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ABSTRACT

There is a cultural divide between computer scientists and
biologists that needs to be addressed. The two disciplines
used to be quite unrelated but many new research areas
have arisen from their synergy. We selectively review two
multi-disciplinary problems: dealing with contamination in
sequencing data repositories and improving software using
biology inspired evolutionary computing. Through several
examples, we show that ideas from biology may result in
optimised code and provide surprising improvements that
overcome challenges in speed and quality trade-offs. On the
other hand, development of computational methods is essen-
tial for maintaining contamination free databases. Computer
scientists and biologists must always be sceptical of each
others data, just as they would be of their own.
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1 INTRODUCTION

Modern biology is in the middle of a civil war. On one side are
those who might be thought of as traditionalists. Those who
want biology to be the study of living organisms, preferably
brightly coloured telegenic animals. These scientists want to
catalogue the differences between every living thing. They
want computer scientists to index their catalogues. Then
there are other scientists who regard every living thing as
the product of its genes. These tend to be microbiologists
and can be classified as looking for the similarities between
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Figure 1: Tetratych showing: 1865 Mendel’s [4] dis-
covery of the essential digital nature of inheritance;
1930 Barbara McClintock’s [5] discovery of trans-
posons in Maize whereby genes move not only from
parent to child but also along chromosomes; 1959
Micrograph of genetic transfer along a pilus linking
two bacteria (Akiba and Ochia discovered the first
interspecies gene transfer [6]); mycoplasma bacteria
genes are transferred between computers, including
into the reference human genome DNA sequence
held by GenBank [2]. From “In Silico Infection of
the Human Genome” [7, p245]

microbes and men. They want computer scientists to index
their sequences.

For the sake of simplicity we can choose the indexing
of the reference human genome in 2000 [1] (see Section 2)
as the start of a micro-biology data avalanche. The last
seventeen years have seen an exponential growth in volume
and processing rates of sequence data, with corresponding
falls in costs, which even outstrip those that Moore’s law has
provided to the software industry. Perhaps computational
biology provides a way for computer scientists to make a
scientific contribution in their own right.

The next section reviews such a contribution: the discovery
of in silico contamination of the reference human genome [2].
Then Section 3 gives a selective review of a more search based
software engineering contribution: the use of evolutionary
computation to optimise a few bioinformatics tools. Section 4
discusses the wider interaction between biology and computer
science and the beneficial symbiosis that arises from it. In
Section 5 we conclude that computer scientists still need to
keep their wits about them, even when dealing with other
people’s data and that evolutionary computing, particularly
genetic improvement (GI) [3], can play an important role in
adapting tools in non-obvious Pareto trade-off optimisations.

2 DISBELIEVING:
IS IT HUMAN OR IS IT A BUG?

Figure 1 reviews how our understanding of genes has changed
in the last 150 years. The last of the four panels, represents
the transmission of DNA sequences, usually as plain ascii text,
across the globe. For example just before Christmas 2005 a
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bacteria sequence was accidentally upload along with thou-
sands of human DNA sequences into the Data Bank of Japan.
DDBJ and the National Center for Biotechnology Informa-
tion shadow each other’s data. So approximately 24 hours
later, the bacteria sequence, now labelled Homo sapiens, was
transferred to Washington, DC. Again NCBI and the Eu-
ropean Bioinformatics Institute shadow their databases, so
approximately 24 hours later the non-human sequence has
made its way to the EBI in Cambridge. Notice in approxi-
mately 48 hours the bacteria gene has got itself transferred
across the globe. Despite being reported eight years ago, it
is still there.

Individual efforts to combat these “infections” resulted in
software like SATIVA [8]. SATIVA is a tool to identify tax-
onomically mislabeled sequences given a multiple sequence
alignment (MSA), a species tree and an evolutionary model.
SATIVA performs well for genes with homologs across many
species, but it is not suitable for analysing sequences with
extremely fast or extremely slow divergence rates or imper-
fect data like chimeric or poor quality sequences. Currently
no methods exist for identifying mislabelled sequences with
no known homologs. Hence, there is a need for both new
methods for automatic identification of mislabelled sequences
and methods to remove identified mislabelled sequences from
databases as quickly as they spread in the first place.

One DNA gene sequence did not stop in the NCBI data-
bases (or their clones) but managed to get itself copied into
physical devices. It lies in thousands of GeneChips manufac-
tured by Affymetrix. It was via this route that we found it [2].
GeneChips give a bright response for each gene sequence
coded into them when exposed to samples where the gene is
expressed. Thus our hitch-hiking gene now gives itself away,
when exposed to its own gene transcript. That is, if the sam-
ple is contaminated with the same bacteria, the GeneChip
lights up in an unexpected way. Years later we were able to
use this anomalous sequence to discover that about 1% of
published gene expression data were contaminated with the
bacteria (Mycoplasma) and so useless [7].

Although unfortunately since discontinued, the University
of Essex’s RNAnet [9] gave ready access to cleaned up and
normalised data from tens of thousands of GeneChips [10]
archived within NCBI’s Gene Expression Omnibus GEO [11].
Nonetheless we have the cross correlation coefficients between
all human genes across the many different tissues and disease
states held by the GEO. These data are archived but are
available should you have the wish and ability to deal with
22 000 × 22 000 arrays.

The Thousand Genomes Project [1] was a well funded
flagship project of modern microbiology and yet we were able
to discover [12] that more than 7% of their on-line data was
from samples contaminated with Mycoplasma.

Nor is the contamination one way. Mark Longo et al. [13]
found human DNA sequences appearing in 492 public data-
bases which were supposed to contain DNA from species
ranging from bacteria to plants and fish. Here again we sus-
pect sloppy practice in microbiology laboratories leading to
contamination of physical samples which were then sequences

en masse causing the contaminating species (in this case
Homo sapiens, rather than Mycoplasma) to be sequenced
together with the target organism, and both sets of sequences
being uploaded into a public data bank.

The NCBI holds more than 5 petabytes of on-line data.
Cleaning it up this Augean mess will be a Herculean task.

3 OPTIMISING IS NOT JUST BEING FAST

Next we return to the traditional role of software engineering:
making better programs. We selectively review some exam-
ples of using evolutionary computation, a biology inspired
technique, not just to make existing programs faster, but also
as a relatively automated way of exploring different trade-offs,
particularly between speed and quality, and also of exploiting
parallel hardware (see also [14]).

The first example is Bowtie2 [15] which is a state-of-the-
art C++ program to align next generation short noisy DNA
sequences against a reference genome. Although originally
looking for a trade-off between speed and quality, evolutionary
computation was able to find changes to the code which gave,
for tasks like the one it had been trained on, spectacular
speed ups with no loss of quality [16].

BarraCUDA [17] is another DNA alignment program, how-
ever it was written in C++/CUDA to run on nVidia GPU
parallel hardware. Nevertheless a combination of manual
effort and evolution (known as grow and graft genetic pro-
gramming) was able to increase its performance by up to
three fold [18]. The genetically improved (GIed) version of
BarraCUDA was adopted and has been downloaded from
SourceForge1 many thousands of times. Indeed it has re-
cently been demonstrated on epigenetic sequences supplied
by Cambridge Epigenetix.

pknotsRG [19] was also a C program for which a CUDA
version had been released. It works with RNA rather than
DNA and predicts the folding pattern of short RNA molecules.
Again using the GGGP approach, evolutionary computation
was able to find small changes to manually written code
which lead to spectacular speed ups (see Figure 2). For short
RNA sequences the new code was up to ten thousand times
faster [20].

More recent work [21] on another RNA prediction tool,
RNAfold [22], has considered parallel vector SSE operations
available within many modern CPUs rather than GPUs.

4 DISCUSSION

Our main focus is that biology (e.g. sequencing techniques,
amount of data being generated) influences computer science
(it has to be able to deal with all this data and accommodate
limitations, contaminations, etc. in a meaningful way). While
in turn changes in computer science (more scalable software,
etc.) influences biology (e.g. by making previously prohib-
itively expensive computations possible and by developing
contamination detection and containment tools). Changes
in computer science are themselves inspired by biology. For
example, genetic algorithms and neural networks. Biological

1http://sourceforge.net/projects/seqbarracuda/
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Figure 2: Ratio between original speed of CUDA ver-
sion of pknotsRG and CUDA version after grow and
graft change to allow processing multiple sequences
in parallel for different RNA lengths. Note log scales.

inspiration has contributed greatly to new software. Similarly,
changes in biology are also sometimes inspired by computer
science. For example, thinking about genes in terms of char-
acter sequences and looking for similarity or divergence time
between species in terms of string comparisons. Ideas from
computer science give rise to new questions and to answer
them more data is generated.

5 CONCLUSIONS

The oft heard remark that “our data must be good because we
are using the data that the biologist use” roughly translates to
“before I joined the project someone downloaded something
from the Internet a previous version of which might have
been cited by someone who might have worked once with a
biologist”.

There is a cultural disconnect. Computer scientists tend
to think biological data must be ok, whereas microbiologists
know that their laboratories are at risk of infection and cross
contamination. However biologists tend not to even consider
the possibility that their computers might hold contaminated
data.

Yet in Section 2 we have seen many publically funded
databases have a variety of new types of contamination. The
big data volumes are just too huge for human curators and
so there is a crying need for research to find new and better
ways to automatically discover and remove suspect in silico
contamination.

Being aware is the first step to avoid data contamination
and misinterpretating computational results.

In Section 3 we reviewed recent work in which evolutionary
computation is applied directly to several widely used compu-
tational biology software tools. Perhaps the most successful

of these are the changes made using genetic improvement [23]
to BarraCUDA. They have been adopted by the BarraCUDA
team. Since integration of the GI evolved version, the team
has made eight releases of BarraCUDA. These include fixing
pre-GI bugs and supporting new GPU parallel computing
devices, e.g. for use with epigenetic sequences [24].
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[22] Lorenz, R., Bernhart, S.H., Höner zu Siederdissen, C., Tafer, H.,
Flamm, C., Stadler, P.F., Hofacker, I.L.: ViennaRNA package 2.0.
Algorithms for Molecular Biology 6(1) (2011)

[23] Petke, J., Haraldsson, S.O., Harman, M., Langdon, W.B., White,
D.R., Woodward, J.R.: Genetic improvement of software: a
comprehensive survey. (IEEE Transactions on Evolutionary Com-
putation) In press.

[24] Langdon, W.B., Vilella, A., Lam, B.Y.H., Petke, J., Harman, M.:
Benchmarking genetically improved BarraCUDA on epigenetic
methylation NGS datasets and nVidia GPUs. In Petke, J., et al.,
eds.: Genetic Improvement 2016 Workshop, Denver, ACM (2016)
1131–1132

1660

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2015_gi_pknots.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Langdon_2017_GI.html
http://dx.doi.org/10.1186/1748-7188-6-26
http://dx.doi.org/10.1186/1748-7188-6-26
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Petke_gisurvey.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Petke_gisurvey.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2016_GI.html

	Abstract
	1 Introduction
	2 Disbelieving: Is it Human or is it a Bug?
	3 Optimising is not just being fast
	4 Discussion
	5 Conclusions
	References

