 and 28).
As shown in lines 21-23 of Algorithm 2, as soon as the archive
reaches the minimum number of pa�erns, the �tness meta-model
is built. Note that when A contains enough elements, a new RBFN
is built at each JADE iteration with the aim of approximating at
least the area of the �tness landscape corresponding to the current
population. �en, a newly generated individual x is evaluated with
the original �tness f (x) if |A| < nr ; otherwise, it is associated to
an approximate �tness value f̂ (x) (see lines 24-31 of Algorithm 2).

It is worth noting that, even a�er the meta-model has been built,
we ensure that the exact �tness is assigned to the best individual in
the o�spring population (see lines 33-37 of Algorithm 2). �is to
reduce the risk of convergence misleading due to the di�erences
between the surrogate and the real objective function [8].

�e adopted meta-model is a RBFN, which can be seen as a special
type of arti�cial neural network that uses radial basis functions in
the activation layer [15] and is expressed as the following linear
combination:

f̂ (x) =
nc∑
j=1

w j hj (‖x − cj ‖) (2)

where w j ∈ R are scalar weights, the nc centres cj ∈ Rdk are
representative of the available data points in the archive A and
the hj (‖x − cj ‖) are real-valued and radially symmetric functions,
with ‖·‖ denoting the Euclidean norm. A�er some preliminary
experiments with complex multi-modal problem, we selected quite
general basis functions in the form:

hj (x) = exp
(
−(x − cj)T Rj (x − cj)

)
(3)

Algorithm 1: CCRG(f , d)
1 P ← initPopulation(d , numInd);
2 b← initContextVector(P);
3 �tnessEvaluations← 0;
4 while �tnessEvaluations < maxFE do
5 G = {G1, . . . , Gk } ← randomGrouping(d , k);
6 foreach Gi ∈ G do
7 Pi ← extractPopulation(P , Gi);
8 〈Pi , besti , FE 〉 ← optimizer(f , Pi , b, Gi , Ite);
9 pop ← storePopulation(Pi , Gi);

10 �tnessEvaluations← �tnessEvaluations + FE;
11 foreach Gi ∈ G do
12 b← updateContextVector(besti , Gi , b);

13 return f (b) and b;

where R−1
j = diaд(2σ

2
1j , . . . , 2σ

2
dk j
). In practice, instead of using a

global scaling parameter σ for all basis functions, as o�en found
in the literature, we introduce a scaling parameter σi j for each
basis function and direction as suggested in [18]. �e adopted
RBFN model depends on the vector of nc (1 + 2dk) parameters
u = {w, σ1, . . . , σnc , c1, . . . , cnc }, where w collects the weights
wi and each vector σj contains the scaling factors of the basis func-
tion centred in cj . As suggested in [18], we �nd a suitable value
for u using a three-phase learning. In particular, we �rst select the
number nc ≤ n of centres. �en, a few iterations of a k-means
clustering algorithm are used to partition the archive A into nc
clusters, whose centroids are the initial values of ci . Subsequently,
the values σi j are simply initialized to the variances of cluster cen-
tres ci in each direction, and the weights w are randomly initialized
in [−1, 1]. In the third and �nal phase, we adjust all the parameters
in u in order to minimize the error E =

∑n
q=1(y

(q) − f̂ (x(q)))2/2.
�is is done using a �xed number of a gradient descent procedure
in which u is iteratively moved in the direction of the negative
gradient −∇E using a small learning rate η. According to some pre-
liminary experiments, with the small-sized subcomponents used in
this study (i.e., dk = 4), a relatively small number of iterations of the
above procedure are su�cient to �nd a suitable set of parameters
for the RBFN �tness surrogate.

3.1 Parallel implementation
�e parallel implementation was developed for multi-threaded ex-
ecution, on shared-memory architectures, speci�cally exploiting
the problem decomposition provided by the CC approach. In Al-
gorithm 3 we outline the optimization procedure where, a�er the
initialization of population and context vector, each thread executes
in parallel the CC cycles within the available budget of exact �tness
evaluations (lines 4-23). More in detail, in lines 7-10 a single thread
performs the RG procedure by randomly reordering the search
directions and distributing the groups of dk variables among all the
threads. Since the number of groups is not always a multiple of the
number of threads, the function computeIterations tries to balance
the computation by a�ributing a speci�c number of DE iterations to
each thread (i.e., a thread with a greater number of subcomponents
will execute less iterations on them). Note that this does not a�ect

1790

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany Ivanoe De Falco, Antonio Della Cioppa, and Giuseppe A. Trunfio

Algorithm 2: optimizer(f , P , b, Gi , nIte)
1 Empty archive A of past evaluations;
2 for i ← 1 to |P | do
3 ϕ[i] ← f (P[i]);
4 Insert P[i] and ϕ[i] in A;
5 FE← |P |;
6 for д ← 1 to nIte do
7 surrogateTrained← false;
8 for i ← 1 to |P | do
9 Generate CRi = N (µCR, 0.1) and Fi = Cauchy(µF , 0.1);

10 Randomly choose xb from the 100p% best elements of P ;
11 r1 ← RandomInteger(1, |P |) with r1 , i ;
12 r2 ← RandomInteger(1, |P |) with r2 , r1 , i ;
13 ȳi ← P[i] + Fi · (xb − P[i]) + Fi · (P[r1] − P[r2]) ;
14 jrand ← RandomInteger (1, dk);
15 for j ← 1 to dk do
16 if j = jrand or rand(0, 1) < CRi then
17 C[i][j] ← ȳi [j];
18 else
19 C[i][j] ← P[i][j];

20 for i ← 1 to |C | do
21 if surrogateTrained=false and |A | ≥ nr then
22 f̂ ← trainSurrogateFitness(A);
23 surrogateTrained← true;
24 if surrogateTrained=false then
25 γ [i] ← f (C[i]);
26 hasExactFitness[i] =true;
27 FE← FE +1;
28 Insert C[i] and γ [i] in A;
29 else
30 γ [i] ← f̂ (C[i]);
31 hasExactFitness[i] =false;

32 jb ← indexOfBestIndividual(γ);
33 while hasExactFitness[jb] =false do
34 γ [jb] ← f (C[jb]);
35 Insert C[jb] and γ [jb] in A;
36 FE← FE +1;
37 hasExactFitness[jb] =true;
38 jb ← indexOfBestIndividual(γ);
39 mCR ←mF ← cF ← cCR ← 0;
40 for i ← 1 to |C | do
41 if γ [i] ≤ ϕ[i]) then
42 P[i] ← C[i]; ϕ[i] ← γ [i];
43 mCR ←mCR +CRi ; mF ←mF + F 2

i ;
44 cCR ← cCR + 1; cF ← cF + Fi ;

45 µCR ← (1 − c) · µCR + c ·mCR/cCR ;
46 µF ← (1 − c) · µF + c ·mF /cF ;
47 return P , jb FE;

the �nal result thanks to the cyclic reordering of search directions.
At line 13, to improve data locality during the JADE iterations, each
thread makes a local copy of the current context vector, which is
accessed very frequently for evaluating the candidate solutions. At

Algorithm 3: ParallelCCRG(f , d)
1 P ← initPopulation(d , numInd);
2 b← initContextVector(P);
3 �tnessEvaluations← 0;
4 do in parallel with nt threads
5 tid← get�readId();
6 while �tnessEvaluations < maxFE do
7 single thread
8 G = {G1, . . . , Gk } ← randomGrouping(d , k);
9 G = {G(1), . . . , G(nt) } ← distributeGroups(G, nt);

10 {Ite(1), . . ., Ite(nt) } ← computeIterations(G, Ite);
11 barrier
12 FE(tid) ← 0;
13 b(tid) ← b;
14 foreach Gi ∈ G

(tid) do
15 Pi ← extractPopulation(P , Gi);
16 〈Pi , besti , FE 〉 ← optimizer(f , Pi , b(tid), Gi , Ite(tid));
17 P ← storePopulation(Pi , Gi);
18 FE(tid) ← FE(tid)+FE;
19 atomic update
20 �tnessEvaluations← �tnessEvaluations +FE(tid);

21 foreach Gi ∈ G
(tid) do

22 b← updateContextVector(besti , Gi , b);
23 barrier

24 return f (b) and b;

lines 14-18 each thread evolves its subcomponents and locally accu-
mulates the number of exact �tness evaluations. �e la�er is then
atomically added to a global variable at line 20. Subsequently, each
thread updates the parts of the context vector corresponding to its
subcomponents (line 22). Such an update can be executed without
coordination between threads because each of them uses its local
copy b(tid) during the optimization. Moreover, the global vector b
can be updated in parallel because the di�erent threads operate on
di�erent elements of it. �e barrier at line 23 ensures that all the
threads �nished their job before the start of the next cycle. �is is
necessary because, as mentioned above, each CC cycle begins with
a random reordering and redistribution of search directions.

4 NUMERICAL RESULTS
4.1 Comparison between SACCDE and CCDE
To evaluate the e�ect of meta-modelling within subcomponents,
we adopted the seven functions proposed for the CEC’08 special
session on LSGO [21] listed in Table 1. In particular, all functions
f1− f6 have a global optimum point x∗ which is shi�ed by a di�erent
amount in each dimension. Functions f1 and f2 are uni-modal while
the remaining functions are multi-modal. Moreover, while f1, f4,
and f6 are separable functions, f2, f3, f5, f7, are non-separable. We
conducted the numerical experiments on the above test functions
using search spaces with 100, 500 and 1000 dimensions. �e error
value de�ned as | f (x) − f (x∗)|, where f (x∗) is the global optimum,
was adopted as a performance metric for functions f1 − f6. Instead,

1791

Large Scale Optimization of Computationally Expensive Functions GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

Table 1: Characteristics of the adopted benchmark test func-
tions. �e dimensiond of the search spacewas set to 100, 500
and 1000. Note that test problems f1 − f6 are shi�ed with dif-
ferent values in every direction.

Name Domain Characteristics

f1 Sphere [−100, 100]d Uni-modal, separable
f2 Schwefel’s 2.21 [−100, 100]d Uni-modal, non-separable
f3 Rosenbrock’s [−100, 100]d Multi-modal, non-separable
f4 Rastrigin’s [−5, 5]d Multi-modal, separable
f5 Griewank’s [−600, 600]d Multi-modal, non-separable
f6 Ackley’s [−32, 32]d Multi-modal, separable
f7 FastFractal [−1, 1]d Multi-modal, non-separable

for function f7, the global optimum of which is usually unknown,
the convergence was tested directly on the function value.

�e two JADE parameters referred to as c and p in [29] were set
to 0.1. Also, we used ten JADE iterations per cycle and subcompo-
nent (i.e., Ite = 10 in Algorithm 1). However, as explained above,
the number of JADE iterations per cycle can be slightly di�erent
for some subcomponent due to the need of be�er balancing the
computational load between threads. We used a decomposition
in subcomponents of size dk = 4 with 25 individuals per subcom-
ponent (e.g. the 1000-dimensional problem was tackled with a
decomposition in 250 subcomponents, each with 25 vectors evolved
though JADE). �e minimum value nr of the pa�erns needed for
training the RBFN was set to the size of the population. Each train-
ing phase was carried out with 30 iterations of gradient descent
with learning rate of 0.1.

In [21] the suggested number of exact function evaluations
maxFE was set to 5000 · d . However, since we are interested in
improving the convergence rate for computationally expensive ob-
jective functions, in this study the maximum number of �tness
evaluations was set to the relatively low value of 1000 · d .

For each function, we collected some relevant statistics from
the results of 50 independent runs. To improve the signi�cance
of the comparisons (e.g. to exclude the in�uence of a di�erent
initial population), the i-th runs of all algorithms were initialized
by the same random seed, while i-th and j-th runs, with i , j,
were initialized with di�erent seeds. �e results achieved with
the developed SACCDE were compared with those given by the
standard CCDE, obtained from the former by avoiding the use of
metamodelling in �tness evaluation. When comparing SACCDE
with CCDE on the single test functions, we carried out Mann-
Whitney-Wilcoxon (MWW) with signi�cance 0.05.

Table 2 shows the statistics on the achieved results for 100, 500
and 1000 variables respectively. When the average minimum is sig-
ni�cantly lower, according to the MWW test, we have highlighted
the results of the corresponding algorithm in the table. As can be
seen, for functions f1, f2 and f5-f7, regardless of the number of
variables, the surrogate-assisted approach SACCDE was always
able to outperform CCDE. In the case of f3, SACCDE provided
be�er average results for 100 and 1000 variables and an equivalent
average optimum for the 500-dimensional problem. Conversely,
in the case of function f4 the meta-modelling approach always
worsened the optimization e�ciency of the CCDE algorithm. A

Table 2: Statistics of the results achieved on the 50 indepen-
dent repetitions. For each function, the algorithm with the
best average optimum is highlighted and the MWW p-value
is shown.

Alg. Avg. Std. Dev. Best Worst p

dk = 100

f1
CCDE 6.8E-006 2.1E-006 2.9E-006 1.0E-005 0.00

SACCDE 7.7E-013 2.4E-013 4.5E-013 1.0E-005 -

f2
CCDE 1.2E+002 5.2E+000 1.1E+002 1.3E+002 0.00

SACCDE 6.9E+001 8.3E+000 5.1E+001 1.3E+002 -

f3
CCDE 6.8E+004 1.4E+005 3.7E+002 4.3E+005 0.00

SACCDE 1.5E+004 4.0E+004 1.3E+002 4.3E+005 -

f4
CCDE 1.4E+001 1.5E+000 1.0E+001 1.5E+001 -

SACCDE 5.0E+001 1.0E+001 1.0E+001 7.0E+001 0.00

f5
CCDE 3.5E-003 1.1E-002 1.7E-006 3.5E-002 0.00

SACCDE 3.9E-005 7.9E-005 2.3E-013 2.0E-004 -

f6
CCDE 5.4E-003 1.6E-003 2.6E-003 8.4E-003 0.00

SACCDE 3.6E-010 1.1E-010 1.6E-010 8.4E-003 -

f7
CCDE -1.0E+003 7.3E+001 -1.1E+003 -9.5E+002 0.00

SACCDE -1.3E+003 6.0E+001 -1.4E+003 -9.5E+002 -
dk = 500

f1
CCDE 7.6E-006 1.3E-006 5.8E-006 9.9E-006 0.00

SACCDE 6.2E-012 1.6E-012 3.7E-012 9.9E-006 -

f2
CCDE 1.4E+002 3.3E+000 1.3E+002 1.4E+002 0.00

SACCDE 1.2E+002 3.1E+000 1.1E+002 1.4E+002 -

f3
CCDE 1.9E+004 4.2E+004 1.2E+003 1.4E+005 -

SACCDE 1.6E+004 2.0E+004 8.5E+002 1.4E+005 0.50

f4
CCDE 5.1E+001 5.8E+000 4.5E+001 6.0E+001 -

SACCDE 4.0E+002 2.8E+001 4.5E+001 4.6E+002 0.00

f5
CCDE 8.1E-007 1.2E-007 6.8E-007 1.1E-006 0.00

SACCDE 2.2E-008 6.6E-008 1.3E-012 2.2E-007 -

f6
CCDE 2.3E-003 1.7E-004 2.1E-003 2.7E-003 0.00

SACCDE 8.0E-010 1.8E-010 4.9E-010 2.7E-003 -

f7
CCDE -4.9E+003 1.4E+002 -5.1E+003 -4.6E+003 0.00

SACCDE -6.0E+003 1.6E+002 -6.2E+003 -4.6E+003 -
dk = 1000

f1
CCDE 5.0E-005 5.1E-006 4.1E-005 5.8E-005 0.00

SACCDE 1.3E-011 2.8E-012 7.6E-012 5.8E-005 -

f2
CCDE 1.5E+002 9.8E-001 1.4E+002 1.5E+002 0.00

SACCDE 1.3E+002 3.8E+000 1.3E+002 1.5E+002 -

f3
CCDE 1.4E+004 4.0E+003 8.7E+003 2.1E+004 0.00

SACCDE 3.4E+003 1.8E+003 2.0E+003 2.1E+004 -

f4
CCDE 1.6E+002 8.8E+000 1.4E+002 1.7E+002 -

SACCDE 6.2E+002 3.2E+001 1.4E+002 6.5E+002 0.00

f5
CCDE 3.3E-006 2.8E-007 2.9E-006 3.7E-006 0.00

SACCDE 3.4E-007 1.0E-006 4.1E-012 3.5E-006 -

f6
CCDE 1.2E-002 2.1E-003 9.4E-003 1.7E-002 0.00

SACCDE 9.3E-010 3.4E-010 4.2E-010 1.7E-002 -

f7
CCDE -9.3E+003 2.1E+002 -9.7E+003 -8.9E+003 0.00

SACCDE -1.2E+004 2.2E+002 -1.3E+004 -8.9E+003 -

closer look at the statistics in Table 2 shows that in most cases the
SACCDE algorithm was able to improve the results from one to

1792

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany Ivanoe De Falco, Antonio Della Cioppa, and Giuseppe A. Trunfio

Figure 1: Median convergence plots obtained trough the di�erent algorithms under comparison.

1793

Large Scale Optimization of Computationally Expensive Functions GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany

Figure 2: Gain of exact �tness evaluations provided by the
SACCDE algorithm.

several orders of magnitude. �is was the case, for example, of func-
tions f1, f3 (1000 variables), f5 and f6. Instead, for f2 and f3 (100
variables) we observed only a small improvement, likely irrelevant
for most practical purposes. �e bene�cial e�ect of meta-modelling
in the case of f7 was particularly evident in higher-dimensional
problems, reaching about one order of magnitude in the case of
1000 variables. �e loss of optimization e�ciency due to the use
of surrogate �tness in case of function f4 was relatively small in
the cases of 100 and 1000 variables and more pronounced for the
500-dimensional problem. In general, it seems that for problems
that can be e�ciently optimized using the CCDE algorithm, the
use of surrogates within subcomponents could signi�cantly im-
prove the results (e.g., f1, f5 and f6). In contrast, when the CCDE
algorithm exhibited a poor optimization ability (e.g., f2, f4), the
SACCDE variant could not improve signi�cantly the results or even
worsened the achieved optimum, as it was the case of f4.

Some more insights can be gained from Figure 1, in which we
show the median convergence plots. Interestingly, the main char-
acteristics of the pa�erns exhibited by the di�erent curves tend to
persist regardless of the problem dimension. An exception is repre-
sented by the function f2, for which the speed of convergence of
SACCDE is signi�cantly improved in the case of 100 variables and
essentially unaltered for the problems with higher dimensionality.
For f1 and f5 we observe a superior e�ciency of the SACCDE opti-
mization algorithm over almost the entire budget of exact function
evaluations. However, especially for 1000 variables, the SACCDE

convergence process entered in a stalling state in the �nal part of
the process. Nevertheless, the achieved optimum had been already
below 1.0E−10, which can be considered suitable for most practical
applications. Also in the case of f3 the slope of the SACCDE was
signi�cantly superior to that of CCDE. However, such an improved
e�ciency was limited to almost half of the process and the esti-
mated optima provided by SACCDE were only slightly be�er than
the �nal best �tness of CCDE.

For function f4, a�er an initial faster convergence, the SACCDE
algorithm became less e�cient than the simple CCDE, which led
to a be�er result at the end of the process. �e reason of such
a result for function f4 could be related to the particular �tness
landscape originated by the Rastrigin’s function and is consistent
with previous studies in surrogate-assisted optimization [14]. In
fact, function f4 is multimodal and notoriously characterized by
a huge number of local optima, which can easily lead to early
convergence at false global optima of the surrogate model. It is
worth noting that in [14] and in [23], the Rastrigin’s function was
e�ectively tackled using an approach based on surrogate-assisted
local search rather than on a global metamodeling.

For both f6 and f7, as well as for f2 with 100 variables, SACCDE
provided a constantly superior speed of convergence and, likely,
more �tness evaluations would have led to a greater superiority of
result compared to CCDE.

In Figure 2 we show the average gain of exact �tness evaluations
provided by the SACCDE algorithm. �e percentages are computed
as 100 · (maxFE −m)/maxFE, where maxFE is the adopted budget
of exact �tness evaluations and m is the number of exact �tness
evaluations needed to the SACCDE algorithm for achieving the
same result provided by CCDE. For example, in the case of the
1000-dimensional problem f6 the gain was 66.6%, which means that
SACCDE provided the �nal result of 1.2E − 02 a�ained by CCDE
with a gain of 333000 exact �tness evaluations. Overall, the advan-
tages provided by the �tness approximation within subcomponents
can be relevant. Clearly, in Figure 2 the meaningfulness of the gains
of �tness evaluations shown is greater when the CCDE algorithm
proved e�ective in the optimization task.

4.2 Parallel e�ciency
�e parallel implementation was developed in C++ and OpenMP,
which is an application programming interface for supporting the
easy development shared-memory multiprocessing applications
[11]. �e program was compiled with Intel Compiler v. 16.0 and
run under Linux on a workstation equipped with two Intel Xeon
X5660 (2.80 GHz) 6-Core CPUs (12 cores in total). �e results de-
scribed in the following refer to the average run time obtained in
ten repetitions of optimizations for the 1000-dimensional problems
using 1.0E06 exact �tness evaluations. It is worth noting that the
used CPUs are endowed with Hyper-threading Intel’s proprietary
technology that associates two logical cores to each processor core
physically present, by taking advantage of the superscalar architec-
ture that allows multiple CPU instructions operating on separate
data in parallel. For this reason, we studied the elapsed time of each
optimization up to 24 threads.

In Figure 3 we plot, as a function of the number of threads, both
the elapsed time (averaged on all test functions) and the achieved

1794

GECCO ’17 Companion, July 15-19, 2017, Berlin, Germany Ivanoe De Falco, Antonio Della Cioppa, and Giuseppe A. Trunfio

Figure 3: Average elapsed times and parallel e�ciency as a
function of the number of threads.

parallel e�ciency (i.e. the ratio between single-thread and multi-
thread execution divided by the number of threads). A single-thread
optimization took 626.1 s on average, which could be reduced to
the minimum value of 50.6 s using 24 threads. Note, however, that
starting from about 12 threads the gain of computing time provided
by the activation of more threads was modest and obviously due to
the hyper-threading technology. Indeed, we observed an acceptable
decline of parallel e�ciency as the number of the involved threads
increased. In particular, up to the number of available cores (i.e. 12),
we achieved a satisfactory average value of e�ciency always above
70%. For example, using 8 and 10 threads the values of parallel
e�ciency were 82% and 74% respectively.

5 CONCLUSIONS AND FUTUREWORK
�e proposed approach combines meta-modeling and parallel com-
puting for tackling computationally expensive LSGO problems. Ac-
cording to the results discussed in the present paper, the developed
SACCDE algorithm could provide the same result of a standard
CCDE optimizer with a gain of expensive �tness evaluations rang-
ing from 50.8% to 73.5% for the 1000-dimensional problems. �is,
in case of objective functions involving signi�cant computation,
can represent a relevant economy of run time. Moreover, on a fairly
standard workstation endowed with 12 CPU cores we achieved a
speedup of about 12.4 over the single-threaded computation. Nev-
ertheless, we discussed in the present study only a preliminary
investigation, which should be enriched and re�ned with future
work, especially by using a larger set of test functions and testing
the scalability on more powerful parallel computers.

REFERENCES
[1] Ivan Blecic, Arnaldo Cecchini, and Giuseppe A. Trun�o. 2015. How much past

to see the future: a computational study in calibrating urban cellular automata.
International Journal of Geographical Information Science 29, 3 (2015), 349–374.

[2] Martin D. Buhmann. 2003. Radial Basis Functions: �eory and Implementations.
Cambridge University Press.

[3] Tianyou Chai, Yaochu Jin, and Bernhard Sendho�. 2013. Evolutionary complex
engineering optimization: opportunities and challenges. IEEE Computational
Intelligence Magazine 8, 3 (2013), 12–15.

[4] Shi Cheng, Yuhui Shi, �ande Qin, and Ruibin Bai. 2013. Swarm Intelligence
in Big Data Analytics. In Intelligent Data Engineering and Automated Learning -
IDEAL 2013. LNCS, Vol. 8206. Springer Berlin Heidelberg, 417–426.

[5] C.K. Goh, D. Lim, L. Ma, Y.S. Ong, and P.S. Du�a. 2011. A surrogate-assisted
memetic co-evolutionary algorithm for expensive constrained optimization prob-
lems. In Evolutionary Computation (CEC), 2011 IEEE Congress on. 744–749.

[6] A. Hameed, D. Corne, D. Morgan, and A. Waldock. 2013. Large-scale optimization:
Are co-operative co-evolution and �tness inheritance additive?. In 2013 13th UK
Workshop on Computational Intelligence (UKCI). 104–111.

[7] A. Hameed, A. Kononova, and D. Corne. 2015. Engineering Fitness Inheritance
and Co-operative Evolution Into State-of-the-Art Optimizers. In 2015 IEEE Sym-
posium Series on Computational Intelligence. 1695–1702.

[8] Yaochu Jin. 2005. A comprehensive survey of �tness approximation in evolu-
tionary computation. So� Comput. 9, 1 (2005), 3–12.

[9] Sedigheh Mahdavi, Mohammad Ebrahim Shiri, and Shahryar Rahnamayan. 2015.
Metaheuristics in large-scale global continues optimization: A survey. Inform.
Sci. 295, 0 (2015), 407 – 428.

[10] Prasanth B Nair and Andrew J Keane. 2001. Passive vibration suppression of
�exible space structures via optimal geometric redesign. AIAA journal 39, 7
(2001), 1338–1346.

[11] Marco Oliverio, William Spataro, Donato D’Ambrosio, Rocco Rongo, Giuseppe
Spingola, and Giuseppe A. Trun�o. 2011. OpenMP parallelization of the SCIARA
Cellular Automata lava �ow model: performance analysis on shared-memory
computers. Procedia Computer Science 4 (2011), 271–280.

[12] Mohammad Nabi Omidvar, Xiaodong Li, Zhenyu Yang, and Xin Yao. 2010. Coop-
erative Co-evolution for large scale optimization through more frequent random
grouping. In IEEE Congress on Evolutionary Computation. IEEE, 1–8.

[13] YewSoon Ong, A.J. Keane, and P.B. Nair. 2002. Surrogate-assisted coevolutionary
search. In Neural Information Processing, 2002. ICONIP ’02. Proceedings of the 9th
International Conference on, Vol. 3. 1140–1145.

[14] Y. S. Ong, A.J. Keane, and P.B. Nair. 2002. Surrogate-Assisted Coevolutionary
Search. In 9th International Conference on Neural Information Processing, Special
Session on Trends in Global Optimization. Singapore, 2195–2199.

[15] J. Park and I. W. Sandberg. 1991. Universal approximation using radial-basis-
function networks. Neural Comput. 3, 2 (June 1991), 246–257.

[16] Konstantinos E. Parsopoulos. 2012. Parallel cooperative micro-particle swarm
optimization: A master-slave model. Appl. So� Comput. 12, 11 (2012), 3552–3579.

[17] Mitchell A. Po�er and Kenneth A. De Jong. 1994. A Cooperative Coevolutionary
Approach to Function Optimization. In Parallel Problem Solving from Nature -
PPSN III (LNCS), Vol. 866. Springer-Verlag, 249–257.

[18] Friedhelm Schwenker, Hans A. Kestler, and Gnther Palm. 2001. �ree learning
phases for radial-basis-function networks. Neural Networks 14, 4-5 (2001), 439 –
458.

[19] Robert E. Smith, B. A. Dike, and S. A. Stegmann. 1995. Fitness Inheritance
in Genetic Algorithms. In Proceedings of the 1995 ACM Symposium on Applied
Computing (SAC ’95). ACM, New York, NY, USA, 345–350.

[20] Rainer Storn and Kenneth Price. 1997. Di�erential Evolution - A Simple and
E�cient Heuristic for global Optimization over Continuous Spaces. Journal of
Global Optimization 11, 4 (1997), 341–359.

[21] K. Tang, X. Yao, P. Suganthan, C. MacNish, Y. Chen, C. Chen, and Z. Yang.
Benchmark functions for the CEC’ 2008 special session and competition on large
scale global optimization. Technical Report. NICAL, Department of Computer
Science and Technology, University of Science and Technology of China, Hefei.

[22] SpencerAngus �omas and Yaochu Jin. 2014. Reconstructing biological gene reg-
ulatory networks: where optimization meets big data. Evolutionary Intelligence
7, 1 (2014), 29–47.

[23] Giuseppe A. Trun�o. 2016. Enhancing Cooperative Coevolution with Surrogate-
Assisted Local Search. Springer International Publishing, 63–90.

[24] Giuseppe A. Trun�o, Pawel Topa, and Jaroslaw Was. 2016. A new algorithm for
adapting the con�guration of subcomponents in large-scale optimization with
cooperative coevolution. Inf. Sci. 372 (2016), 773–795.

[25] R. Paul Wiegand, William C. Liles, and Kenneth A. De Jong. 2002. �e E�ects
of Representational Bias on Collaboration Methods in Cooperative Coevolution.
Springer Berlin Heidelberg, Berlin, Heidelberg, 257–268.

[26] K. Won, T. Ray, and K. Tai. 2003. A framework for optimization using approximate
functions. In Proceedings of IEEE Congress on Evolutionary Computation. 1077–
1084.

[27] Zhenyu Yang, Ke Tang, and Xin Yao. 2008. Large scale evolutionary optimization
using cooperative coevolution. Inform. Sci. 178, 15 (2008), 2985–2999.

[28] Zhenyu Yang, Ke Tang, and Xin Yao. 2008. Multilevel cooperative coevolution
for large scale optimization. In IEEE Congress on Evolutionary Computation (2009-
02-27). IEEE, 1663–1670.

[29] Jingqiao Zhang and A.C. Sanderson. 2009. JADE: Adaptive Di�erential Evolution
With Optional External Archive. IEEE Trans. Evol. Comput. 13, 5 (Oct 2009),
945–958.

1795

	Abstract
	1 Introduction
	2 Related Work
	3 A Surrogate-assisted CC optimizer
	3.1 Parallel implementation

	4 Numerical Results
	4.1 Comparison between SACCDE and CCDE
	4.2 Parallel efficiency

	5 Conclusions and Future Work
	References

